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1. Introduction

Let X be a linear space and let t ∈ [0, 1]. A subset D ⊆ X is termed t-convex
if, for all x, y ∈ D,

tx + (1 − t)y ∈ D.

Analogously, a function f : D → R is called t-quasiconvex, t-Wright convex,
and t-convex if D is a t-convex set and, for all x, y ∈ D, the respective in-
equality

f(tx + (1 − t)y) ≤ max(f(x), f(y)),

f(tx + (1 − t)y) + f((1 − t)x + ty) ≤ f(x) + f(y),

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y), (1)

holds. 1
2 -convex sets are said to be midpoint convex and 1

2 -convex functions
are usually called Jensen convex. The structure and properties of t-convex sets
and t-quasiconvex, t-Wright convex, and t-convex functions and their gener-
alizations have been investigated in a large number of recent papers, see e.g.
[1,6,7,9,10,12–23,25,27–35,39].
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As a consequence of a result by Daróczy and Páles [4], every t-convex
function (where t ∈ ]0, 1[ ) is automatically Jensen convex and hence Q-convex,
i.e., it is t-convex for all rational numbers t ∈ [0, 1] (cf. [11]). The following
more general result about t-convexity was established by Kuhn [12].

Theorem A. If D contains at least two points and f : D → R is a t-convex
function for some t ∈ ]0, 1[ , then f is s-convex for all s ∈ Q(t) ∩ [0, 1], where
Q(t) denotes the smallest subfield of R containing t. Furthermore, for every
subfield F of R, there exists a function f : D → R which is t-convex if and
only if t ∈ F ∩ [0, 1].

The following result is the multivariable extension of the t-convexity prop-
erty.

Theorem B. Let F be a subfield of R and f : D → R be t-convex for all
t ∈ F ∩ [0, 1]. Then, for all n ∈ N, x1, . . . , xn ∈ D, t1, . . . , tn ∈ F ∩ [0, 1] with
t1 + · · · + tn = 1, the following inequality holds:

f

( n∑
i=1

tixi

)
≤

n∑
i=1

tif(xi).

Another classical theorem is due to Bernstein and Doetsch [2] (see also
[11]).

Theorem C. Let D be an open convex subset of a normed linear space and let
f : D → R be a Jensen convex function which is bounded from above on a
nonvoid open subset of D. Then f is continuous and convex, that is, t-convex
for all t ∈ [0, 1].

In the paper [16] the question whether t-Wright convexity implies Jensen
convexity was investigated and an affirmative answer was proved if t is a ra-
tional number. It was also shown that, for a transcendental t, this implication
is not true. Furthermore, it turned out that for some second degree algebraic
numbers the answer is positive whereas for some second degree algebraic num-
bers it is negative. Bernstein–Doetsch-type theorems for Wright convex func-
tions were established by Olbryś [29] and by Lewicki [14,15]. On the other
hand, in [6] Bernstein–Doetsch-type theorems were proven for quasiconvex
functions.

All the above mentioned results motivate the investigation of the analogous
problems in a more general setting. In our previous paper [5] we defined the
convexity of sets in metric Abelian groups with the help of endomorphisms.
The purpose of this paper is to adopt and extend this definition to functions
and therefore to investigate the associated notions of quasiconvexity, Wright
convexity and convexity. Some of our results will generalize Theorems A and
B as well as the above described statements.
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2. Metric Abelian groups and convexity of subsets

In this section we briefly recall the terminology, notations and all the results
from [5] which will be instrumental for our approach.

Let (X,+) be an Abelian group and let E(X) denote the family of all
endomorphisms. Then (E(X),+, ◦) is a ring. Thus, every T ∈ E(X) generates
an endomorphism T̃ : E(X) → E(X) defined by T̃ (S) := T ◦ S. For a family
T ⊆ E(X) we denote T̃ := {T̃ | T ∈ T}. Finally, I stands for the identity map of
X. The multiplication of the elements of X by natural numbers is introduced
by

1 · x := x, and (n + 1) · x := n · x + x (x ∈ X, n ∈ N).

The mapping πn(x) := n · x is always an endomorphism of X. We say that
(X,+) is divisible by n ∈ N if the map πn is a bijection (and hence an auto-
morphism) of X. In this case, for x ∈ X, the element π−1

n (x) is denoted as
1
n · x. The set of natural numbers n for which X is uniquely divisible by n is a
multiplicative subsemigroup of N whose unit element is 1, and will be denoted
by div(X).

For a subset A ⊆ X and n ∈ N, we say that A is n-convex if

{n · x | x ∈ A} = {x1 + · · · + xn | x1, . . . , xn ∈ A}.

For properties of n-convex sets, we refer to the paper [8]. In particular, by
[8, Proposition 2], we have that if a set is n- and m-convex, then it is also
(nm)-convex.

In the case when (X,+) is equipped with a translation invariant metric d,
we say that (X,+, d) is a metric Abelian group. Metric groups are automatically
topological groups in which the d-norm ‖ · ‖d : X → R is defined as ‖x‖d :=
d(x, 0). The subadditivity of ‖ · ‖d implies that ‖n · x‖d ≤ n‖x‖d for all x ∈ X
and n ∈ N. The equality here, may not be valid.

An endomorphism T : X → X is called d-bounded if there exists c ≥ 0
such that ‖T (x)‖d ≤ c‖x‖d for all x ∈ X. The smallest number c satisfying
this condition is called the d-norm of T and is denoted by ‖T‖∗

d. The symbol
Ed(X) will denote the subring of E(X) of all d-bounded endomorphisms. More
generally, for T ⊆ E(X), the symbol Td denotes the d-bounded elements of T.
The smallest number c such that ‖n ·x‖d ≤ c‖x‖d for all x ∈ X, that is ‖πn‖∗

d,
will simply be denoted by ‖n‖∗

d.
For n ∈ N, the measure of injectivity of the map πn is the largest number

μd(n) such that

μd(n)‖x‖d ≤ ‖n · x‖d (x ∈ X). (2)

Using these notations, we can now formulate an extension of the celebrated
R̊adström Cancellation Theorem (cf.[37]) which we proved in [5].
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Theorem 1. Let (X,+, d) be a metric Abelian group and let n0 ∈ N such that
μd(n0) > 1. Let A ⊆ X be an arbitrary subset, let B ⊆ X be a closed and n0-
convex subset, and C ⊆ X be a d-bounded nonempty subset such that A+C ⊆
B + C. Then A ⊆ B.

The d-spectral radius of an endomorphism T ∈ Ed(X) is defined as

ρd(T ) := lim sup
m→∞

m

√
‖Tm‖∗

d.

The following result is a generalization of the so-called Neumann invertibility
theorem.

Theorem 2. Let (X,+, d) be a complete metric Abelian group and let T ∈
Ed(X) such that ρd(T ) < 1. Then I − T is an invertible element of Ed(X),
furthermore,

(I − T )−1 =
∞∑

k=0

T k.

Given an endomorphism T ∈ E(X), we say that a subset D ⊆ X is T -convex
if, for all x, y ∈ D,

T (x) + (I − T )(y) ∈ D.

This condition is equivalent to the inclusion

T (D) + (I − T )(D) ⊆ D.

If T ⊆ E(X), then a set D ⊆ X is called T-convex if it is T -convex for all T ∈ T.
The class of T-convex subsets of X is denoted by CT(X) in what follows. In the
particular case when (X,+) is the additive group of a vector space and T = tI
for some t ∈ [0, 1], instead of T -convexity, we briefly speak about t-convexity,
which is a commonly accepted notion (cf. [12]). If X is a uniquely 2-divisible
Abelian group, and T = 1

2 · I, that is, T (x) := 1
2 · x, then T -convex sets will

also be termed midpoint convex. One can immediately see that if the group X
is divisible by some n ∈ N and T = 1

n · I, then T -convexity is equivalent to
n-convexity defined in the previous section. It is obvious but useful to observe
that a subset D ⊆ X is T -convex if and only if, for all p ∈ D,

T (D − p) ⊆ D − p. (3)

Now, given a nonempty subset D ⊆ X, we consider the collection of endo-
morphisms T of X that make D T -convex:

TD := {T ∈ E(X) | D is T -convex}.

It is obvious that, for every set D, we have 0, I ∈ TD and 0, I ∈ Td
D (if X is a

metric Abelian group). The next result describes a convexity property of TD.
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Theorem 3. Let D ⊆ X be a nonempty set. Then TD is a T̃D-convex subset of
E(X). If (X,+, d) is a metric Abelian group, then Td

D is a T̃d
D-convex subset

of Ed(X). In particular, these sets are closed with respect to the composition
of maps.

Corollary 1. Let D ⊆ X be a nonempty set. Then TD and also Td
D (if (X,+, d)

is a metric Abelian group) are closed under multiplication and under the map-
pings

T 
→ I − T and (T, S) 
→ T ◦ S + (I − T ) ◦ (I − S). (4)

In the next result, we provide conditions ensuring that T -convexity implies
midpoint convexity.

Theorem 4. Let (X,+, d) be a complete metric uniquely 2-divisible Abelian
group and T ∈ Ed(X) such that ρd(2 · T − I) < 1. Then, for every nonempty
T -convex set D ⊆ X, the set cl(Td

D) is a midpoint convex subset of Ed(X).
Furthermore, every closed T -convex subset of X is also midpoint convex.

The following result will be instrumental when investigating T -Wright con-
vex functions.

Corollary 2. Let (X,+, d) be a metric Abelian group, let n0 ∈ N such that
μd(n0) > 1 and let D be a closed bounded n0-convex set. Let n ∈ N and
T1, . . . , Tn ∈ Td

D be such that T := T1+· · ·+Tn is a bijection with T−1 ∈ Ed(X).
Then, for all k ∈ {1, . . . , n − 1}, we have T−1 ◦ (T1 + · · · + Tk) ∈ Td

D.

3. T -quasiconvex functions

Assume that (X,+) is an Abelian group. Given an endomorphism T ∈ E(X),
we say that a function f : D → [−∞,+∞[ is T -quasiconvex if D is a T -convex
subset of X and, for all x, y ∈ D,

f(T (x) + (I − T )(y)) ≤ max(f(x), f(y)).

If T ⊆ E(X), then a function f : D → [−∞,+∞[ is called T-quasiconvex if,
for all T ∈ T, it is T -quasiconvex. In what follows, the class of T-quasiconvex
functions defined on D is denoted by QT(D). If (X,+) is the additive group
of a linear space and f is tI-quasiconvex for some t ∈ [0, 1], then we say
that f is t-quasiconvex. If f is t-quasiconvex for all t ∈ [0, 1], then it is called a
quasiconvex function (in the standard sense). If (X,+) is a uniquely 2-divisible
group, and f is 1

2 · I-quasiconvex, then it is called midpoint quasiconvex (cf.
[24]). Recall that the characteristic function of a set S ⊆ X is defined by

χS(x) :=

{
1 if x ∈ S,

0 if x ∈ X \ S.
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Proposition 1. Let T ⊆ E(X) be a nonempty subset and let D be a T-convex
set. Then a function f : D → [−∞,+∞[ is T-quasiconvex if and only if, for
all c ∈ [−∞,+∞[ , the level sets

Dc
f := {x ∈ D : f(x) ≤ c}

are T-convex. On the other hand, a set S is T-convex if and only if the negative
of its characteristic function χS is T-quasiconvex.

Proof. Assume that T ∈ T, the function f : D → [−∞,+∞[ is T -quasiconvex
and fix a c ∈ [−∞,+∞[ arbitrarily. We will show that the set Dc

f is T -convex.
We have to show that, for all p ∈ Dc

f , the inclusion T (Dc
f − p) ⊆ Dc

f − p is
true. We have f(p) ≤ c and let y ∈ T (Dc

f − p). There exists x ∈ Dc
f such that

y = T (x − p). Clearly f(x) ≤ c. By the T -quasiconvexity of f , we have

f(T (x − p) + p) = f(T (x) + (I − T )(p)) ≤ max(f(x), f(p)) ≤ c,

which gives us that y + p = T (x − p) + p ∈ Dc
f , which was to be shown.

To prove the converse implication fix T ∈ T, x, y ∈ D and assume that the
level sets of a function f : D → [−∞,+∞[ are T -convex sets. Without loss
of generality we can assume that f(y) ≤ f(x). Then y ∈ D

f(y)
f ⊆ D

f(x)
f and

in particular the set D
f(x)
f is T -convex. Therefore, we have T (Df(x)

f − y) ⊆
D

f(x)
f − y. Consequently, T (x − y) ∈ D

f(x)
f − y, which means that

f(T (x) + (I − T )(y)) = f(T (x − y) + y) ≤ f(x) = max(f(x), f(y)).

This proves the T -quasiconvexity of f when level sets are T -convex.
Finally, assume that we are given a set S ⊆ X and T ∈ T. Note that the

T -quasiconvexity of −χS can be directly rewritten as follows:

χS(T (x) + (I − T )(y)) ≥ min(χS(x), χS(y))

for all x, y ∈ X. This inequality in turn is equivalent to (using the definition
of characteristic function):

x, y ∈ S =⇒ T (x) + (I − T )(y) ∈ S,

which is precisely the T -convexity of the set S. �

Theorem 5. Let T ⊆ E(X) be a nonempty subset. Then we have the following
statements.

(i) If D is a T-convex set, then QT(D) contains the negative of the character-
istic functions of all T-convex subsets of D and, for every c ∈ [−∞,+∞[
and f ∈ QT(D), we have f + c ∈ QT(D).

(ii) If D is a T-convex set, then QT(D) is closed with respect to pointwise
supremum, pointwise chain infimum, and pointwise convergence.
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(iii) If f : D → [−∞,+∞[ and g : E → [−∞,+∞[ are T-quasiconvex func-
tions, then the function f 
 g : D + E → [−∞,+∞[ defined by

(f 
 g)(x) := inf{max(f(u), g(v)) : u ∈ D, v ∈ E, u + v = x}
is T-quasiconvex on D + E.

(iv) If an endomorphism A ∈ E(X) commutes with any member of T and
f ∈ QT(D), then f ◦ A ∈ QT(A−1(D)) and f ◦ A−1 ∈ QT(A(D)), where
f ◦ A−1 : A(D) → [−∞,+∞[ is defined by

(f ◦ A−1)(x) := inf
u∈A−1(x)∩D

f(u). (5)

Proof. The proof of (i) is obvious.
Proof of (ii). To prove the T-quasiconvexity of the pointwise supremum of

a family {fα | α ∈ I} of T-quasiconvex functions defined on D fix T ∈ T,
x, y ∈ D and ε > 0. Let f : D → [−∞,+∞[ be given by f = sup{fα | α ∈ I}.
To show that f is T -quasiconvex observe that there exists some α0 ∈ I such
that

f(T (x) + (I − T )(y)) ≤ fα0(T (x) + (I − T )(y)) + ε ≤ max(fα0(x), fα0(y))

+ ε ≤ max(f(x), f(y)) + ε.

Since ε > 0 is arbitrarily small, f is T -quasiconvex.
To justify the T-quasiconvexity of the pointwise infimum of a chain {fα |

α ∈ I} of T-quasiconvex functions defined on D fix T ∈ T, x, y ∈ D and
ε > 0. Let f : D → [−∞,+∞[ be given by f = inf{fα | α ∈ I}. To show
that f is T -quasiconvex observe that there exist some αx, αy ∈ I such that
fαx

(x) ≤ f(x) + ε and fαy
(y) ≤ f(y) + ε. Since the family {fα | α ∈ I} forms

a chain, there exists α0 ∈ {αx, αy} such that fα0 = min(fαx
, fαy

) and then we
have

f(T (x) + (I − T )(y)) ≤ fα0(T (x) + (I − T )(y)) ≤ max(fα0(x), fα0(y))

≤ max(fαx
(x), fαy

(y)) ≤ max(f(x) + ε, f(y) + ε)

= max(f(x), f(y)) + ε.

Again, since ε > 0 is arbitrarily small, we obtain that f is T -quasiconvex.
To show the T-quasiconvexity of the pointwise limit (fn) of T-quasiconvex

functions defined on D fix T ∈ T and x, y ∈ D. We have

f(T (x) + (I − T )(y)) = lim
n→+∞ fn(T (x) + (I − T )(y))

≤ lim
n→+∞ max(fn(x), fn(y)) = max(f(x), f(y)).

The resulting equality proves that f is T -quasiconvex.
Proof of (iii). For the T-quasiconvexity of the function f 
g, let x, y ∈ D+E.

We need to prove, for all T ∈ T, that

(f 
 g)(T (x) + (I − T )(y)) ≤ max((f 
 g)(x), (f 
 g)(y)). (6)
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Let c ∈ ](f 
 g)(x),+∞[ and d ∈ ](f 
 g)(y),+∞[ be arbitrary. Then, by the
definition of f 
 g, there exist u, v ∈ D such that

max(f(u), g(x − u)) < c and max(f(v), g(y − v)) < d.

Let T ∈ T be fixed. Then, using the definition of f 
g and the T-quasiconvexity
of f and g, we obtain

(f 
 g)(T (x) + (I − T )(y)) ≤ max
(
f(T (u) + (I − T )(v), g(T (x − u)

+ (I − T )(y − v))
)

≤ max
(
max(f(u), f(v)),max(g(x − u), g(y − v))

)
= max(f(u), g(x − u), f(v), g(y − v)) < max(c, d).

Upon taking the limits c ↘ (f 
 g)(x) and d ↘ (f 
 g)(y), the inequality (6)
follows.

Proof of (iv). To verify the T-quasiconvexity of the function f ◦ A, let
x, y ∈ A−1(D) and let T ∈ T be fixed. Then A(x), A(y) ∈ D, hence the
T -quasiconvexity of f yields

(f ◦ A)(T (x) + (I − T )(y)) = f(T (A(x)) + (I − T )(A(y))

≤ max(f(A(x)), f(A(y)))

= max((f ◦ A)(x), (f ◦ A)(y)).

Finally, we show the T-quasiconvexity of the function f ◦ A−1. For this proof,
let x, y ∈ A(D). For the proof of the inequality

(f ◦ A−1)(T (x) + (I − T )(y)) ≤ max((f ◦ A−1)(x), (f ◦ A−1)(y)) (7)

choose c ∈ ](f ◦ A−1)(x),+∞[ and d ∈ ](f ◦ A−1)(y),+∞[ arbitrarily. Then,
there exist u, v ∈ D such that A(u) = x, A(v) = y and f(u) < c, f(v) < d.
Then, using A(T (u)+(I−T )(v)) = T (x)+(I−T )(y), and the T -quasiconvexity
of f , we get

(f ◦ A−1)(T (x) + (I − T )(y)) ≤ f(T (u) + (I − T )(v))

≤ max(f(u), f(v)) < max(c, d).

Now, upon taking the limits c ↘ (f ◦ A−1)(x) and d ↘ (f ◦ A−1)(y), the
inequality (7) follows. �

Using assertion (ii) of Theorem 5, it follows that, for every function f :
D → [−∞,+∞[ defined on a T-convex set D ⊆ X, the function qconvT(f) :
D → [−∞,+∞[ defined as

qconvT(f)(x) := sup{g(x) | g ∈ QT(D), g ≤ f} (x ∈ D)

is the largest T-quasiconvex function which is not greater than f on D. This
function will be called the T-quasiconvex envelope of f .
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Now, given a function f : D → [−∞,+∞[ , we consider the collection of
endomorphisms T ∈ E(X) that make f T -quasiconvex:

Tf := {T ∈ E(X) | f is T − quasiconvex}.

It is obvious that, for every function f , we have 0, I ∈ Tf and 0, I ∈ Td
f (if

(X,+, d) is a metric Abelian group). The next result shows some structural
properties of Tf and Td

f .

Theorem 6. Let D ⊆ X and let f : D → [−∞,+∞[ be an arbitrary function.
Then Tf is a T̃f -convex subset of E(X). If (X,+, d) is a metric Abelian group,
then Td

f is a T̃d
f -convex subset of E(X).

Proof. Let T, T1, T2 ∈ Tf and set S := T ◦ T1 + (I − T ) ◦ T2. Then, f is T1-,
T2- and T -quasiconvex, therefore, for all x, y ∈ D, we have

f(T1(x) + (I − T1)(y)) ≤ max(f(x), f(y)),

f(T2(x) + (I − T2)(y)) ≤ max(f(x), f(y)).

Consequently,

f(S(x) + (I − S)(y)) = f
(
T (T1(x) + (I − T1)(y)) + (I − T )(T2(x) + (I − T2)(y))

)
≤ max(f

(
T1(x) + (I − T1)(y)

)
, f

(
T2(x) + (I − T2)(y)

)
)

≤ max(f(x), f(y)).

This means that f is S-quasiconvex, hence S ∈ Tf . This yields that Tf is
T̃ -convex for all T ∈ Tf , which was to be proved.

The proof of the second assertion is completely analogous. �
The next result follows from Theorem 6 exactly in the same manner as

Corollary 1 was deduced from Theorem 3.

Corollary 3. Let D ⊆ X and f : D → [−∞,+∞[ . Then Tf and also Td
f (if

(X,+, d) is a metric Abelian group) is closed under multiplication and under
the mappings in (4).

In the following statement we show that T -quasiconvexity implies the mid-
point quasiconvexity under certain conditions on T , f , and X.

Theorem 7. Let (X,+, d) be a uniquely 2-divisible metric Abelian group and
T ∈ Ed(X) such that ρd(2·T −I) < 1 and let D be a closed T -convex set. Then,
for every function f ∈ QT (D), the set cl(Td

f ) is a midpoint convex subset of
Ed(X). Furthermore, every lower semicontinuous function f ∈ QT (D) is also
midpoint quasiconvex on D.

Proof. In view of Theorem 4, we have that D is a midpoint convex set. Let
f ∈ QT (D) and define the sequence of endomorphisms Tn by

Tn =
1
2

·
(
I + (2 · T − I)2

n−1
)
.



458 W. Fechner, Z. Páles AEM

By induction, one can see that this sequence satisfies the recursion

T1 := T, Tn+1 := T 2
n + (I − Tn)2 (n ∈ N).

Then, by the last assertion of Corollary 3, it follows that Tn ∈ Td
f for all n ∈ N.

The condition ρd(2 · T − I) < 1 implies that Tn converges to 1
2 · I. If

R,S ∈ cl(Td
f ), then there exist sequences Rn and Sn in Td

f converging to R

and S, respectively. By Theorem 6, for all n ∈ N, we have that Tn ◦ Rn + (I −
Tn) ◦ Sn ∈ Td

f . Upon taking the limit, it follows that 1
2 · (R + S) ∈ cl(Td

f ). This
implies that cl(Td

f ) is a midpoint convex set.
To complete the proof, assume that f is also a lower semicontinuous func-

tion. To prove its midpoint quasiconvexity, let x, y ∈ D. Then the midpoint
convexity of the set cl(Td

f ) and 0, I ∈ cl(Td
f ) imply that 1

2 ·I+ 1
2 ·0 = 1

2 ·I ∈ cl(Td
f ).

Therefore, there exists a sequence of operators Sn ∈ Td
f which converges to 1

2 ·I.
Thus, for all n ∈ N,

f(Sn(x) + (I − Sn)(y)) ≤ max(f(x), f(y)).

Upon taking the limit n → ∞ and using the lower semicontinuity of f , it
follows that

f
(
1
2 · (x + y)

) ≤ max(f(x), f(y)).

Therefore, f is midpoint quasiconvex on D. �

The following result presents a further invariance property of Td
f .

Theorem 8. Assume that (X,+, d) is a metric Abelian group, n0 ∈ N is such
that μd(n0) > 1 and D is a closed set. Let f : D → [−∞,∞[ be a lower
semicontinuous function whose level sets Dc

f are bounded n0-convex for all
c ∈ R. Let n ∈ N and T1, . . . , Tn ∈ Td

f be such that T := T1 + · · · + Tn

is a bijection with T−1 ∈ Ed(X). Then, for all k ∈ {1, . . . , n − 1}, we have
T−1 ◦ (T1 + · · · + Tk) ∈ Td

f .

Proof. The lower semicontinuity of f implies that the level sets Dc
f are closed

bounded n0-convex subsets of the closed set D for all c ∈ R. In view of Propo-
sition 1, it follows that these level sets are T1−, . . . , Tn-convex. Now, applying
Corollary 2, we obtain that all these level sets are

(
T−1 ◦ (T1 + · · · + Tk)

)
-

convex. Hence, again by Proposition 1, we get that f is
(
T−1 ◦(T1+ · · ·+Tk)

)
-

quasiconvex. �

4. T -Wright convex and T -Wright affine functions

Assume that (X,+) is an Abelian group. For an endomorphism T ∈ E(X), we
say that a function f : D → [−∞,+∞[ is T -Wright convex if D is a T -convex
subset of X and, for all x, y ∈ D,
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f(T (x) + (I − T )(y)) + f((I − T )(x) + T (y)) ≤ f(x) + f(y).

If T ⊆ E(X), then a function f : D → [−∞,+∞[ is called T-Wright convex if,
for all T ∈ T, it is T -Wright convex. The class of T-Wright convex functions
defined on D is denoted by WT(D). If (X,+) is the additive group of a linear
space and f is t · I-Wright convex for some t ∈ [0, 1], then we say that f is
t-Wright convex. If f is t-Wright convex for all t ∈ [0, 1], then it is called a
Wright convex function (in the standard sense) (cf. [39]). If (X,+) is a uniquely
2-divisible group, then 1

2 · I-Wright convex functions are called Jensen convex
(cf. [11]).

Theorem 9. Let T ⊆ E(X) be a nonempty subset. Then we have the following
statements.

(i) If D is a T-convex set, then WT(D) contains all constant functions and
all additive functions. Furthermore, it is closed with respect to pointwise
addition and multiplication by nonnegative scalars.

(ii) If D is a T-convex set, then WT(D) is closed with respect to pointwise
chain supremum, pointwise chain infimum, and pointwise convergence.

(iii) If an endomorphism A ∈ E(X) commutes with any member of T and
f ∈ WT(D), then f ◦ A ∈ WT(A−1(D)).

Proof. The proof of (i) is obvious.
Proof of (ii). To prove the T-Wright convexity of the pointwise supremum

of a nondecreasing family {fα | α ∈ I} of T-Wright convex functions defined
on D fix T ∈ T, x, y ∈ D and ε > 0. Let f : D → [−∞,+∞[ be given by
f = sup{fα | α ∈ I}. To show that f is T -Wright convex, observe that there
exist some α1, α2 ∈ I such that

f(T (x) + (I − T )(y)) ≤ fα1(T (x) + (I − T )(y)) + ε and

f((I − T )(x) + T (y)) ≤ fα2((I − T )(x) + T (y)) + ε.

Since the family {fα | α ∈ I} forms a chain, there exists α0 ∈ {α1, α2} such
that fα0 = max(fα1 , fα2). Then, by the T -Wright convexity of fα0 , we have

f(T (x) + (I − T )(y)) + f((I − T )(x) + T (y))

≤ fα1(T (x) + (I − T )(y)) + fα2((I − T )(x) + T (y)) + 2ε

≤ fα0(T (x) + (I − T )(y)) + fα0((I − T )(x) + T (y)) + 2ε

≤ fα0(x) + fα0(y) + 2ε ≤ f(x) + f(y) + 2ε.

Since ε > 0 is arbitrarily small, the T -Wright convexity of f follows.
Similarly we will establish the T-Wright convexity of the pointwise infimum

of a chain {fα | α ∈ I} of T-Wright convex functions defined on D. To do this,
fix T ∈ T, x, y ∈ D and ε > 0. Let f : D → [−∞,+∞[ be given by f =
inf{fα | α ∈ I}. Then there exist some α1, α2 ∈ I such that fα1(x) ≤ f(x) + ε
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and fα2(y) ≤ f(y)+ε. Since the family {fα | α ∈ I} forms a chain, there exists
α0 ∈ {α1, α2} such that fα0 = min(fα1 , fα2) and then we have

f(T (x) + (I − T )(y)) + f((I − T )(x) + T (y))

≤ fα0(T (x) + (I − T )(y)) + fα0((I − T )(x) + T (y))

≤ fα0(x) + fα0(y) ≤ fα1(x) + fα2(y) ≤ f(x) + f(y) + 2ε.

Since ε > 0 is arbitrary, f is T -Wright convex.
To show the T-Wright convexity of the pointwise limit (fn) of T-Wright

convex functions defined on D, fix T ∈ T and x, y ∈ D. We have

f(T (x) + (I − T )(y)) + f((I − T )(x) + T (y))

= lim
n→+∞ fn(T (x) + (I − T )(y)) + fn((I − T )(x) + T (y))

≤ lim
n→+∞ fn(x) + fn(y) = f(x) + f(y).

The resulting inequality proves that f is T -Wright convex.
Proof of (iii). To verify the T-Wright convexity of the function f ◦ A, let

x, y ∈ A−1(D) and let T ∈ T be fixed. Then A(x), A(y) ∈ D, hence the
T -Wright convexity of f yields

(f ◦ A)
(
T (x) + (I − T )(y)

)
+ (f ◦ A)

(
(I − T )(x) + T (y)

)
= f

(
T (A(x)) + (I − T )(A(y))

)
+ f

(
(I − T )(A(x)) + T (A(y))

)
≤ f(A(x)) + f(A(y)) = (f ◦ A)(x) + (f ◦ A)(y),

which completes the proof of the T-Wright convexity of f ◦ A. �

Now, given a function f : D → [−∞,+∞[ , we consider the collection of
endomorphisms T of X that make f a T -Wright convex function:

TWf := {T ∈ E(X) | f is T -Wright convex}.

It is obvious that, for every function f , we have 0, I ∈ TWf and 0, I ∈ TWd
f

(if (X,+, d) is a metric Abelian group). The next result shows some structural
properties of TWf and TWd

f .

Theorem 10. Let D ⊆ X and let f : D → [−∞,+∞[ be an arbitrary function.
Then TWf is closed with respect to the mappings in (4). If (X,+, d) is a metric
Abelian group, then TWd

f is also closed with respect to the mappings in (4).

Proof. The invariance of TWf with respect to the map T 
→ I−T is an obvious
consequence of the definition.
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Let T, S ∈ TWf . Then, for all x, y ∈ D, we have

f(x) + f(y) ≥ f(S(x) + (I − S)(y)) + f((I − S)(x) + S(y))

≥ f
(
T (S(x) + (I − S)(y)) + (I − T )((I − S)(x) + S(y))

)
+ f

(
(I − T )(S(x) + (I − S)(y)) + T ((I − S)(x) + S(y))

)
= f

(
(T ◦ S + (I − T ) ◦ (I − S))(x) + (T ◦ (I − S) + (I − T ) ◦ S)(y)

)
+ f

(
(T ◦ (I − S) + (I − T ) ◦ S)(x) + (T ◦ S + (I − T ) ◦ (I − S))(y)

)
.

This means that f is (T ◦ S + (I − T ) ◦ (I − S))-Wright convex, which was to
be proved.

The proof of the second assertion is completely analogous. �

The next statement is a generalization of the third assertion of Theorem
1 of the paper [16], which was one of the main results therein. Our approach
extensively uses Corollary 2 which is based on Theorem 1, our generalization
of the R̊adström Cancellation Theorem.

Theorem 11. Let (X,+, d) be a metric Abelian group, let n0 ∈ N such that
μd(n0) > 1, let D be a closed bounded n0-convex set and let f : D → [−∞,+∞[
be an arbitrary function. If n, k ∈ N, T ∈ TWd

f and S := n · T + k · (I − T ) is
invertible with S−1 ∈ Ed(X), then S−1 ◦ (n · T ) ∈ TWd

f .

Proof. Let n, k ∈ N, T ∈ TWd
f be such that S := n · T + k · (I − T ) is

invertible with S−1 ∈ Ed(X). To prove the Wright-convexity with respect
to the linear map S−1 ◦ (n · T ), let x, y ∈ D be fixed. By Corollary 2, for all
(i, j) ∈ {0, . . . , n}×{0, . . . , k}, we have that D is S−1◦(i·T +j ·(I−T ))-convex.
Therefore, for all (i, j) ∈ {0, . . . , n} × {0, . . . , k}, the element ui,j defined by

ui,j := S−1 ◦ (
(n − i) · T + (k − j) · (I − T )

)
(x) + S−1 ◦ (

i · T + j · (I − T )
)
(y)

belongs to D. On the other hand, one can easily check that, for (i, j) ∈
{0, . . . , n − 1} × {0, . . . , k − 1},

ui,j+1 = T (ui,j) + (I − T )(ui+1,j+1) and ui+1,j = (I − T )(ui,j) + T (ui+1,j+1).

Therefore, the T -Wright convexity of f implies that

f(ui,j+1) + f(ui+1,j) ≤ f(ui,j) + f(ui+1,j+1)

for (i, j) ∈ {0, . . . , n− 1}×{0, . . . , k − 1}. Adding up these inequalities side by
side with respect to i ∈ {0, . . . , n − 1}, we get

f(u0,j+1) + f(un,j) ≤ f(u0,j) + f(un,j+1).

Now adding up the inequalities side by side with respect to j ∈ {0, . . . , k − 1},
we arrive at the inequality

f(u0,k) + f(un,0) ≤ f(u0,0) + f(un,k). (8)
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Observe that u0,0 = x, un,k = y, and

u0,k = S−1 ◦ (n · T )(x) + S−1 ◦ (k · (I − T ))(y)

= S−1 ◦ (n · T )(x) + (I − S−1 ◦ (n · T ))(y),

un,0 = S−1 ◦ (k · (I − T ))(x) + S−1 ◦ (n · T )(y)

= (I − S−1 ◦ (n · T ))(x) + S−1 ◦ (n · T )(y).

Therefore, inequality (8) shows that f is S−1 ◦ (n · T )-Wright convex, which
was to be proved. �

In the following statement, we provide conditions for the invertibility of the
map S = n · T + k · (I − T ).

Theorem 12. Let (X,+, d) be a complete metric Abelian group with μd(2) > 1,
let n, k ∈ N such that n + k ∈ div(X) and μd(n + k) > 0, let D be a closed
bounded 2-convex set, and let f : D → [−∞,+∞[ be an arbitrary function. If
T ∈ TWd

f satisfies

|n − k|ρd(2 · T − I) < μd(n + k), (9)

then X is 2-divisible, S := n · T + k · (I − T ) is invertible with S−1 ∈ Ed(X)
and S−1 ◦ (n · T ) ∈ TWd

f .

Proof. For the proof of this statement, in view of Theorem 11, it suffices to
show that inequality (9) implies the invertibility of S with a d-bounded inverse.
We will prove this by using Theorem 2.

First observe that
2

n + k
· S − I =

n − k

n + k
· (2 · T − I).

Therefore, by the subadditivity of the d-norm and the submultiplicativity of
μd, we obtain

∥∥∥( 2
n + k

· S − I
)m∥∥∥∗

d
=

∥∥∥∥ (n − k)m

(n + k)m
· (2 · T − I)m

∥∥∥∥
∗

d

≤ |n − k|m
μd(n + k)m

‖(2 · T − I)m‖∗
d.

Now, taking the mth root side by side, then computing the upper limit as
m → ∞, finally using (9), we arrive at the inequality

ρd

(
I − 2

n + k
· S

)
= ρd

( 2
n + k

· S − I
)

≤ |n − k|
μd(n + k)

ρd(2 · T − I) < 1.

Therefore, Theorem 2 applied for the endomorphism I − 2
n+k · S yields that

I − (I − 2
n+k · S) = 2

n+k · S is an invertible endomorphism with a bounded
inverse. Thus π2 must be a surjection and hence 2 ∈ div(X). Consequently,
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1
n+k · S =

(
1

n+k · I
) ◦ S is also an invertible endomorphism with a bounded

inverse. Therefore, S−1 ∈ Ed(X). �

The following result is an easy consequence of Theorem 12 and it is still
more general than the third assertion of Theorem 1 of the paper [16].

Corollary 4. Let (X,+) be the additive group of a Banach space, let t ∈ [0, 1]∩
Q, let D be a closed bounded convex set, and let f : D → [−∞,+∞[ be an
arbitrary function. If T ∈ TWd

f satisfies

|2t − 1|ρd(2 · T − I) < 1, (10)

then S := t·T +(1−t)·(I−T ) is invertible with S−1 ∈ Ed(X) and S−1◦(t·T ) ∈
TWd

f .

Proof. If (X,+) is the additive group of a Banach space, then div(X) = N,
μd(n) = n for all n ∈ N and convex sets are 2-convex.

If t = 1, then (10) and Theorem 2 imply that I − (I − 2 · T ) = 2 · T is
invertible with a bounded inverse, hence S = T is invertible with S ∈ Ed(X).
The inclusion S−1 ◦ (t · T ) = I ∈ TWd

f is trivial. The case t = 0 can be seen
analogously.

In the rest of the proof, we may assume that t ∈ ]0, 1[∩Q. Then there exist
n, k ∈ N such that t = n

n+k . Then inequality (10) becomes (9), hence, by
Theorem 12, we get that (n + k) · S = n · T + k · (I − T ) is invertible with a
bounded inverse and

S−1 ◦ (t · T ) = S−1 ◦ (
n

n+k · T
)

= ((n + k) · S)−1 ◦ (n · T ) ∈ TWd
f .

Therefore the proof has been completed. �

For an endomorphism T ∈ E(X), we say that a function a : D → [−∞,+∞[
is T -Wright affine if D is a T -convex subset of X and, for all x, y ∈ D,

a(T (x) + (I − T )(y)) + a((I − T )(x) + T (y)) = a(x) + a(y). (11)

If T ⊆ E(X), then a function a : D → [−∞,+∞[ is called T-Wright affine if,
for all T ∈ T, it is T -Wright affine. Obviously, T-Wright affine functions are
also T-Wright convex, therefore, most of the results established above remain
valid for this subclass. In what follows, we describe the solution of the above
functional equation among real valued functions that are defined on the entire
set X. Our result partially generalizes [32, Theorem 1] (cf. also [26]).

Theorem 13. Let T ⊆ E(X) and assume that there exists T0 ∈ T such that
T0(X) = (I − T0)(X). Then a function a : X → R is T-affine if and only if
there exist a constant c, an additive function A : X → R and a symmetric
biadditive function B : X × X → R such that

B(T (u), (I − T )(u)) = 0 (u ∈ X, T ∈ T) (12)
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and

a(x) = B(x, x) + A(x) + c (x ∈ X). (13)

Proof. Assume first that a : X → R is T-Wright affine. Then, using that a is
real valued, by (11) we have that

a(x) + a(y) − a(T0(x) + (I − T0)(y)) − a((I − T0)(x) + T0(y)) = 0 (x, y ∈ X).

In view of the condition T0(X) = (I − T0)(X), this functional equation fulfils
the assumptions of linear functional equations treated by Székelyhidi [38, The-
orem 3.6], therefore a can be represented in the form (13) for some constant
constant c, additive function A : X → R and symmetric biadditive function
B : X ×X → R. Having this form of a, by the additivity of A, the biadditivity
and symmetry of B, we can obtain

a(x) + a(y) − a(T (x) + (I − T )(y)) − a((I − T )(x) + T (y))

= B(x, x) + B(y, y) − B(T (x) + (I − T )(y), T (x) + (I − T )(y))

− B((I − T )(x) + T (y), (I − T )(x) + T (y))

= 2B(T (x − y), (I − T )(x − y)).

Therefore, the function a satisfies the functional Eq. (11) if and only if it has
the representation (13) and B(T (x − y), (I − T )(x − y)) = 0 holds for all
x, y ∈ X, that is, if condition (12) is valid. �

In the paper [3] the functional Eq. (11) was considered under the assump-
tion that T is given as a multiplication by t ∈ [0, 1] and the characterization
of those numbers t was obtained for which there exists a nontrivial biadditive
function B satisfying (12).

5. (T, t)-convex and (T, t)-affine functions

Assume that (X,+) is an Abelian group. For an endomorphism T ∈ E(X) and
t ∈ [0, 1], we say that a function f : D → [ − ∞,+∞[ is (T, t)-convex if D is a
T -convex subset of X and, for all x, y ∈ D,

f(T (x) + (I − T )(y)) ≤ tf(x) + (1 − t)f(y). (14)

Here and in the rest of the paper, we use the usual convention 0 · (−∞) = 0.
If R ⊆ E(X) × [0, 1], then f is called R-convex if, for all (T, t) ∈ R, it is (T, t)-
convex. In particular, if T ⊆ E(X) and τ : T → [0, 1], then f is called (T, τ)-
convex if, for all T ∈ T, it is (T, τ(T ))-convex, that is, if f is R-convex where
R := {(T, τ(T )) | T ∈ T}. The class of R-convex, in particular, (T, τ)-convex
functions defined on D are denoted by CR(D) and CT,τ (D), respectively. If
(X,+) is the additive group of a linear space and f is (t · I, t)-convex for some
t ∈ [0, 1], then we say that f is t-convex. If f is t-convex for all t ∈ [0, 1], then
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it is called a convex function (in the standard sense). If (X,+) is a uniquely
2-divisible group, then (12 ·I, 1

2 )-convex functions are exactly the Jensen convex
ones.

One can observe that the function f ≡ −∞ is trivially (T, t)-convex for arbi-
trary (T, t) ∈ E(X)×[0, 1]. On the other hand, it is possible that a (T, t)-convex
function can take both finite and infinite values. To exclude this possibility,
the following lemma will be useful. In what follows, for a T -convex set D, we
say that an element p ∈ D is T -internal with respect to D if D has no proper
subset E which contains p and, for all x, y ∈ D with T (x) + (I − T )(y) ∈ E
implies x, y ∈ E.

Lemma 1. Let (T, t) ∈ E(X) × ]0, 1[ and let D ⊆ X be a T -convex set. If
f : D → [−∞,+∞[ is (T, t)-convex, then either f(x) = −∞ for all T -interior
points x ∈ D or f(x) ∈ R for all x ∈ D.

Proof. Assume that f is a (T, t)-convex function which is finite at some T -
interior point p. Define the sequence of sets (Dn) by the recursion

D0 := {p}, Dn :=
⋃

{{x, y} | x, y ∈ D, T (x) + (I − T )(y) ∈ Dn−1} (n ∈ N).
(15)

Observe that p ∈ D1, which implies D0 ⊆ D1, and hence (Dn) is an increasing
sequence of sets. Let E :=

⋃∞
n=0 Dn. Then p ∈ E, and taking the union of

both sides in (15), it follows that

E =
⋃

{{x, y} | x, y ∈ D, T (x) + (I − T )(y) ∈ E}.

Therefore, E is a subset of D which contains p and, for all x, y ∈ D with
T (x) + (I − T )(y) ∈ E implies x, y ∈ E. By the T -internality of p, it follows
that E = D, that is, D =

⋃∞
n=0 Dn.

In the rest of the proof, we show that f is finite-valued on Dn for all n ≥ 0.
This is obvious for n = 0 by the choice of p. Now assume that f is finite-valued
on Dn−1 for some n ∈ N. Let z ∈ Dn. Then there exist x, y ∈ D such that
z ∈ {x, y} and T (x) + (I − T )(y) ∈ Dn−1. Then f(T (x) + (I − T )(y)) > −∞
and, by the (T, t)-convexity of f , (14) holds. The left hand side being finite,
the condition t(1−t) > 0 implies that f(x) as well as f(y) are also finite, which
yields that f is finite at z. This completes the induction and finally shows that
f is finite valued on D. �

Lemma 2. Let T ∈ E(X) such that either T (X) ⊆ (I −T )(X) or (I −T )(X) ⊆
T (X) holds. Then every element of X is T -internal with respect to X.

Proof. Let p ∈ X and let E be a set which contains p and, for all x, y ∈ D
with T (x) + (I − T )(y) ∈ E implies x, y ∈ E. Then

D1 =
⋃

{{x, y} | x, y ∈ X, T (x) + (I − T )(y) = p} ⊆ E.
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We show that D1 = X, which shows that E cannot be proper and hence p
must be T -internal with respect to X.

Assume that T (X) ⊆ (I − T )(X) holds and let x ∈ X be arbitrary. Then
T (x − p) ∈ (I − T )(X), therefore, there exists y ∈ X such that T (x − p) =
(I − T )(y). Hence, T (x) + (I − T )(y) = T (p) + (I − T )(p) = p, which shows
that x ∈ D1. Thus, in this case we have obtained that D1 = X. In the other
case, the argument is completely analogous. �

The epigraph of an arbitrary function f : D → [ − ∞,+∞[ is defined by

epi(f) := {(x, u) ∈ D × R | f(x) ≤ u}.

For T ∈ E(X) and t ∈ R, the endomorphism (T, t) ∈ E(X × R) is defined as

(T, t)(x, u) := (T (x), t · u) ((x, u) ∈ X × R).

Therefore, any relation R ⊆ E(X) × R can be viewed as a subset of E(X × R)
as well. For R ⊆ E(X) × R, we introduce the domain and codomain of R as
follows

dom(R) := {T ∈ E(X) | ∃t ∈ R : (T, t) ∈ R},

codom(R) := {t ∈ R | ∃T ∈ E(X) : (T, t) ∈ R}.

The following characterization of R-convexity of functions is important.

Theorem 14. Let R ⊆ E(X) × [0, 1] be a nonempty subset. Then a function
f : D → [ − ∞,+∞[ is R-convex if and only if, its epigraph epi(f) is an
R-convex subset of X × R.

Proof. To prove that the epigraph of an R-convex function f is an R-convex
set, let (T, t) ∈ R. Then D is a T -convex subset of X. Fix some p, q ∈ epi(f).
There exist x, y ∈ D and u, v ∈ R such that p = (x, u), q = (y, v) and f(x) ≤ u,
f(y) ≤ v. From the T -convexity of D and from the (T, t)-convexity of f , we
get

f
(
T (x) + (I − T )(y)

) ≤ tf(x) + (1 − t)f(y) ≤ tu + (1 − t)v.

This inequality gives us

(T, t)(x, u) + (I − T, 1 − t)(y, v) =
(
T (x) + (I − T )(y), tu + (1 − t)v

) ∈ epi(f),

which shows that epi(f) is (T, t)-convex.
To prove the converse implication, let (T, t) ∈ R and x, y ∈ D. We have

(x, f(x)), (y, f(y)) ∈ epi(f). Therefore, by the assumed (T, t)-convexity of
epi(f), (

T (x) + (I − T )(y), tf(x) + (1 − t)f(y)
)

= (T, t)(x, f(x)) + (I − T, 1 − t)(y, f(y)) ∈ epi(f),

which yields the T -convexity of D and the (T, t)-convexity of f , and completes
the proof. �
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Theorem 15. Let R ⊆ E(X) × [0, 1] be a nonempty subset. Then we have the
following statements.

(i) CR(D) is closed with respect to pointwise addition and multiplication by
nonnegative scalars.

(ii) CR(D) is closed with respect to pointwise supremum, pointwise chain in-
fimum, and pointwise convergence.

(iii) If f : D → [ − ∞,+∞[, and g : E → [ − ∞,+∞[ are R-convex functions,
then the function f ∗ g : (D + E) → [ − ∞,+∞[ defined by

(f ∗ g)(x) := inf{f(u) + g(v) | u ∈ D, v ∈ E, u + v = x}
is R-convex on D + E.

(iv) If A ∈ E(X) commutes with any member of the domain of R and f ∈
CR(D), then f◦A ∈ CR(A−1(D)) and f◦A−1 ∈ CR(A(D)), where f◦A−1 :
A(D) → [ − ∞,+∞[ is defined by (5).

Proof. The proof of (i) is obvious.
Proof of (ii). To verify the R-convexity of the pointwise supremum of a

family {fα | α ∈ I} of R-convex functions defined on D, fix (T, t) ∈ R, x, y ∈ D
and ε > 0. Let f : D → [ − ∞,+∞[ be given by f = sup{fα | α ∈ I}. To show
that f is (T, t)-convex observe that there exists some α0 ∈ I such that

f(T (x) + (I − T )(y)) ≤ fα0(T (x) + (I − T )(y)) + ε

≤ tfα0(x) + (1 − t)fα0(y) + ε ≤ tf(x) + (1 − t)f(y) + ε.

Since ε > 0 is arbitrarily small, f is (T, t)-convex.
To justify the R-convexity of the pointwise infimum of a chain {fα | α ∈ I}

of R-convex functions defined on D, let (T, t) ∈ R, x, y ∈ D and ε > 0. Let
f be given by f = inf{fα | α ∈ I}. Then there exist α1, α2 ∈ I such that
fα1(x) ≤ f(x) + ε and fα2(y) ≤ f(y) + ε. By the chain property, there exists
α0 ∈ {α1, α2} such that fα0 = min(fα1 , fα2). Then we have

f(T (x) + (I − T )(y)) ≤ fα0(T (x) + (I − T )(y)) ≤ tfα0(x) + (1 − t)fα0(y)

≤ tfα1(x) + (1 − t)fα2(y)

≤ t(f(x) + ε) + (1 − t)(f(y) + ε)

= tf(x) + (1 − t)f(y) + ε.

Upon taking the limit ε → 0, we obtain that f is (T, t)-convex.
To show the R-convexity of the pointwise limit (fn) of R-convex functions

defined on D, let (T, t) ∈ R and x, y ∈ D. We have

f(T (x) + (I − T )(y)) = lim
n→+∞ fn(T (x) + (I − T )(y))

≤ lim
n→+∞ tfn(x) + (1 − t)fn(y) = tf(x) + (1 − t)f(y).

This inequality proves that f is (T, t)-convex.



468 W. Fechner, Z. Páles AEM

Proof of (iii). For the R-convexity of the function f ∗ g, let (T, t) ∈ R and
x, y ∈ D + E. We need to prove that

(f ∗ g)(T (x) + (I − T )(y)) ≤ t(f ∗ g)(x) + (1 − t)(f ∗ g)(y). (16)

Let c ∈ ](f ∗ g)(x),+∞[ and d ∈ ](f ∗ g)(y),+∞[ be arbitrary. Then, by the
definition of f ∗ g, there exist u, v ∈ D such that

f(u) + g(x − u) < c and f(v) + g(y − v) < d.

Then, by the (T, t)-convexity of f and g, we obtain

(f ∗ g)(T (x) + (I − T )(y)) ≤ f(T (u) + (I − T )(v))

+ g(T (x − u) + (I − T )(y − v))

≤ (tf(u) + (1 − t)f(v)) + (tg(x − u)

+ (1 − t)g(y − v))

= t(f(u) + g(x − u)) + (1 − t)(f(v) + g(y − v))

< tc + (1 − t)d.

Upon taking the limits c ↘ (f ∗ g)(x) and d ↘ (f ∗ g)(y), the inequality (16)
follows.

Proof of (iv). To verify the R-convexity of the function f ◦ A, let x, y ∈
A−1(D) and (T, t) ∈ R. Then A(x), A(y) ∈ D, hence the (T, t)-convexity of f
yields

(f ◦ A)(T (x) + (I − T )(y)) = f
(
T (A(x)) + (I − T )(A(y))

)
≤ tf(A(x)) + (1 − t)f(A(y))

= t(f ◦ A)(x) + (1 − t)(f ◦ A)(y),

which proves the (T, t)-convexity of f ◦ A.
Finally, we show the R-convexity of the function f ◦ A−1. For this proof,

let x, y ∈ A(D) and (T, t) ∈ R. For the proof of the inequality

(f ◦ A−1)(T (x) + (I − T )(y)) ≤ t(f ◦ A−1)(x) + (1 − t)(f ◦ A−1)(y) (17)

choose c ∈ ](f ◦ A−1)(x),+∞[ and d ∈ ](f ◦ A−1)(y),+∞[ arbitrarily. Then,
there exist u, v ∈ D such that A(u) = x, A(v) = y and f(u) < c, f(v) < d.
Using the equality A(T (u) + (I − T )(v)) = T (x) + (I − T )(y) and the (T, t)-
convexity of f , we get

(f ◦ A−1)(T (x) + (I − T )(y)) ≤ f(T (u) + (I − T )(v))

≤ tf(u) + (1 − t)f(v) < tc + (1 − t)d.

Upon taking the limits c ↘ (f ◦ A−1)(x) and d ↘ (f ◦ A−1)(y), the inequality
(17) follows. �
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Now, given a function f : D → [ − ∞,+∞[, we consider the set of those
pairs (T, t) ∈ E(X) × [0, 1] that make f a (T, t)-convex function:

Rf := {(T, t) ∈ E(X) × [0, 1] | f is (T, t)-convex}.

It is easy to see that, for all T ∈ E(X), the set Rf (T ) = {t | (T.t) ∈ Rf}
is a closed (possibly empty) subinterval of [0, 1]. Obviously, 0 ∈ Rf (0) and
1 ∈ Rf (I) for every function f : D → [ − ∞,+∞[. If f is nonconstant, then
the equalities Rf (0) = {0} and Rf (I) = {1} can easily be seen.

It is obvious that, for every function f , we have 0, I ∈ dom(Rf ) and 0, I ∈
(dom(Rf ))d (if (X,+, d) is a metric Abelian group). The next result shows
some structural properties of dom(Rf ) and (dom(Rf ))d.

Theorem 16. Let D ⊆ X and let f : D → [−∞,+∞[. Then Rf is a R̃f -convex
subset of E(X)× [0, 1]. If (X,+, d) is a metric Abelian group, then Rd

f is a R̃d
f -

convex subset of Ed(X)× [0, 1]. In particular, these sets are closed with respect
to (componentwise) multiplication.

Proof. Let (T, t), (T1, t1), (T2, t2) ∈ Rf . Set

S := T ◦ T1 + (I − T ) ◦ T2 and s := tt1 + (1 − t)t2.

Then, f is (T1, t1)-, (T2, t2)- and (T, t)-convex, therefore, for all x, y ∈ D, we
have

f(T1(x) + (I − T1)(y)) ≤ t1f(x) + (1 − t1)f(y),

f(T2(x) + (I − T2)(y)) ≤ t2f(x) + (1 − t2)f(y).

Consequently,

f(S(x) + (I − S)(y)) = f
(
T (T1(x) + (I − T1)(y)) + (I − T )(T2(x)

+ (I − T2)(y))
)

≤ tf
(
T1(x) + (I − T1)(y)

)
+ (1 − t)f

(
T2(x) + (I − T2)(y)

)
≤ t

(
t1f(x) + (1 − t1)f(y)

)
+ (1 − t)

(
t2f(x) + (1 − t2)f(y)

)
≤ sf(x) + (1 − s)f(y).

This means that f is (S, s)-convex, which was to be proved.
The proof of the second assertion is completely analogous. The last assertion

easily follows from the first two by taking (T2, t2) = (0, 0) in the above proof.
�

If (T, t) ∈ E(X) × [0, 1], then we say that a function a : D → [ − ∞,+∞[ is
(T, t)-affine if D is a T -convex subset of X and, for all x, y ∈ D,

a(T (x) + (I − T )(y)) = ta(x) + (1 − t)a(y). (18)

If R ⊆ E(X) × [0, 1], then a function a : D → [ − ∞,+∞[ is called R-affine
if, for all (T, t) ∈ R, it is (T, t)-affine. The class of R-affine functions defined
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on D is denoted by AR(D). If (X,+) is the additive group of a linear space
and f is (t · I, t)-affine for some t ∈ [0, 1], then we say that f is t-affine. If
f is t-affine for all t ∈ [0, 1], then it is called an affine function. If (X,+) is
a uniquely 2-divisible group, then (12 · I, 1

2 )-affine functions are called Jensen
affine or midpoint affine.

The graph of a function a : D → [ − ∞,+∞[ is defined by

graph(f) := {(x, a(x)) | x ∈ D, −∞ < a(x)}.

The following characterization of R-affinity is important.

Theorem 17. Let R ⊆ E(X) × [0, 1] be a nonempty subset. Then a function
a : D → R is R-affine if and only if graph(a) is an R-convex subset of X ×R.

Proof. To prove that the graph of an R-affine function a is an R-convex set,
let (T, t) ∈ R. Then D is a T -convex subset of X. Fix some p, q ∈ graph(a).
Then there exist x, y ∈ D such thatp = (x, a(x)), q = (y, a(y)). From the
T -convexity of D and from the (T, t)-affinity of a, we have (18), which gives
us

(T, t)(x, a(x)) + (I − T, 1 − t)(y, a(y)) =
(
T (x) + (I − T )(y), ta(x) + (1 − t)a(y)

)
=

(
T (x) + (I − T )(y), a(T (x)

+ (I − T )(y))
) ∈ graph(a),

which shows that graph(a) is (T, t)-convex.
To prove the converse implication, let (T, t) ∈ R and x, y ∈ D. We have

(x, f(x)), (y, f(y)) ∈ graph(a). Therefore, by the assumed (T, t)-convexity of
graph(a), (

T (x) + (I − T )(y), ta(x) + (1 − t)a(y)
)

= (T, t)(x, a(x)) + (I − T, 1 − t)(y, a(y)) ∈ graph(a),

which yields the T -convexity of D and the (T, t)-affinity of a, and completes
the proof. �

Theorem 18. Let R ⊆ E(X) × [0, 1] be a nonempty subset. Then we have the
following statements.

(i) AR(D) is closed with respect to pointwise addition and multiplication by
nonnegative scalars.

(ii) CR(D) is closed with respect to pointwise convergence.
(iii) If A ∈ E(X) commutes with any member of the domain of R and a ∈

AR(D), then a ◦ A ∈ AR(A−1(D)).

Proof. The proof of (i) is obvious and the proofs of (ii) and (iii) are parallel
to those of the corresponding statements of Theorem 15, therefore, they are
omitted. �
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Now, given a : D → [ − ∞,+∞[, we consider the set of the pairs (T, t) ∈
E(X) × [0, 1] such that a is a (T, t)-affine function:

Sa := {(T, t) ∈ E(X) × [0, 1] | a is (T, t)-affine}.

Obviously, Sa ⊆ Ra and, for all T ∈ E(X), the set Sa(T ) = {t | (t, T ) ∈ Sa}
is a closed (possibly empty) subinterval of [0, 1]. In addition, 0 ∈ S0(0) and
1 ∈ S0(I) for every function a : D → [−∞,+∞[. If a is nonconstant, then the
equalities Sa(0) = {0} and Sa(I) = {1} can easily be seen.

The next result establishes some structural properties of dom(Sa) and
(dom(Sa))d.

Theorem 19. Let D ⊆ X and let a : D → [−∞,+∞[. Then Sa is a S̃a-convex
subset of E(X) × [0, 1]. If (X,+, d) is a metric Abelian group, then Sd

a is a S̃d
a-

convex subset of Ed(X)× [0, 1]. In particular, these sets are closed with respect
to (componentwise) multiplication.

Proof. Let (T, t), (T1, t1), (T2, t2) ∈ Sa. Set

S := T ◦ T1 + (I − T ) ◦ T2 and s := tt1 + (1 − t)t2.

Then, a is (T1, t1)-, (T2, t2)- and (T, t)-affine, therefore, for all x, y ∈ D, we
have

a(T1(x) + (I − T1)(y)) = t1a(x) + (1 − t1)a(y),

a(T2(x) + (I − T2)(y)) = t2a(x) + (1 − t2)a(y).

Consequently,

a(S(x) + (I − S)(y)) = a
(
T (T1(x) + (I − T1)(y))

+ (I − T )(T2(x) + (I − T2)(y))
)

= ta
(
T1(x) + (I − T1)(y)

)
+ (1 − t)a

(
T2(x) + (I − T2)(y)

)
= t

(
t1a(x) + (1 − t1)a(y)

)
+ (1 − t)

(
t2a(x) + (1 − t2)a(y)

)
= sa(x) + (1 − s)a(y).

This means that a is (S, s)-affine, which was to be proved.
The proof of the second assertion is analogous. The last assertion easily

follows from the first two by taking (T2, t2) = (0, 0) in the above proof. �

Theorem 20. Let D ⊆ X, a : D → R and (T, t), (S, s) ∈ Sa with 0 < s, t ≤ s
and S∗ : T (X) → X be a homomorphism which is the right inverse of S on the
codomain of T , i.e., S ◦ S∗(u) = u for all u ∈ T (X). Then a is (S∗ ◦ T, s−1t)-
and (S − T, s − t)-affine.

Proof. The proof is based on the following identity:

S
(
S∗ ◦ T (x) + (I − S∗ ◦ T )(y)

)
+ (I − S)(y) = T (x) + (I − T )(y).
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Using this, the (S, s)- and (T, t)-affinity of a yield

sa
(
S∗ ◦ T (x) + (I − S∗ ◦ T )(y)

)
+ (1 − s)a(y)

= a
(
S

(
S∗ ◦ T (x) + (I − S∗ ◦ T )(y)

)
+ (I − S)(y)

)
= a

(
T (x) + (I − T )(y)

)
= ta(x) + (1 − t)a(y).

Subtracting (1 − s)a(y) from both sides and then dividing the inequality so
obtained by s, we get

a
(
S∗ ◦ T (x) + (I − S∗ ◦ T )(y)

)
= (s−1t)a(x) + (1 − s−1t)a(y).

This proves that a is (S∗ ◦ T, s−1t)-affine.
To show the last assertion, observe that a is (I − S∗ ◦ T, 1 − s−1t)-affine

and

(S − T, s − t) = (S ◦ (I − S∗ ◦ T ), s(1 − s−1t)).

Thus, the statement follows from Theorem 19. �

It follows from the above theorem that if S∗ : (I − T )(X) → X is a
homomorphism which is the right inverse of S on the codomain of I − T
and s + t ≥ 1, then a is also (S + T − I, s + t − 1)-affine. Indeed,

(S + T − I, s + t − 1) = (S − (I − T ), s − (1 − t)).

Using that (I − T, 1 − t) ∈ Sa, the above equality and the last assertion of
Theorem 20 imply that a is also (S + T − I, s + t − 1)-affine.

Obviously, the function a ≡ −∞ is (T, t)-affine for all (T, t) ∈ E(X)× [0, 1].
The following statement describes a large class of nontrivial real valued (T, t)-
affine functions.

Proposition 2. Let (T, t) ∈ E(X) × [0, 1], A ∈ E(X) and c ∈ R be such that A
is (T, t)-homogeneous, i.e., A ◦ T = tA holds. Then a := A + c is (T, t)-affine.
Furthermore, if R ⊆ E(X) × [0, 1] is nonempty, and A is (T, t)-homogeneous
for all pairs (T, t) ∈ R, then a is R-affine.

Proof. Let x, y ∈ X, then

a(T (x) + (I − T )(y)) = A(T (x) + (I − T )(y)) + c = A(T (x − y) + y) + c

= A(T (x − y)) + A(y) + c = tA(x − y) + A(y) + c

= t(A(x) − A(y)) + A(y) + c

= t(A(x) + c) + (1 − t)(A(y) + c)

= ta(x) + (1 − t)a(y),

which shows that (18) holds proving that a is (T, t)-affine. The last statement
immediately follows from the first part. �
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The following theorem offers a characterization of R-affine functions de-
fined on X. The main tool for the proof is the result of Székelyhidi [38], which
describes the general solution of linear functional equations with constant co-
efficients.

Theorem 21. Let R ⊆ E(X) × [0, 1] and assume that there exists (T0, t0) ∈ R

such that t0 ∈ ]0, 1[ and either T0(X) ⊆ (I − T0)(X) or (I − T0)(X) ⊆ T0(X)
holds. If a : X → [ − ∞,+∞[ is R-affine, then either a ≡ −∞ or there exist
an additive function A : X → R and c ∈ R such that A is (T, t)-homogeneous
for all pairs (T, t) ∈ R and a = A + c holds.

Proof. Assume that a is an R-affine function which is not identically equal to
−∞. First we show that a(x) ∈ R for all x ∈ X. There exists p ∈ X such that
−∞ < a(p), i.e., a(p) ∈ R. By Lemma 2, it follows that p is T0-internal with
respect to X, therefore, by Lemma 1, a is finite everywhere.

In the case when T0(X) ⊆ (I − T0)(X) holds, we can rewrite the (T0, t0)-
affinity of a in the following form

a(x) +
1 − t0

t0
a(y) − 1

t0
a(T0(x) + (I − T0)(y)) = 0 (x, y ∈ X).

This is a particular case of the linear functional equations investigated by
Székelyhidi. Therefore, by [38, Theorem 3.6], it follows that a is a first-degree
generalized polynomial, that is, a = A + c, where A ∈ E(X) and c ∈ R. Now
the R-affine property of a implies that

A(T (x) + (I − T )(y)) = tA(x) + (1 − t)A(y) (x, y ∈ X)

holds for all (T, t) ∈ R. Putting y = 0 in this equality, it follows that A is
(T, t)-homogeneous.

The case when (I − T0)(X) ⊆ T0(X) is valid, is completely analogous. �

The following characterization of R-convex functions is based on Rodé’s
celebrated separation theorem [36]. A relation R ⊆ E(X) × [0, 1] will be called
nonsingular if (T, 0) ∈ R implies T = 0 and (T, 1) ∈ R implies T = I.

Theorem 22. Let D ⊆ X, let R ⊆ E(X) × [0, 1] be a nonempty nonsingular
relation such that dom(R) forms a pairwise commuting subfamily of E(X).
Then a function f : D → [ − ∞,+∞[ is R-convex if and only if, for all p ∈ D,
there exists an R-affine function a : D → [ − ∞,+∞[ such that

a(p) = f(p) and a ≤ f. (19)

Proof. Assume first that, for all p ∈ D, there exists an R-affine function a :
D → [−∞,+∞[ satisfying (19). Then, f is the pointwise supremum of R-affine
and hence R-convex functions. Thus, by the second assertions of Theorem 15,
it is an R-convex function.
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To prove the other implication, assume that f is R-convex and, for an
endomorphism T ∈ dom(R), define the binary operation ωT : X2 → X by

ωT (x, y) := T (x) + (I − T )(y).

Then, ωT is idempotent and, by the dom(R)-convexity of D, it follows that D is
closed with respect to the operation ωT for all T ∈ dom(R). The assumption
that dom(R) forms a pairwise commuting family of endomorphisms, easily
implies that the set of operations {ωT | T ∈ dom(R)} is also commuting in the
following sense:

ωT (ωS(x, y), ωS(u, v)) = ωS(ωT (x, u), ωT (y, v)) (x, y, u, v ∈ X, T, S ∈ dom(R)).

Therefore, all basic assumptions of the theorem of Rodé are satisfied. The
R-convexity of f is now equivalent to the property

f(ωT (x, y)) ≤ tf(x) + (1 − t)f(y) (x, y ∈ D, (T, t) ∈ R).

Let now p ∈ D be fixed and define g : D → [ − ∞,+∞[ by

g(p) := f(p) and g(x) := −∞ (x ∈ D \ {p}).

Then, by the idempotent property of the operation ωT and by the nonsingu-
larity of the relation R, we can see that g satisfies the inequality

g(ωT (x, y)) ≥ tg(x) + (1 − t)g(y) (x, y ∈ D, (T, t) ∈ R),

i.e., g is R-concave. In addition, we trivially have that g ≤ f on D. Thus, by
the theorem of Rodé, it follows that there exists a function a : D → [−∞,+∞[
between g and f which satisfies the equality

a(ωT (x, y)) = ta(x) + (1 − t)a(y) (x, y ∈ D, (T, t) ∈ R),

which means that a is R-affine. The inequalities f(p) = g(p) ≤ a(p) ≤ f(p)
yield that a(p) = f(p). �

The following result is a direct consequence of Theorems 21 and 22.

Corollary 5. Let R ⊆ E(X)× [0, 1] be a nonsingular relation such that dom(R)
forms a pairwise commuting subfamily of E(X) and assume that there exists
(T0, t0) ∈ R such that t0 ∈ ]0, 1[ and either T0(X) ⊆ (I − T0)(X) or (I −
T0)(X) ⊆ T0(X) holds. Then a function f : X → [ − ∞,+∞[ is R-convex if
and only if, either f ≡ −∞ or, for all p ∈ X, there exist an additive function
A : X → R and a constant c ∈ R such that A is (T, t)-homogeneous for all
pairs (T, t) ∈ R and

A(p) + c = f(p) and A + c ≤ f.

Theorem 23. Let (X,+, d) be a metric Abelian group, let n0 ∈ N such that
μd(n0) > 1 and let D be a closed bounded n0-convex set. Let f : D → R,
n ∈ N and (T1, t1), . . . , (Tn, tn) ∈ Rd

f with t1, . . . , tn ∈ ]0, 1[. Assume that the
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endomorphisms T1, . . . , Tn are pairwise commuting and, for k ∈ {0, . . . , n},
define

Sk := T1 ◦ · · · ◦ Tk ◦ (I − Tk+1) ◦ · · · ◦ (I − Tn) and

sk := t1 · · · tk · (1 − tk+1) · · · (1 − tn). (20)

Assume that S := S0 + · · · + Sn is a bijection with S−1 ∈ Ed(X) and denote
s := s0 + · · · + sn. Then, for all k ∈ {1, . . . , n}, we have

(
S−1 ◦ (Sk + · · · +

Sn), s−1(sk + · · · + sn)
) ∈ Rd

f .

Proof. According to the last assertion of Theorem 3, we have that Sk ∈ Td
D

for each k ∈ {0, . . . , n}. Thus, using that D is a closed bounded n0-convex
set for some n0 with μd(n0) > 1 and applying Corollary 2, we obtain Rk :=
S−1 ◦ (Sk + · · · + Sn) ∈ Td

D also for each k ∈ {0, . . . , n}. We also denote
rk := s−1(sk + · · · + sn). We can see that (R0, r0) = (I, 1) and for the sake of
brevity, let (Rn+1, rn+1) := (0, 0).

Using the commuting property of the endomorphisms, for all i ∈ {1, . . . , n},
we have that

Ti ◦ Si−1 = (I − Ti) ◦ Si and similarly tisi−1 = (1 − ti)si. (21)

Therefore,

Ti ◦ (Si−1 + · · · + Sn) + (I − Ti) ◦ (Si+1 + · · · + Sn)
= Ti ◦ Si−1 + Ti ◦ Si + Si+1 + · · · + Sn

= (I − Ti) ◦ Si + Ti ◦ Si + Si+1 + · · · + Sn

= Si + Si+1 + · · · + Sn.

Applying the inverse endomorphism S side by side to this equality and again
using the commuting property of the endomorphisms, it follows that

Ti ◦ Ri−1 + (I − Ti) ◦ Ri+1 = Ri (i ∈ {1, . . . , n}). (22)

Completely similarly we can also get that

tiri−1 + (1 − ti)ri+1 = ri (i ∈ {1, . . . , n}).

To prove the (Rk, rk)-convexity of f for a fixed k ∈ {1, . . . , n}, let x, y ∈ D
be fixed and define

ui := Ri(x) + (I − Ri)(y) (i ∈ {0, . . . , n + 1}).

Then u0 = x and un+1 = y hold and, due to the identities in (22), it easily
follows that

ui = Tiui−1 + (I − Ti)ui+1 (i ∈ {1, . . . , n}).

By the (Ti, ti)-convexity of f , we have

f(ui) ≤ tif(ui−1) + (1 − ti)f(ui+1) (i ∈ {1, . . . , n}). (23)
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Define now, for i ∈ {0, . . . , n + 1}, the coefficients ci as follows:

ci :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if i ∈ {0, n + 1},
rk(s0 + · · · + si−1)

tisi−1
if i ∈ {1, . . . , k},

(1 − rk)(si + · · · + sn)
(1 − ti)si

if i ∈ {k + 1, . . . , n}.

(24)

Observe that all these coefficients are positive. Using the second equality in
(21) for i = k, the coefficient ck also possesses the following form

ck =
rk(s0 + · · · + sk−1)

tksk−1
=

(sk + · · · + sn)(s0 + · · · + sk−1)
(s0 + · · · + sn)(1 − tk)sk

=
(1 − rk)(sk + · · · + sn)

(1 − tk)sk
,

that is, the second formula in (24) also remains valid for i = k. In what follows,
we show that these numbers satisfy the following system of linear equations:

ci = (1 − ti−1)ci−1 + ti+1ci+1 if i ∈ {1, . . . , n} \ {k}. (25)

We prove this equality for i ∈ {1, . . . , k−1} and for i ∈ {k+1, . . . , n} separately.
If i ∈ {1, . . . , k − 1}, then 2 ≤ k. Thus,

c1 =
rks0
t1s0

=
rk

t1
and c2 =

rk(s0 + s1)
t2s1

=
rk( 1−t1

t1
s1 + s1)

t2s1
=

rk

t1t2
.

Hence the equality c1 = t2c2 follows, which proves (25) for i = 1. For i ∈
{2, . . . , k − 1}, we have

(1 − ti−1)ci−1 + ti+1ci+1 = (1 − ti−1)
rk(s0 + · · · + si−2)

ti−1si−2
+ ti+1

rk(s0 + · · · + si)

ti+1si

= ti
rk(s0 + · · · + si−2)

tisi−1
+ (1 − ti)

rk(s0 + · · · + si)

tisi−1

=
rk(s0 + · · · + si−2 + (1 − ti)si−1 + (1 − ti)si)

tisi−1
= ci.

For the Proof of (25) in the case i ∈ {k+1, . . . , n}, we consider first the subcase
i = n. We now have k ≤ n − 1 and

cn =
(1 − rk)sn
(1 − tn)sn

=
1 − rk
1 − tn

,

cn−1 =
(1 − rk)(sn−1 + sn)

(1 − tn−1)sn−1
=

(1 − rk)(sn−1 +
tn

1−tn
sn−1)

(1 − tn−1)sn−1
=

1 − rk
(1 − tn−1)(1 − tn)

.
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From here, we can see that cn = (1 − tn−1)cn−1, which proves equality (25) in
the case i = n. Finally, assume that i ∈ {k + 1, . . . , n − 1}. Then

(1 − ti−1)ci−1 + ti+1ci+1 = (1 − ti−1)
(1 − rk)(si−1 + · · · + sn)

(1 − ti−1)si−1

+ ti+1
(1 − rk)(si+1 + · · · + sn)

(1 − ti+1)si+1

= ti
(1 − rk)(si−1 + · · · + sn)

(1 − ti)si

+ (1 − ti)
(1 − rk)(si+1 + · · · + sn)

(1 − ti)si

=
(1 − rk)(tisi−1 + tisi + si+1 + · · · + sn)

(1 − ti)si
= ci.

After these preparations, multiply the inequality (23) by ci side by side and
sum up the resulting inequalities for i ∈ {1, . . . , n}. Then, in view of the
equalities (25), the terms containing f(ui) for i ∈ {1, . . . , k − 1, k + 1, . . . , n}
cancel out and we obtain

ckf(uk) ≤ t1c1f(u0) + (1 − tk−1)ck−1f(uk) + tk+1ck+1f(uk)

+ (1 − tn)cnf(un+1).

This is equivalent to the inequality

(ck − (1 − tk−1)ck−1 − tk+1ck+1)f(uk) ≤ rkf(x) + (1 − rk)f(y). (26)

Observe that in each inequality of (23), the sums of the coefficients on the
left and right hand sides are equal to each other. This remains valid after
multiplying by ci and summing up the inequalities so obtained. In particular,
this has to be true for the inequality (26). As a result, it follows that ck −
(1 − tk−1)ck−1 − tk+1ck+1 = 1. Hence, the inequality (26) proves that f is
(Rk, rk)-convex. �

Corollary 6. Let (X,+, d) be a metric Abelian group, let n0 ∈ N such that
μd(n0) > 1 and let D be a closed bounded n0-convex set. Let f : D → R,
n ∈ N and let (S0, s0), . . . , (Sn, sn) ∈ Ed(X)× ]0, 1[ be such that S0, . . . , Sn are
pairwise commuting and that S0 + S1, . . . , Sn−1 + Sn and S := S0 + · · · + Sn

are bijections with inverses belonging to Ed(X) and denote s := s0 + · · · +
sn. Assume that f is

(
(Si−1 + Si)−1 ◦ Si, (si−1 + si)−1si

)
-convex for all i ∈

{1, . . . , n}. Then, for all k ∈ {1, . . . , n}, we have
(
S−1◦(Sk+· · ·+Sn), s−1(sk+

· · · + sn)
) ∈ Rd

f .

Proof. For i ∈ {1, . . . , n}, define

Ti := (Si−1 + Si)−1 ◦ Si and ti := (si−1 + si)−1si.
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Then, these endomorphisms and constants satisfy all the assumptions of the
previous theorem, furthermore, the equalities in (20) are satisfied. Therefore,
the conclusion of this result applies. �

The next corollary is a generalization of former results of Daróczy–Páles
[4] and Kuhn [12] which are related to the vector space setting.

Corollary 7. Let (X,+, d) be a metric Abelian group, let n0 ∈ N such that
μd(n0) > 1 and let D be a closed bounded n0-convex set. Let f : D → R be
(T, t)-convex for some (T, t) ∈ Ed(X) × ]0, 1[, and let n ∈ N be such that πn

is a bijection with a d-bounded inverse. Then, for all k ∈ {1, . . . , n}, f is also
(π−1

n ◦ πk, n−1k)-convex.

Proof. Assume that f is (T, t)-convex. In order to use the previous corollary,
for all i ∈ {0, . . . , n − 1}, define

S2i := T, S2i+1 := I − T, and s2i := t, s2i+1 := 1 − t.

Then, for every i ∈ {1, . . . , 2n−1}, we have that Si−1+Si = I, which obviously
has a d-bounded inverse. We also have that S = S0 + · · ·+S2n−1 = n · I = πn,
which has a bounded inverse by our assumptions. Furthermore,

(
(Si−1+Si)−1◦

Si, (si−1 + si)−1si

)
is equal to (T, t) for even i and to (I − T, 1 − t) for odd i,

which shows that Corollary 6 is applicable. Therefore, by the conclusion of this
corollary, f is

(
S−1◦(S2(n−k)+· · ·+S2n−1), s−1(s2(n−k)+· · ·+s2n−1)

)
-convex,

i.e., it is (π−1
n ◦ πk, n−1k)-convex. �
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[5] Fechner, W., Páles, Zs.: Convexity of sets in metric Abelian groups, Forum Math.
published online (2020)
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276. Birkhäuser, Basel (1984)

[13] Lewicki, M.: Wright-convexity with respect to arbitrary means. J. Math. Inequal. 1(3),
419–424 (2007)

[14] Lewicki, M.: Baire measurability of (M, N)-Wright convex functions. Comment. Math.
Prace Mat. 48(1), 75–83 (2008)

[15] Lewicki, M.: Measurability of (M, N)-Wright convex functions. Aequationes Math. 78(1–
2), 9–22 (2009)
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