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Abstract. Let I be an interval, X be a metric space and � be an order relation on the
infinite product X∞. Let U : X∞ → R be a continuous mapping, representing �, that
is such that (x0, x1, x2, . . .) � (y0, y1, y2, . . .) ⇔ U(x0, x1, x2, . . .) ≥ U(y0, y1, y2, . . .). We
interpret X as a space of consumption outcomes and the relation � represents how an
individual would rank all consumption sequences. One assumes that U , called the utility
function, satisfies the recursion U(x0, x1, x2, . . .) = ϕ(x0, U(x1, x2, . . .)), where ϕ : X×I → I
is a continuous function strictly increasing in its second variable such that each function
ϕ(x, ·) has a unique fixed point. We consider an open problem in economics, when the
relation � can be represented by another continuous function V satisfying the affine recursion
V (x0, x1, x2, . . .) = α(x0)V (x1, x2, . . .) + β(x0). We prove that this property holds if and
only if there exists a homeomorphic solution of the system of simultaneous affine functional
equations F (ϕ(x, t)) = α(x)F (t) + β(x), x ∈ X, t ∈ I for some functions α, β : X → R. We
give necessary and sufficient conditions for the existence of homeomorhic solutions of this
system.
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1. Introduction

Let X be a topological space. Let X∞ be the infinite Cartesian product en-
dowed with product topology. Let � be a transitive and connex binary relation
on X∞.

The economic interpretation of these objects is as follows. The space X is
treated as a set of consumption outcomes, (x0, x1, x2, . . .) ∈ X∞ as a sequence
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of outcomes consumed over time, where the element xn represents the outcome
consumed in period n.

The order relation “�” describes how an individual would rank all con-
sumption sequences.

Economists working with binary relations usually assume that they can be
represented by real functions.

We will say that the continuous function U : X∞ → R represents “�” if
for all (x0, x1, x2, . . .), (y0, y1, y2, . . .) ∈ X∞

(x0, x1, x2, . . .) � (y0, y1, y2, . . .) ⇔ U(x0, x1, x2, . . .) ≥ U(y0, y1, y2, . . .).

A function U satisfying the above condition is said to be a utility function.
In the problem under consideration the economists assume that the utility
function U satisfies the recursion

U(x0, x1, x2, . . .) = ϕ(x0, U(x1, x2, . . .)), (1)

where ϕ : X × I → I is a continuous function strictly increasing in its second
variable and I is an interval.

Assume that X∞ is a connected topological space and U satisfies (1). Then
the set U(X∞) is a subinterval of I as the image of a continuous function of
a connected space and ϕ(x,U(X∞)) ⊂ U(X∞)) for every x ∈ X. Thus for a
given U we may restrict the domain of ϕ to the set X×U(X∞) and further
assume that U(X∞) = I.

The recursion (1) was introduced by Koopmans et al. in paper [3], which
is considered as a classical one in economics. In this paper it is explained, why
it is natural to impose this recursive structure on U (see also [1]).

The key role in this theory is played by the property of “impatience” on
the part of the individual defined as follows.

Impatience For all n ≥ 1, a, b ∈ Xn and all (x0, x1, . . .) ∈ X∞

(a, a, a, . . . ) � (b, b, b, . . .) ⇔ (a, b, x0, x1, . . .) � (b, a, x0, x1, . . .).

In simple terms this means that, if the repeated consumption a ∈ Xn is
preferred over the repeated consumption b ∈ Xn, so that a is “better” then b
, than the individual would sooner consume a than b.

Koopmans started with the conjecture that any binary relation that admits
a utility function satisfying (1) would satisfy impatience. It turned out that
this supposition is false. Koopmans left the problem how to represent the rela-
tion of preference that do satisfy impatience. Next Asen Kochov (in personal
correspondence) posed a conjecture that impatience holds if and only if the
recursion representing � can be chosen to be affine admitting non-constant
coefficients.

In this paper we show that this conjecture without additional assumptions
is not true. We prove even something more, we give necessary and sufficient
conditions when the above conjecture holds.
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2. Preliminary remarks

We make the following general assumption:
(A) X is a Hausdorff topological space satisfying the first axiom of countabil-

ity and the product topology in X∞ is such that it is connected and the
convergence of the sequences is equivalent to the convergence with re-
spect to coordinates, that is limk→∞(x0,k, x1,k, . . .) = (x0, x1, . . .) if and
only if limk→∞ xn,k = xn for every n ∈ N .

Note that if X is connected then X∞ is connect, moreover condition (A) holds
for metric spaces.

In fact, let (X, d) be a metric space. Define on X∞ the metric

�({xn}, {yn}) :=
∞∑

n=1

1
2n

d(xn, yn)
1 + d(xn, yn)

.

Note that (X∞, �) is a metric space satisfying condition (A).
Let us introduce the notation

fa := ϕ(a, ·), a ∈ X.

Obviously fa : I → I. It is convenient to consider X as the set of parameters.
Let U satisfy (1). Put

Ua := U(a, a, . . .), a ∈ X.

By (1) we have Ua = U(a, a, . . .) = ϕ(a, U(a, a, . . .)) = fa(U(a, a, . . .)) =
fa(Ua). Thus Ua is a fixed point of fa.

Remark 1. Every function fa has a unique fixed point.

Proof. Suppose that fa(p) = p for a p ∈ I. By the surjectivity of U there exists
a sequence (a1, a2, . . .) ∈ X∞ such that U(a1, a2, . . .) = p. Since fa(p) = p we
have by (1)

p = U(a1, a2, . . .) = fa(U(a1, a2, . . .)) = U(a, a1, a2, . . .).

Hence f2
a (U(a1, a2, . . .)) = fa(U(a, a1, a2, . . .)) = U(a, a, a1, a2, . . .). Further,

by induction, we get p = fn
a (p) = U(a, a, . . . , a, a1, a2, . . .) (a is repeated n-

times).
Since (a, a, . . . , a, a1, a2, . . .) → (a, a, a, . . .), the continuity of U implies

that

U(a, a, . . . , a, a1, a2, . . .) → U(a, a, . . .),

so p = Ua. �
Remark 2. If a function V : X∞ → R satisfies (1) and Va := V (a, a, . . .) then
Va = Ua.

This is a simple consequence of the fact that fa(Ua) = Ua, fa(Va) = Va

and fa has a unique fixed point.
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Remark 3. If inf I < inf fa and sup fa < sup I then Ua ∈ IntI and
(H) fa(t) < t for t > Ua and fa(t) > t for t < Ua.

Moreover, (H) holds if and only if for all sequences (x1, x2, . . . ), (y1, y2, . . .) ∈
X∞ such that (x1, x2, . . . ) � (a, a, . . . ) � (y1, y2, . . .) we have (x1, x2, . . . ) �
(a, x1, x2, . . .) and (a, y1, y2, . . .) � (y1, y2, . . .).

Proof. Since fa has a unique fixed point, the inequalities inf I < inf fa,
sup fa < sup I, imply that Ua ∈ IntI. Moreover, inf I < inf fa implies that
fa(t) > t for t < Ua and sup fa < sup I implies that fa(t) < t for t > Ua.

Let now t ∈ I and t > Ua. Then there exists a sequence (x1, x2, . . .) such
that U(x1, x2, . . .) = t. Since U(x1, x2, . . .) > U(a, a, . . . ) we have (x1, x2, . . .) �
(a, a, . . . ). Thus by the assumption (x1, x2, . . . ) � (a, x1, x2, . . .), so

t = U(x1, x2, . . . ) ≥ U(a, x1, x2, . . .) = fa(U(x1, x2, . . . )) = fa(t).

Since fa has a unique fixed point and t �= Ua we get fa(t) < t. Similarly we
get the second inequality in (H).

Now, let (H) hold and (x1, x2, . . . ) � (a, a, . . . ). Put t = U(x1, x2, . . . ).
We have t ≥ Ua. Then fa(t) ≤ t, so U(a, x1, x2, . . .) = fa(U(x1, x2, . . . )) =
fa(t) ≤ t = U(x1, x2, . . . ). Thus (x1, x2, . . . ) � (a, x1, x2, . . .). Similarly we get
the second inequality. �

If I is a compact interval and inf fa = inf I then fa(t) < t for t �= Ua,
however if sup fa < sup I then fa(t) > t for t �= Ua. Thus, if I is a compact
interval then (H) holds.

Further we assume that every mapping fa satisfies (H) .

3. Results

Let us introduce the notation

f(x0,x1,...,xk) := fx0 ◦ fx1 ◦ . . . fxk
, xi ∈ X.

By (1) we get that for every k ∈ N \ 0 and all a ∈ Xk and x ∈ X∞

U(a, x) = fa(U(x)).

Hence, similarly as in Remark 1, it follows that every fa for a ∈ Xk has a
unique fixed point Ua.

Note that G := {fa : a ∈ ⋃
k≥1 Xk} is a semigroup of strictly increasing

continuous functions possessing a unique fixed point (in this notation a =
(a0, a1, . . . , ak)).

Theorem 1. The relation � satisfies impatience if and only if

∀k≥1∀a,b∈Xk Ua ≥ Ub ⇔ fa ◦ fb ≥ fb ◦ fa.
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Proof. This theorem is a consequence of the surjectivity of U and the following
equivalences and equalities

(a, a, a, . . .) � (b, b, b, . . .) ⇔ U(a, a, a, . . .) ≥ U(b, b, b, . . .) ⇔ Ua ≥ Ub,

(a, b, x0, x1, . . .) � (b, a, x0, x1, . . .) ⇔ U(a, b, x0, x1, . . .) ≥ U(b, a, x0, x1, . . .),

U(a, b, x0, x1, . . .) = fa ◦ fb(U(x0, x1, . . .)),

U(b, a, x0, x1, . . .) = fb ◦ fa(U(x0, x1, . . .)),

U(a, b, x0, x1..) ≥ U(b, a, x0, x1, ..) ⇔ fa ◦ fb(U(x0, x1, ..)) ≥ fb ◦ fa(U(x0, x1, ..)).

�
Corollary 1. If the relation � satisfies impatience then fa and fb have a joint
fixed point if and only if fa ◦ fb = fb ◦ fa.

Let us consider the particular case, where fa(s) = α(a)s + β(a), where
α : X → (0, 1) and β : X → R are continuous functions. Then fa satisfies (H)
and (1) has the form

V (x0, x1, x2, . . .) = α(x0)V (x1, x2, . . .) + β(x0). (2)

Theorem 2. If V fulfills (2) then the order relation represented by V satisfies
impatience.

Proof. We have fx(s) = α(x)s+β(x), x ∈ X and 0 < α(x) < 1. The composi-
tion of affine functions is an affine function. Thus we may extend the domain
of the functions α and β on

⋃
k≥1 Xk as follows

f(x1,x2,...xk) = fx1 ◦ fx2 ◦ . . . fxk
= α(x1, x2, . . . , xk)s + β(x1, x2, . . . , xk).

Hence fx(s) = α(x)s + β(x), x ∈ ⋃
k≥1 Xk, so for all a, b ∈ ⋃

k≥1 Xk

{
fa ◦ fb(s) = α(a)α(b)s + α(a)β(b) + β(a)
fb ◦ fa(s) = α(a)α(b)s + α(b)β(a) + β(b). (3)

Putting Va = V (a, a, . . . ) and Vb = V (b, b, . . . ) we have fa(Va) = Va and
fb(Vb) = Vb. Hence Va = β(a)

1−α(a) and Vb = β(b)
1−α(b) and Va ≥ Vb if and only

if α(a)β(b) + β(a) ≥ α(b)β(a) + β(b). Thus, by (3), the inequalities Va ≥ Vb

and fa ◦ fb ≥ fa ◦ fb are equivalent, so Theorem 1 implies that the relation
represented by V satisfies impatience. �
Lemma 1. Let U and V be the utility functions. They represent the same order
relation if and only if there exists an increasing homeomorphism Φ : I → J such
that U = Φ ◦ V , where I = U [X∞] and J = V [X∞].

Proof. For all x, y ∈ X∞ x � y ⇔ U(x) ≥ U(y) and x � y ⇔ V (x) ≥ V (y),
so U(x) ≥ U(y) ⇔ V (x) ≥ V (y) and consequently, changing the role of x and
y, we have U(x) = U(y) ⇔ V (x) = V (y). Now, we may define Φ : I → J as
follows

Φ(U(x)) := V (x), x ∈ X∞.
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This definition is correct since it does not depend on the choice of x. Obviously
Φ is a non-decreasing surjection. Changing the role of U and V we infer that
there exists a non-decreasing surjection Ψ : J → I such that Ψ ◦V (x) = U(x).
Hence Φ◦Ψ = id, so Φ is injective and consequently, as an increasing bijection,
is a homeomorphism. �

Lemma 2. Let 0 < α(x) < 1 for x ∈ X. Then recursion (2) has at most one
continuous solution.

Proof. Let V1, V2 : X∞ → R be continuous solutions of (2). Put W := V1 −V2.
Then for every xi ∈ X i = 0, 1, 2, . . .

W (x0, x1, x2, . . . ) = α(x0)W (x1, x2, x3, . . . ).

By induction we get that for every k ≥ 1

W (x0, . . . , xk−1, . . . ) =
k−1∏

i=0

α(xi)W (xk, xk+1, xk+2, . . . ).

Suppose that xn = xn+k for n ≥ 0. Then for this periodic sequence the last
equality has the form

W ((x0, . . . , xk−1), (xk, . . . x2k−1) . . .) =
k−1∏

i=0

α(xi)W (x0, x1, x2, . . . ).

Hence, by induction, we get that for every n ≥ 1

W (x0, x1, . . . , xk−1, . . . ) =

[
k−1∏

i=0

α(xi)

]n

W (x0, x1, x2, . . . ).

Since 0 < α(xi) < 1 we have limn→∞
[∏k−1

i=0 α(xi)
]n

= 0 and, consequently,
W (x0, x1, x2, . . . ) = 0 for every periodic sequence {xn}.

Let X := (x0, x1, . . .) ∈ X∞ be a given sequence. Define the following
k-periodic sequences

Xk := ((x0, . . . xk−1), (x0, . . . xk−1), . . . ), k ≥ 1.

Note that assumption (A) implies that limk→∞ Xk = X , since the sequence
of n-coordinates of the sequence {Xk} is constant up to the index n and is
equal to xn. Since W (X ) = limk→∞ W (Xk) and W (Xk) = 0 for k ≥ 1 we get
W (X ) = 0, which gives that V1 = V2. �

Let α : X → (0, 1) and β : X → R. It is easy to verify that, if the series
defining the function

S(x0, x1, x2, . . .) := β(x0) +
∞∑

k=0

k∏

i=0

α(xi)β(xk+1) (4)
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converges for every sequence (x0, x1, x2, . . .) ∈ X∞, then S satisfies recursion
(2).

The function S given by formula (4) for continuous α and β is known, in
economic literature, as the Uzawa-Epstein utility function (see [1]). It follows,
by Lemma 2, that if recursion (2) has a continuous solution, then it is given
by formula (4).

If we assume that function α is constant we give the following

Corollary 2. If α ∈ (0, 1) and β : X → R is continuous and bounded then the
function

S(x0, x1, x2, . . .) = β(x0) +
∞∑

k=0

αkβ(xk)

is a unique continuous solution of the recursion

S(x0, x1, x2, . . .) = αS(x1, x2, . . .) + β(x0).

Theorem 3. Let the utility functions U and V represent the same order rela-
tion. If U satisfies (1) and V satisfies

V (x0, x1, . . . ) = ψ(x0, V (x1, x2, . . .)), (5)

then there exists an increasing homeomorphism Φ : I → J such that

Φ ◦ ϕ(x, t) = ψ(x,Φ(t)), t ∈ I. (6)

Conversely, assume additionally that all continuous solutions of (5) represent
the same order relation. If there exists an increasing homeomorphism Φ satis-
fying (6), then U and V represent the same order. Moreover, V = Φ−1 ◦ U .

Proof. Let U and V represent the same order relation. Then, by Lemma 1,
there exists an increasing homeomorphism Φ such that V = Φ ◦ U . Hence

V (x0, x1, . . .) = Φ ◦ U(x0, x1, . . . ) = Φ ◦ ϕ(x0, U(x1, x2, . . .)),

so, by (5),

V (x0, x1, . . . ) = ψ(x0, V (x1, x2, . . .)) = ψ(x0,Φ ◦ U(x1, x2, . . .)),

hence

Φ ◦ ϕ(x0, U(x1, x2, . . .)) = ψ(x0,Φ ◦ U(x1, x2, . . .)).

By the surjectivity of U : X∞ → I we get (6).
Conversely, let (6) hold. Then putting in (6) x = x0 and t = U(x1, x2 . . .)

we have

Φ ◦ ϕ(x0, U(x1, x2 . . .)) = ψ(x0,Φ(U(x1, x2, . . .)),

so, by (1),

Φ ◦ U(x0, x1, . . .)) = ψ(x0,Φ ◦ U(x1, x2, . . .)).
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Putting W := Φ ◦ U we get

W (x0, x1, . . .)) = ψ(x0,W (x1, x2, . . .)).

Thus W is a continuous solution of (5), so by the assumption W and V repre-
sent the same order. By Lemma 1 there exists an increasing homeomorphism
Λ such that W = Λ ◦ V . Hence U = Φ−1 ◦ W = Φ−1 ◦ Λ ◦ V . Thus U and V
represent the same relation. �

Putting in (5) ψ(x, t) = α(x)t + β(x) we get by Theorem 3 and Lemma 2
the following.

Theorem 4. Let U satisfy (1) and V satisfy (2). Then U and V represent
the same relation if and only if there exists an increasing homeomorphism
Φ : I → R such that

Φ(ϕ(x, t)) = α(x)Φ(t) + β(x), x ∈ X, t ∈ I.

Let us write the last system in more convenient form

Φ(fx(t)) = αxΦ(t) + βx, t ∈ I, x ∈ X, (7)

for some 0 < αx < 1 and βx ∈ R.

Theorem 5. If U satisfies (1) and there exists an increasing homeomorphic
solution of (7) with some coefficients αx ∈ (0, 1) and βx ∈ R, then the relation
represented by U satisfies impatience.

Proof. Let U represent � and satisfy (1). Put V := Φ ◦ U , where Φ is an
increasing homeomorphic solution of (7). Note that V satisfies (2). In fact,

V (x0, x1, . . . ) = Φ(U(x0, x1, . . . )) = Φ(fx(U(x1, x2, . . . )))

= αx0Φ(U(x1, x2, . . . )) + βx0 = αx0V (x1, x2, . . . ) + βx0 .

Hence, by Theorem 4, the relation � is also represented by V . Thus by
Theorem 2 � satisfies impatience. �

Remark 4. If a given Φ satisfies (7) with coefficients αx and βx, then αx and
βx are uniquely determined. Moreover 0 < αx < 1.

Proof. Let t1, t2 ∈ I be such that Φ(t1) �= Φ(t2). Putting in (7) t = t1 and
t = t2 we get a system of two linear equations

Φ(fx(t1)) = αxΦ(t1) + βx,

Φ(fx(t2)) = αxΦ(t2) + βx,

which determine αx and βx uniquely.
Let fx(p) = p. Then we have Φ(p)(1 − αx) = βx. Let t > p. Then, by

(H), fx(t) < t and Φ(fx(t)) < Φ(t) so, by (6), αxΦ(t) + βx < Φ(t). Hence
αxΦ(t)+Φ(p)(1−αx) < Φ(t), so (1−αx)(Φ(t)−Φ(p)) > 0. Since Φ(t) > Φ(p)
we get αx < 1. �
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We consider the inverse problem. When does impatience generated by a
utility function U satisfying (1) implies the existence of another utility function
V satisfying the affine recursion (2) generating the same relation?

Assume that relation � satisfies impatience. We give some necessary and
sufficient conditions for the existence of a homeomorphic solution of the system
(7).

Further we make the general assumption that I is an open interval and
fx(I) = I for x ∈ X.

First consider a special trivial case where the family of functions {fx, x ∈
X} is a subset of a cyclic group.

Theorem 6. If the family of functions {fx, x ∈ X} is a subset of a cyclic group
then there exists V satisfying (2) which determines the same order relation as
U .

Proof. By the assumption there exists an increasing homeomorphism h satis-
fying (H) such that {fx, x ∈ X} ⊂ {hn, n ∈ N} and, as a consequence, there
exists a function n : X → N such that fx = hn(x).

It is well-known that there exists a homeomorphic solution Φ of the equa-
tion

Φ(h(t)) = αΦ(t) + β

(see [6]). It depends on an arbitrary function. It is obvious that every solution
of this equation satisfies the system

Φ(hn(t)) = αnΦ(t) + βn,

where βn = β αn−1
αn−1 . Hence Φ satisfies (7), where αx = αn(x) and βx =

β αn(x)−1
αn(x)−1

. �

Further we concentrate on the case where, for some a and b, fn
a �= fm

b for
n,m ≥ 1.

Remark 5. If (7) has a homeomorphic solution, x, y ∈ X and fx �= fy, then
their graphs are either disjoint or intersect in one point.

Proof. Let homeomorphism Φ satisfy (7). Suppose that

card (graph fx ∩ graph fy) ≥ 2.

Then there exists t1, t2 ∈ I, t1 �= t2 such that fx(t1) = fy(t1) and fx(t2) =
fy(t2). Hence, by (7),

αxΦ(t1) + βx = αyΦ(t1) + βy

and

αxΦ(t2) + βx = αyΦ(t2) + βy,

which gives αx(Φ(t1) − Φ(t2)) = αy(Φ(t1) − Φ(t2)), so αx = αy and βx = βy.
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Now, again by (6), we get Φ(fx(t)) = Φ(fy(t)) for t ∈ I, thus fx = fy,
which contradicts our assumption. �

Note that if Φ(fa(t)) = αaΦ(t) + βa, then for every n ≥ 1 , Φ(fn
a (t)) =

αn
aΦ(t) + βa,n for a βa,n ∈ R. Hence, by Remark 5, we get

Remark 6. If system (7) has a homeomorphic solution then, for every a, b ∈ I
if fn

a �= fm
b then fn

a (t) �= fm
b (t) for all t ∈ I, except for only one point.

Recall that the functions fa and fb are said to be iteratively incommensu-
rable if fn

a (t) �= fm
b (t) for all t ∈ I and for all n,m ∈ N (see [8]).

In view of Corollary 1 we know that fa and fb commute if and only if they
have a joint fixed point.

To solve system (7) we consider two cases.

(I) There exist a, b ∈ X, a �= b such that fa and fb have a joint fixed point.
(II) For every a, b ∈ X, a �= b fa and fb has no joint fixed point.

Case (I)
Let fa(p) = fb(p) = p and fa and fb be iteratively incommensurable except

one point. First we deal with the system of two functional equations
{

Ψ(fa(t)) = αaΨ(t) + βa,
Ψ(fb(t)) = αbΨ(t) + βb.

(8)

By (8) we get Ψ(p) = βa

1−αa
= βb

1−αa
. Putting

G(t) := Ψ(t) − βa

1 − αa
, t ∈ I

we have G(p) = 0 and
{

G(fa(t)) = αaG(t), t ∈ I
G(fb(t)) = αbG(t), t ∈ I.

In fact,

G ◦ fa = Ψ ◦ fa − βa

1 − αa
= αaΨ + βa − βa

1 − αa
= αaΨ − βa

αa

1 − αa

= αa

(
Ψ − βa

1 − αa

)
= αaG.

Similarly we obtain that G ◦ fb = αb G. Thus the last system is equivalent to
system (8).

Introduce the notation I− := I ∩ (−∞, p), I+ := I ∩ (p,∞) and

f−
a := fa|I−, f−

b := fb|I−, f+
a := fa|I+, f+

b := fb|I+.

Let Ψ be an increasing solution of (8). Then G(t) < 0 for t < p and G(t) > 0
for t > 0.
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Putting F−(t) := log (−G(t)) for t ∈ I− and F+(t) := log G(t) for t ∈ I+

we get two independent systems of Abel’s equations
{

F−(f−
a (t)) = F−(t) + log αa, t ∈ I−

F−(f−
b (t)) = F−(t) + log αb, t ∈ I− (9)

and
{

F+(f+
a (t)) = F+(t) + log αa, t ∈ I+

F+(f+
b (t)) = F+(t) + log αb, t ∈ I+.

(10)

Note that f−
a and f−

b have no fixed points and they are bijections of I− onto
itself. It works similarly with f+

a and f+
b on the interval I+.

The above reasoning shows that system (8) with increasing Ψ is equivalent
to two systems (9) and (10) with decreasing F− and increasing F+. We solve
these systems separately.

Denote by L(t) the limit set of the sequence {fn
a ◦ f−m

b (t)} that is

L(t) := {fn
a ◦ f−m

b (t), n,m ∈ N}d, t ∈ I \ {p}.

In each of intervals I− and I+ the set L(t) does not depend on t an is either
an interval or a nowhere dense and perfect set (see [7,8]).

Let

s−(a, b) := sup{n/m : n,m ∈ N, (f−
a )m > (f−

b )n}
and

s+(a, b) := inf{n/m : n,m ∈ N, (f+
a )m < (f+

b )n}.

It is known that if system (9) has a homeomorphic solution then s−(a, b) =
log αb

log αa
and L(t) = cl I− for t ∈ I− (see [2]). Similarly, if system (10) has a

homeomorphic solution then s+(a, b) = log αb

log αa
and L(t) = cl I+ for t ∈ I+.

Hence if system (7) has a homeomorphic solution then s−(a, b) = s+(a, b).
In view of Theorem 2 in [8] system (9) in I− and system (10) in I+ have

homeomorphic solutions F− and F+ if and only if there exist t1 ∈ I− and
t2 ∈ I+ such that IntL(t1) �= ∅ and IntL(t2) �= ∅. Moreover F− and F+ are
determined uniquely up to an additive constant. Since F− is decreasing, F+

is increasing, limx→p− F (t) = −∞ and limx→p+ F (t) = −∞ we infer that G is
increasing and G(p) = 0 and, as a consequence, Ψ is a homeomorphic solution
of (8).

Hence we have

Theorem 7. Let fa and fb commute and be iteratively incommensurable except
for one point. System (8) has an increasing homeomorphic solution Ψ if and
only if there exist t1 ∈ I− and t2 ∈ I+ such that IntL(t1) �= ∅ and IntL(t2) �= ∅
and s−(a, b) = s+(a, b). Moreover, in each of the intervals I− and I+ the
solution Φ is determined uniquely up to one parameter.
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If fa and fb satisfy the assumptions of Theorem 7 then the homeomorphic
solution of system (9) is given by the formula

F+(t) = c + sup
{

n − m
log αb

log αa
, n,m ∈ N, (fa)n(t0) > (fb)m(t)

}
,

for a given t0 ∈ I+ and a constant c ∈ R (see Theorem 2 in [4]). Then

Φ(t) = expF+(t) +
βa

1 − αa
, t ∈ I+.

It works similarly on the interval I−.
Let Ψ be an increasing homeomorphic solution of (8). Define

Realm Ψ := {f : Δ → Δ, ∃α ∈ (0, 1) ∃β ∈ R Ψ ◦ f = αΨ + β}.

Note that Realm Ψ is a semigroup of increasing homeomorphisms possessing
one fixed point.

It is easy to show the following

Remark 7. If Ψ1 and Ψ2 are homeomorphic solutions of system (8) then Realm Ψ1 =
Realm Ψ2.

Let Ψ be a homeomorphic solution of (8). If there exists a homeomorphic
solution Φ of (7), then Φ satisfies (8) and Realm Ψ = Realm Φ. Hence, for
every x ∈ X, fx ∈ Realm Ψ that is

fx(t) = Ψ−1(αxΨ(t) + βx)

for some 0 < αx < 1 and β �= 0.
Conversely, if every fx ∈ Realm Ψ then system (7) has an increasing home-

omorphic solution.

Corollary 3. In the case (I) system (7) has an increasing homeomorphic solu-
tion if and only if fx ∈ Realm Ψ for all x ∈ X.

Directly by Theorems 1, 4 and Corollary 2 we get

Theorem 8. Suppose that the relation � satisfies impatience and is represented
by a utility function fulfilling (1) such that for some a, b ∈ X fa and fb have
a joint fixed point and are iteratively incommensurable except for one point.
Then � can be represented by another function satisfying the affine recursion
(2) if and only if

(i) there exist t1 ∈ I− and t2 ∈ I+ such that IntL(t1) �= ∅ and L(t2) �= ∅,
(ii) s−(a, b) = s+(a, b),
(iii) fx ∈ Realm Ψ for x ∈ X, where Ψ is an increasing continuous solution

of system (8).
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Case (II)

Now we assume that for all x �= y fx and fy have different fixed points. Let
hxy be the commutator of fx and fy that is

hxy := fx ◦ fy ◦ f−1
x ◦ f−1

y .

If the relation represented by the utility function U fulfilling (1) satisfies im-
patience then, by Theorem 1, hxy ≤ id or hxy ≥ id for all x, y ∈ X.

Assume that system (7) has an increasing homeomorphic solution Φ. It is
easy to verify that

Φ(hxy(t)) = Φ(t) + cxy, t ∈ I, (11)

where

cxy := βx(1 − αy) + βy(αx − 1).

Let fx(px) = px and fy(py) = py. By (7) Φ(px) = βx

1−αx
and Φ(py) = βy

1−αy
.

Hence

cxy = (Φ(px) − Φ(py))(1 − αx)(1 − αy),

so cxy = 0 if and only if x = y. Thus, by (11), all commutators hxy are fixed
point free.

By (11) we infer that all commutators hxy mutually commute. Thus the
derived group H ′, that is the group generated by all these commutators, is
Abelian. This means that the group

H :=< fx, x ∈ X >

generated by fx is solvable of the derived length two.
Assume that there exist p, q, u, w ∈ X such that hpq and huv are iteratively

incommensurable. Then, by Theorem 2 in [8],

{hn
pq ◦ hm

uv(t), n,m ∈ Z}d = cl I, t ∈ I. (12)

Note that hpq and huv are iteratively incommensurable if and only if cpq/cuv

is irrational.
Conversely, let H be a solvable group of the derived length two and there

exist hpq, huv iteratively incommensurable satisfying condition (12) for a t ∈ I.
Then there exists a unique up to an additive constant homeomorphic solution
of the system of Abel’s equations (see [8])

{
F (hpq(t)) = F (t) + cpq,
F (huv(t)) = F (t) + cuv.

(13)

If system (7) has a continuous solution Φ then Φ satisfies also (13), so by
the uniqueness of solutions of system (13) Φ = F + c for a constant c.

Summarising the above statements we get
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Theorem 9. Let case (II) hold and relation � be represented, by the utility
function fulfilling (1), satisfy impatience and there exist commutators hpq and
huv iteratively incommensurable.

Then the relation � can be represented by another utility function satisfying
affine recursion (2) if and only if

(i) the group < fx, x ∈ X > is solvable of the second order,
(ii) (12) holds for a t ∈ I,
(iii) for every x ∈ X fx ∈ Realm F , where F is a continuous solution of (13).

Note that the condition fx ∈ Realm F means that for every x ∈ X there
exist αx ∈ (0, 1) and βx ∈ R such that

F (fx(t)) = αxF (t) + βx, t ∈ I.

This means that system (7) has a homeomorphic solution. Note that we can
determine homeomorphism F (see [4]), so condition (iii) is verifiable although
technically it may be difficult.

In the case (I) the assumption of the surjectivity of functions fx can be
omitted, but then the assertions in Theorems 7 and 8 have more complicated
form. This generalization one can obtain by applying the method of exten-
sion of commuting, non-surjective, continuous, strictly increasing mappings to
commuting homeomorphisms presented in papers [4,5].
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