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Abstract. In this paper, we investigate maps on sets of positive operators which are induced
by the continuous functional calculus and transform a Kubo–Ando mean σ into another τ .
We establish that under quite mild conditions, a mapping φ can have this property only
in the trivial case, i.e. when σ and τ are nontrivial weighted harmonic means and φ stems
from a function which is a constant multiple of the generating function of such a mean.
In the setting where exactly one of σ and τ is a weighted arithmetic mean, we show that
under fairly weak assumptions, the mentioned transformer property never holds. Finally,
when both of σ and τ are such a mean, it turns out that the latter property is only satisfied
in the trivial case, i.e. for maps induced by affine functions.
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1. Introduction and statement of the results

Homomorphisms of algebraic structures form a basic object of study mainly
in algebra, but they are highly relevant also in other areas of mathematics. In
general, such transformations on structures of numbers can be described with
certain functional equations. The most fundamental ones among them are the
Cauchy equations, namely the additive, the multiplicative, the exponential and
the logarithmic, which are related to the two most basic operations on real
numbers, addition and multiplication. There is a vast literature devoted to
them, we mention, e.g. the book of Aczél [1]. Their solutions were determined
under very weak regularity assumptions, for example measurability.
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Homomorphisms are also considered between much more abstract struc-
tures than R, e.g. between groups or algebras. For certain algebras, namely
C∗-algebras, we can define continuous scalar functions also on some of their
elements, namely the normal ones. Therefore, from the point of view of homo-
morphisms, one can consider morphism properties of transformations of the
form A �→ f(A), for example on the set As of self-adjoint elements of a C∗-
algebra A, where f : R → R is an unknown continuous function. This gives
rise to a functional equation for f on an abstract structure, e.g. f(A + B) =
f(A) + f(B) (A,B ∈ As). It is of the same form as its counterpart on R, the
additive Cauchy equation, however, here the value of a function at an element
means the value of the continuous functional calculus for that element at the
given function. Since the unknown functions in the C∗-algebra counterparts
of the basic functional equations describing homomorphisms on R are neces-
sarily continuous and these versions imply their validity also on R, one can
observe that their solutions can be obtained immediately, applying results on
the form of continuous solutions of their scalar counterparts. Therefore their
investigation is of no interest.

However, in some other cases, it can give rise to challenging functional
equations. For the purposes of the paper, the most important among them
is the case where the homomorphisms in question respect certain means,
or in other words, transform a mean into another. These quantities form a
fundamental concept in mathematics, originally they are introduced for the
averaging of real numbers. A mean M : D2 → D on an interval D ⊂ R is
defined as a binary operation satisfying the inequalities min{x, y} ≤ M(x, y) ≤
max{x, y} (x, y ∈ D). Such objects have been intensively studied for a long
time by many researchers, their investigation forms a broad field of mathe-
matics. For details on means, the interested reader can consult, e.g. the short
monograph [5] and the references therein. As for means of other objects, in [7]
Kubo and Ando established the theory of operator means which are certain
operations on the cone of positive operators on a Hilbert space. In the finite
dimensional case, that notion reduces to means of positive semidefinite matri-
ces which are widely used and investigated in several areas of mathematics.

To define those operator means, we introduce some necessary notation and
definitions used throughout the paper. In what follows, H denotes a complex
Hilbert space with dimH ≥ 2. Let B(H) stand for the C∗-algebra of bounded
linear operators on H. An element A ∈ B(H) is termed positive if 〈Ax, x〉 ≥ 0
is satisfied by each vector x ∈ H (which is the same as saying that it is a
positive element of the C∗-algebra B(H)). Let B(H)+, and B(H)++ denote
the cone of positive operators, and invertible positive operators, resp. in B(H).
For a pair A,B of self-adjoint elements in B(H), we write A ≤ B whenever
B − A ∈ B(H)+. Finally, we denote by I, the identity operator on H.
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According to [7], we say that a binary operation σ : B(H)+ × B(H)+ →
B(H)+ is a Kubo–Ando mean if it possesses the properties below. For any
elements A,B,C,D ∈ B(H)+ and sequences (An), (Bn) in B(H)+:

(i) IσI = I (normalization);
(ii) if A ≤ C and B ≤ D, then AσB ≤ CσD (monotonicity);
(iii) C(AσB)C ≤ (CAC)σ(CBC) (transfer property);
(iv) if An ↓ A and Bn ↓ B, then AnσBn ↓ AσB (continuity).
Here, the symbol ↓ denotes monotone decreasing convergence in the strong
operator topology. If σ is a Kubo–Ando mean on B(H)+, then its transpose
σ̃ : B(H)2+ → B(H)+ is defined by Aσ̃B = BσA (A,B ∈ B(H)+).

Kubo–Ando means can be represented by functions of a certain type which
are defined as follows. A continuous map f from a nontrivial interval D ⊂ R

into R is called n-monotone (or matrix monotone of order n ∈ N) if for each
pair A,B of self-adjoint operators on an n-dimensional complex Hilbert space
whose spectra are in D, we have the implication A ≤ B ⇒ f(A) ≤ f(B). We
remark that such a function is obviously increasing. If f is n-monotone for any
integer n ∈ N, then it is called operator monotone. Moreover, the continuous
function f : D → R is called n-concave if for any pair A,B of operators with
the above properties the inequality

f(αA + (1 − α)B) ≥ αf(A) + (1 − α)f(B) (α ∈ [0, 1])

is fulfilled.
From the verification of [7, Theorem 3.2], we get that for a Kubo–Ando

mean σ and a scalar t ≥ 0 the operator Iσ(tI) is scalar. Hence, one can define
a function Fσ : [0,∞[→ [0,∞[, referred to as the generating function of σ,
satisfying

Fσ(t)I = Iσ(tI) (t ≥ 0).

Evidently, the property (i) yields Fσ(1) = 1. The mentioned proof also shows
that if d = dim H < ∞, then Fσ is d-monotone, otherwise it is operator
monotone. Furthermore, σ is a perspective mean, that is, it admits the explicit
form

AσB = A1/2fσ(A−1/2BA−1/2)A1/2 (A ∈ B(H)++, B ∈ B(H)+) (1)

and this, together with the property (iv), yields that Fσ uniquely determines
σ. Define F̃σ := Fσ̃. By [7, Corollary 4.2], we have

F̃σ(x) = xFσ(1/x) (x > 0).

Since Kubo–Ando means are operations on B(H)+, a natural question
arises: what are the homomorphisms of B(H)+ endowed with two Kubo–Ando
means, more precisely, the maps φ : B(H)+ → B(H)+ satisfying that

φ(AσB) = φ(A)τφ(B) (A,B ∈ B(H)+)
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for those means σ, τ : B(H)2+ → B(H)+ ? In other words, these are the map-
pings which transform σ to τ . The latter problem seems really challenging.
As for related results, first we give the definitions of the three most impor-
tant classes of Kubo–Ando means, the weighted arithmetic, geometric and
harmonic means, whose generating functions on ]0,∞[ are

x �→ α + (1 − α)x, x �→ xα and x �→ x

αx + 1 − α
(x > 0, 0 ≤ α ≤ 1),

moreover they are denoted by ∇α, �α and !α, respectively. They have the
explicit forms

A∇αB = αA + (1 − α)B, A�αB = A
1
2

(
A− 1

2 BA− 1
2

)α

A
1
2 ,

A!αB = (αA−1 + (1 − α)B−1)−1

for all A,B ∈ B(H)++. The structure of automorphisms of B(H)+ with
respect to them was described in [15,16] for α = 1/2. A result on the automor-
phisms of B(H)+ for any element of a large class of Kubo–Ando means can be
found in [14], under some mild regularity assumption (e.g. a sort of continu-
ity) on the transformations in question. As for theorems on maps transforming
a Kubo–Ando mean into another, we refer to [13], where the previous three
means are considered on the cone of invertible positive elements in a C∗-algebra
(note that perspective means can be defined on such a cone).

Instead of determining the structure of all maps of B(H)+ transforming
a Kubo–Ando mean into another, we can seek for only those which have a
special form. Here, we consider maps of the form A �→ f(A) (A ∈ B(H)+)
with some continuous function f : [0,∞[→ [0,∞[ . Our aim is to establish
equivalent conditions under which such a map transforms a Kubo–Ando mean
into another. Mappings transforming a mean M of real numbers into another
one N are usually termed (M,N)-affine, affine with respect to M and N ,
or mean affine; they are investigated in, e.g. [9,19]. It is worth noting that
(∇1/2,∇1/2)-affine functions are exactly the solutions of the well-known Jensen
equation f((x + y)/2) = (f(x) + f(y))/2, where f is a real function. Adopting
this terminology, for a pair of Kubo–Ando means (σ, τ) on B(H)+, we say that
a continuous function f : [0,∞[→ [0,∞[ is (σ, τ)-affine, affine with respect to
σ and τ or mean affine if

f(AσB) = f(A)τf(B) (A,B ∈ B(H)+).

Observe that this property says that the map A �→ f(A) (A ∈ B(H)+) trans-
forms σ into τ . The aim of the paper is to investigate the last displayed func-
tional equation on B(H)+ and B(H)++. We remark that operator means on
the cone of positive definite matrices of a given size are quite important in some
areas of mathematics, e.g. they are intimately connected to certain differential
geometric structures on those cones. Now our main result follows in which we
consider the previous functional equation under some quite mild conditions.
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Theorem 1. Let σ, τ : B(H)2+ → B(H)+ be Kubo–Ando means such that Fσ, Fτ

are strictly concave and either Fσ(0) = Fτ (0) = 0 or F̃σ(0) = F̃τ (0) = 0.
Moreover assume that f : [0,∞[→ [0,∞[ is a nonconstant continuous function
for which f(x) > 0 (x > 0) and f �= id. Then the following statements are
equivalent:

(i) f(AσB) = f(A)τf(B) (A,B ∈ B(H)++).
(ii) f(AσB) = f(A)τf(B) (A,B ∈ B(H)+).
(iii) There exist numbers α, β > 0; 0 < γ < 1 such that

f(x) =
x

α + βx
(x ≥ 0)

and σ = τ =!γ .

As for the conditions in this result, observe that a constant function f
satisfies (ii), and f =id fulfills (i) or (ii) if and only if σ = τ . Related to
the concavity assumption, observe that the generating function of a Kubo–
Ando mean on B(H)+ is d-monotone with an appropriate natural number
1 < d ≤ dim H. It is also concave by [8, Theorem 2.1] stating that any d-
monotone function on ]0,∞[ is concave of order [d/2]. Observe that since Fσ, Fτ

are strictly concave, they are positive on ]0,∞[, thus σ, τ are operations on
B(H)++. Moreover, the transformation A �→ f(A) is a selfmap of B(H)++.
We remark that the condition Fσ(0) = 0 means that Aσ0 = 0, while F̃σ(0) = 0
means 0σA = 0 (A ∈ B(H)+). The result above shows the quite surprising fact
that, under its conditions, a function is affine with respect to two Kubo–Ando
means only in the trivial case.

In certain cases, the property that there exists a function which is affine with
respect to two such means can be reformulated in another way. Concerning
this, we recall the notion of a conjugated mean. For two means M,N on an
interval D ⊂ R, we say that N is a conjugated mean of M if there exists a
continuous injective function f : D → D with the property

N(x, y) = f−1(M(f(x), f(y))) (x, y ∈ D).

We remark that the terminology refers to group theory. The most well-known
examples of this concept are the quasi-arithmetic means which are the conju-
gated means of the arithmetic mean. Now a natural question arises: what are
the conjugated means of a given one? Is it only itself? Or, in other words, can
we get a new mean from a given one by conjugation? Of course, in the case of
the arithmetic mean, the answer is affirmative, it is well-known that there are
many quasi-arithmetic means. What about other means? First of all, observe
that conjugated means can be defined also for Kubo–Ando means with the
last displayed formula, where, in that case, D = [0,∞[ and x, y ∈ B(H)+.
Moreover, as it can be seen easily, the right-hand side of that equation is
well-defined for all x, y ∈ B(H)+. Observe that a Kubo–Ando mean σ is a
conjugated mean of another one τ precisely when there exists an injective
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(σ, τ)-affine function. In our next result, we investigate the conjugated means
of a given one belonging to any of the sets

M1 = {σ : B(H)
2
+ → B(H)+ | σ is a Kubo–Ando mean, Fσ is strictly concave, Fσ(0) = 0},

M2 = {σ : B(H)
2
+ → B(H)+ | σ is a Kubo–Ando mean, Fσ is strictly concave, F̃σ(0) = 0}.

Corollary. Let i = 1, 2 be a number and σ ∈ Mi be a Kubo–Ando mean. Then
the only conjugated mean of σ among the elements of Mi is σ.

As for the proof, observe that the existence of such a mean M would imply
the validity of (ii) in Theorem 1 for M,σ and for the function f appearing
in the definition of conjugated means. It is also clear that f,M, σ satisfy the
conditions in that result (continuous injective functions are monotone), which
would yield M = σ, a contradiction.

Observe that Theorem 1 covers two of the most fundamental classes of
Kubo–Ando means, namely the sets of nontrivial weighted geometric and har-
monic means, resp., but leave weighted arithmetic means untouched. To fill in
this gap, in the next three results, we investigate the conditions under which
(i) or (ii) in Theorem 1 holds for two Kubo–Ando means, at least one of them
being a weighted arithmetic mean.

Theorem 2. Let 0 < α < 1 be a number and σ : B(H)2+ → B(H)+ be a Kubo–
Ando mean such that either Fσ(0) = 0 or F̃σ(0) = 0. Then there does not exist
a nonconstant continuous function f : [0,∞[→ [0,∞[ such that f(x) > 0 (x >
0) and

f(AσB) = f(A)∇αf(B) (A,B ∈ B(H)++). (2)

Moreover, no nonconstant continuous function f : [0,∞[→ [0,∞[ satisfies this
equality for all A,B ∈ B(H)+.

Theorem 3. Let 0 < α < 1 be a number and σ : B(H)2+ → B(H)+ be a Kubo–
Ando mean such that Fσ is strictly concave and either Fσ(0) = 0 or F̃σ(0) = 0.
Then there does not exist a nonconstant continuous function f : [0,∞[→ [0,∞[
such that f(x) > 0 (x > 0) and

f(A∇αB) = f(A)σf(B) (A,B ∈ B(H)++). (3)

Moreover, there are no nonconstant continuous functions f : [0,∞[→ [0,∞[
fulfilling this relation for each A,B ∈ B(H)+.

The latter two theorems assert that for the members of a large class of
Kubo–Ando means, there does not exist nonconstant functions which are affine
with respect to one of them and to a nontrivial weighted arithmetic mean. Now
our last result follows in which we establish that for means of the latter kind,
the only mean affine functions are the trivial, affine ones.



Vol. 94 (2020) Maps that transform a Kubo–Ando mean into another 767

Theorem 4. Let 0 < α, β < 1 be numbers and f : ]0,∞[→ R be a continuous
function. Then f fulfills

f(A∇αB) = f(A)∇βf(B) (A,B ∈ B(H)++) (4)

exactly when we have scalars a, b ∈ R such that f(x) = ax + b (x > 0) and in
the case a �= 0, the equality α = β holds.

It is worth mentioning that Theorem 3 says that there are no nontrivial
weighted arithmetic means which are conjugated means of some element of
M1 ∪ M2. As for the conjugation of other Kubo–Ando means, it follows from
[17, Theorem 1.4.] that such an operation on B(H)+ is a weighted quasi-
arithmetic mean (i.e., a conjugated mean of a weighted arithmetic mean)
exactly when it is a weighted arithmetic mean. In other words, the only Kubo–
Ando means that are conjugated means of ∇α (0 ≤ α ≤ 1) are the ones of this
form, so only itself, by Theorem 4.

2. Proofs

Rank-one (orthogonal) projections on H will show up several times in this
section, P1(H) stands for their class. The members of P1(H) are exactly the
operators of the form u⊗u (u ∈ H, ‖u‖ = 1), where the operation ⊗ is defined
by

u ⊗ v : H → H, (u ⊗ v)(w) := 〈w, v〉u (u, v, w ∈ H).

In this section, we will use the well-defined quantity

λ(A,P ) = 〈A−1u, u〉−1,

where A ∈ B(H)++, P ∈ P1(H) are elements and u ∈ rng P is a unit vector,
moreover rng denotes the range of operators.

Now we are in a position to verify our main result.

Proof of Theorem 1. The implications (ii) =⇒ (i), (iii) =⇒ (ii) are trivial.
Assume that (i) holds. In what follows, we show that, without loss of generality,
Fσ(0) = Fτ (0) = 0 may be supposed. By [18, Lemma 1.3.2], a function g from
an interval D ⊂ R to R is strictly concave if and only if for any numbers
x1 < x2 < x3 in D, one has

det

⎛
⎝

1 x1 g(x1)
1 x2 g(x2)
1 x3 g(x3)

⎞
⎠ < 0.
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It can be checked easily that for any Kubo–Ando mean ρ and each scalars
0 < x1 < x2 < x3, the equality

1
x1x2x3

det

⎛
⎝

1 x1 F̃ρ(x1)
1 x2 F̃ρ(x2)
1 x3 F̃ρ(x3)

⎞
⎠ = det

⎛
⎝

1 1/x3 f(1/x3)
1 1/x2 f(1/x2)
1 1/x1 f(1/x1)

⎞
⎠

holds. This gives us the strict concavity of F̃σ, F̃τ and then, since F̃σ =
Fσ̃, F̃τ = Fτ̃ , it follows that the relation Fσ(0) = Fτ (0) = 0 can and will
be assumed.

Next, observe that by (1), for any given Kubo–Ando mean ρ : B(H)2+ →
B(H)+ and operator A ∈ B(H)++, the map B �→ AρB (B ∈ B(H)+) is con-
tinuous in the metric induced by the operator norm and therefore (i) implies,
referring to the well-known continuity of the map T �→ f(T ) (T ∈ B(H)+),

f(AσB) = f(A)τf(B) (A ∈ B(H)++, B ∈ B(H)+). (5)

Furthermore if (ii) holds, then by the discussion in the previous paragraph, we
may and do suppose that Fσ(0) = Fτ (0) = 0.

To sum up, we can conclude that both (i) and (ii) imply (5) and that
Fσ(0) = Fτ (0) = 0 can and will be assumed. Hence it remains to show that
(5) and the relations Fσ(0) = Fτ (0) = 0 yield (iii). To prove it, observe that
from applying the property (iii) of Kubo–Ando means (see Sect. 1) their homo-
geneity follows, thus after multiplying (5) by f(1)−1, wlog f(1) = 1 may and
will be supposed. Now using a proof by contradiction, we verify that f(0) = 0.
Since f is not constant, there is a number x0 > 0 for which 0 < f(x0) �= f(0).
Moreover, if f(0) �= 0, then

f(0)I = f(Fσ(0)I) = f(Iσ0) = f((x0I)σ0)

= f(x0I)τf(0) = f(x0)
(

Iτ

(
f(0)
f(x0)

I

))
= f(x0)Fτ

(
f(0)
f(x0)

)
I

which would imply Fτ (f(0)/f(x0)) = f(0)/f(x0). Since Fτ (x) = id(x) for
x ∈ {0, 1}, furthermore f(0)/f(x0) �= 0, 1; the second last equation would
yield the equality of the strictly concave function Fτ and of an affine one at
three distinct points, a contradiction.

We proceed by inserting an arbitrary element B = P = u⊗u (u ∈ H, ‖u‖ =
1) in (5). To get the desired conclusion from this substitution, we need a
formula for AρP , where A ∈ B(H)++ is an operator and ρ is a Kubo–Ando
mean with Fρ(0) = 0. This can be derived by the computation

AρP = A1/2Fρ

(
A−1/2u ⊗ uA−1/2

)
A1/2

= Fρ

(
‖A−1/2u‖2

)
A1/2((1/‖A−1/2u‖)A−1/2u) ⊗ ((1/‖A−1/2u‖)A−1/2u)A1/2

=
Fρ

(‖A−1/2u‖2)

‖A−1/2u‖2 P = λ(A,P )Fρ

(
1

λ(A,P )

)
P = F̃ρ(λ(A,P ))P,



Vol. 94 (2020) Maps that transform a Kubo–Ando mean into another 769

from which we conclude that AρP = F̃ρ(λ(A,P ))P. Now applying (5) for
B = P and this formula (observe that A ∈ B(H)++ and f(x) > 0 (x > 0), so
f(A) ∈ B(H)++), because of the equalities f(0) = 0, f(1) = 1, it follows that
f(F̃σ(λ(A,P )))P = F̃τ (λ(f(A), P ))P , i.e.

f(F̃σ(λ(A,P ))) = F̃τ (λ(f(A), P )). (6)

Next put A = xI, B = yI (x, y > 0) in (5) to get the relation

f
(
xFσ

(y

x

))
= f(x)Fτ

(
f(y)
f(x)

)
, (7)

which, for y = 1, gives us that f(F̃σ(x)) = F̃τ (f(x)). This together with (6)
implies

F̃τ (f(λ(A,P ))) = F̃τ (λ(f(A), P )).

Observe that since F̃τ is strictly concave and monotone, it is injective. This
fact together with the last displayed equality gives us that f(λ(A,P )) =
λ(f(A), P ).

It implies

f(〈A−1u, u〉−1) = 〈f(A)−1u, u〉−1.

Now let e1, e2 ∈ H; x, y > 0; 0 < μ < 1 be arbitrary elements such that e1, e2
are mutually orthogonal unit vectors, and plug

A = x · e1 ⊗ e1 + y · e2 ⊗ e2 + I − (e1 ⊗ e1 + e2 ⊗ e2),

P =
(√

μe1 +
√

1 − μe2

)
⊗

(√
μe1 +

√
1 − μe2

)

in the previous equality to obtain, using the basic properties of functional
calculus, that

f((μx−1 + (1 − μ)y−1)−1) = (μf(x)−1 + (1 − μ)f(y)−1)−1 .

In the rest of the proof, for any function g : [0,∞[ → [0,∞[ with g(x) > 0 (x >
0), let ĝ = (1/id) ◦ g|]0,∞[ ◦ (1/id) : ]0,∞[→ ]0,∞[. Applying the last displayed
equality, it is very easy to see that for all r, s > 0, one has f̂(μr + (1 − μ)s) =
μf̂(r) + (1 − μ)f̂(s) showing that f̂ is affine. Hence, by the fact that f̂(x) > 0,
there are numbers α, β ≥ 0 not both 0 such that f̂(x) = αx + β, i.e. f(x) =
(αx−1+β)−1. Then from the assumptions that f is not constant, f(1) = 1, f �=
id; we infer that α + β = 1, 0 < β < 1 and thus f(x) = x/(1 − β + βx).

To complete the proof, we have to show that Fσ, Fτ are of the form appear-
ing in (iii). To do this, let x, y > 0 be arbitrary numbers and substitute the
latter form of f in (7) in order to get that

xFσ

(
y
x

)

1 − β + βxFσ

(
y
x

) =
x

1 − β + βx
Fτ

(
1 − β + βx

1 − β + βy

y

x

)
.
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Now, as it was already mentioned, if f, Fσ, Fτ have the forms appearing in
(iii), then (ii) holds. This suggests that Fσ, Fτ should be of those forms if
(ii) is satisfied. But if they are so, then F̂σ, F̂τ are affine, so, using the last
displayed relation, we aim to get an equality which involves a convex combi-
nation of values of these functions and their values at a convex combination.
The mentioned relation implies

F̂τ

(
1 − β + βy

1 − β + βx

x

y

)
=

(1 − β)F̂σ

(
x
y

)
+ βx

1 − β + βx
,

where the left-hand side equals

F̂τ

(
(1 − β)x

y + βx

1 − β + βx

)
,

therefore, with the notation t = 1/y, the latter equality yields that

F̂τ

(
(1 − β)(xt) + βx

(1 − β) + βx

)
=

(1 − β)F̂σ(xt) + βx

(1 − β) + βx
.

Next, let 0 < ν < 1 be an arbitrary number. It is clear that we can find a
scalar xν > 0 for which ν = (1 − β)/((1 − β) + βxν). Then it follows that for
all t > 0, the equation F̂τ (ν(xνt) + 1 − ν) = νF̂σ(xνt) + 1 − ν is valid entailing
that

F̂τ (νs + 1 − ν) = νF̂σ(s) + 1 − ν, ∀ 0 < ν < 1, 0 < s. (8)

Theorem 2.4.7. in [6] tells us that n-monotone functions on open bounded
intervals are in C2n−3 (n ∈ N\{1}), giving us that the d-monotone generating
functions Fσ, Fτ are in C1(]0,∞[)

(dim H > 1 !), where 1 < d ≤ dim H is an appropriate natural number.
Hence F̂σ, F̂τ ∈ C1(]0,∞[), and thus differentiating (8) with respect to ν,
we arrive at the relation (s − 1)F̂ ′

τ (νs + 1 − ν) = F̂σ(s) − 1 for any given
s > 0. By the latter facts, we can take the limit ν → 0 in this equality
and then obtain that (s − 1)F̂ ′

τ (1) = F̂σ(s) − 1, from which we deduce the
relation F̂σ(s) = γs + 1 − γ with γ = F̂ ′

τ (1). Now we conclude that Fσ(x) =
(γx−1+1−γ)−1 (x > 0) and, because of the conditions on Fσ, the inequalities
0 < γ < 1 follow. Finally, substituting the previous form of F̂σ in (8) and
passing to the limit ν → 1 in the relation obtained so, we arrive at the formula
F̂τ (s) = γs+1−γ (s > 0) entailing the desired equality Fτ = Fσ. By what we
have proved so far and having in mind how we have reached the assumptions
Fσ(0) = Fτ (0) = 0, f(1) = 1; the condition (iii) follows and this completes
the proof of Theorem 1. �

Proof of Theorem 2. We can follow the argument in the first two paragraphs
of the previous proof to show that under the conditions of Theorem 2, if (2)
is satisfied by all A,B ∈ B(H)++ and by a nonconstant continuous function
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f : [0,∞[→ [0,∞[ with f(x) > 0 (x > 0), then it holds for each B ∈ B(H)+;
and we may and do suppose the validity of Fσ(0) = 0. Moreover, this assump-
tion can and will be used also in the case where f is not supposed to have the
property f(x) > 0 (x > 0) but it fulfills (2) for any A,B ∈ B(H)+. Thus in
both cases, we have that Fσ(0) = 0 and f : [0,∞[→ [0,∞[ is a nonconstant
continuous function satisfying (2) for every A ∈ B(H)++, B ∈ B(H)+. Let
A ∈ B(H)++ be an operator and apply (2) to B = 0 in order to obtain, using
Fσ(0) = 0, that f(0)I = αf(A) + (1 − α)f(0)I, i.e. f(A) = f(0)I. Since f
is not constant, there is a number x0 > 0 for which f(x0) �= f(0). Now by
putting A = x0I in the last equality, we arrive at a contradiction and then we
can conclude that the proof of Theorem 2 is complete. �

Proof of Theorem 3. In the same way as in the previous argument, we get
that if f satisfies the conditions either in the second or in the third sentence of
Theorem 3, then the equality (3) holds for all A ∈ B(H)++, B ∈ B(H)+, and
we may and do suppose the validity of Fσ(0) = 0. Of course, we also have that
f : [0,∞[→ [0,∞[ is a nonconstant continuous function in both cases. Then,
similarly to the third paragraph of the first proof, one can deduce the equality
f(0) = 0. Next, pick an operator A ∈ B(H)++ and insert B = 0 in (3) to get
that f(αA) = 0. Since f is continuous and not constant, we can find a number
x0 > 0 for which f(x0) �= 0 and then it follows that by putting A = (x0/α)I
in the previous equality, we arrive at f(x0)I = 0, a contradiction. Finally, we
obtain the conclusions in Theorem 3.

Proof of Theorem 4. Let x, y > 0 be numbers and insert A = xI, B = yI in
(4) to obtain that f(αx+(1−α)y) = βf(x)+ (1−β)f(y) implying f(s+ t) =
g(s) + h(t) (s, t > 0) for the functions

g = (β · id) ◦ f ◦ ((1/α) · id), h = ((1 − β) · id) ◦ f ◦ ((1/(1 − α)) · id).

This means that f, g, h satisfy the Pexiderized Cauchy additive functional
equation on the domain ∅ �= ]0,∞[× ]0,∞[⊂ R

2, therefore Theorem 4 in [1,
p. 80] applies yielding the existence of a function ϕ : R → R and constants
b1, b2 ∈ R with the properties that ϕ fulfills the Cauchy additive equation and
f = ϕ + b1 + b2, g = ϕ + b1, h = ϕ + b2. However, the continuity of f implies
that of ϕ and thus we immediately obtain that one can find a number a ∈ R

for which f(x) = ax + b1 + b2 = ((aα)/β)x + b1/β, hence a = a(α/β), and if
a �= 0, then α = β. The statement of Theorem 4 follows.

3. Concluding remarks

As far as we know, the structure of homomorphisms of B(H)+ or B(H)++

with respect to a Kubo–Ando mean is still unknown in full generality even in
the bijective case. Here we have obtained partial results about this problem
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which are quite general but only relative to the setting of homomorphisms
induced by the continuous functional calculus.

Observe also that the scalar case is missing from those theorems. In that
case, (i) in Theorem 1 implies that (7) holds for all x, y > 0, which is a
functional equation for the unknown functions f, Fσ, Fτ , where, in general,
f : [0,∞[→ [0,∞[ is continuous, f(x) > 0 (x > 0) and Fσ, Fτ are generat-
ing functions of Kubo–Ando means on [0,∞[. It is obvious that a function
G : [0,∞[→ [0,∞[ of the latter kind has the properties that

G is continuous;G, G̃ are increasing; and G(1) = 1. (9)

Now suppose that a function G : [0,∞[→ [0,∞[ satisfies these conditions. Then
one can easily check that the operation ρG : [0,∞[2→ [0,∞[ defined by the
formula

ρG(a, b) =

{
aG

(
b
a

)
if a �= 0

G̃(0)b if a = 0
(a, b ∈ [0,∞[)

is a Kubo–Ando mean. Finally, we conclude that the generating functions of
Kubo–Ando means on [0,∞[ are exactly the maps G : [0,∞[→ [0,∞[ fulfilling
the conditions in (9). In what follows, we mention two immediate consequences
of this assertion.

The first one is that the Kubo–Ando means on [0,∞[ are precisely the
continuous monotone homogeneous means on [0,∞[. Indeed, the normalization
property of such means coincides with the property that they are reflexive as
usual means of real numbers, and their transfer property is equivalent to their
homogeneity. Moreover, we mention that if D ⊂ R is an interval, then every
normalized increasing function is a mean (see [10, Remark 3]). The converse
implication is false.

The second consequence of the last assertion in the last but one paragraph is
that in the one dimensional case, (i) in Theorem 1 is equivalent to a functional
equation of the form

f
(
xg

(y

x

))
= f(x)h

(
f(y)
f(x)

)
(x, y > 0),

where for the unknown functions f, g, h : [0,∞[→ [0,∞[, one has that f is
continuous, f(x) > 0 (x > 0) and g, h satisfy the properties in (9). We highlight
that, by the preceding discussion, each (ρg, ρh)-affine function is a solution of
this equation, i.e. any map which is affine with respect to two continuous
monotone homogeneous means on [0,∞[. Functions f : ]0,∞[→]0,∞[ that are
affine with respect to M,M , where M is a homogenenous mean on ]0,∞[ are
investigated in [9]. There, analogously to Theorem 1, it was shown that, under
some conditions, an (M,M)-affine function which is also continuous at a point
and neither constant, nor linear exists only when M is of a certain type, namely
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a weighted power mean, i.e., a map of the form

(x, y) �→ (αxp + (1 − α)y)1/p (x, y > 0; p ∈ R \ {0}; 0 ≤ α ≤ 1).

One can also consider the inequality versions of the relation defining mean
affine functions, i.e.,

f(M(x, y)) ≤ N(f(x), f(y)) (x, y ∈ D) (10)

and the reversed inequality, where f : D → E is a function and M , and N are
means on the intervals D, and E in R, resp. The functions f : D → E satisfying
(10) (the reverse of (10)) are called (M,N)-convex ((M,N)-concave) or convex
(concave) with respect to M,N (see [2,4,9,11,12]). Clearly, the functions which
are convex (concave) with respect to ∇α,∇α for all α ∈ [0, 1] are exactly
the convex (concave) ones and the (∇1/2,∇1/2)-convex ((∇1/2,∇1/2)-concave)
functions are precisely the Jensen-convex (Jensen-concave) ones.

Analogously to the case of affinity, convex functions with respect to means
can be defined also in the case of Kubo–Ando means using (10), where, in
that case, M,N are such operations on B(H)+, moreover f : [0,∞[→ [0,∞[
is a continuous function and x, y ∈ B(H)+ are arbitrary operators. For such
objects M,N, f , we say that f is (M,N)-convex ((M,N)-concave) or convex
(concave) with respect to M,N , if it satisfies (10) (the reverse of (10)) for all
x, y ∈ B(H)+. Observe that in the case dim H = n (n ∈ N), the functions
which are concave with respect to ∇α,∇α (as means on B(H)+) for each
α ∈ [0, 1] are exactly the n-concave ones on [0,∞[ (see Sect. 1. for the definition
of the latter functions). We remark that a real-valued continuous function f
on a nontrivial interval D ⊂ R is called n-convex if −f is n-concave. The
functions which are n-convex (n-concave) for any n ∈ N are termed operator
convex (concave). Functions of the latter four kinds appear, e.g. in the theory
of operator means and quantum divergences. Furthermore, it is known that
operator convex and concave functions have a certain integral representation.

As for convex/concave functions with respect to general Kubo–Ando means,
we refer to Theorem 2.1. (2.3.) in [3] stating that in the case where dimH = ∞,
for such a symmetric mean σ �= ∇1/2 (σ �=!1/2) on B(H)+, if a continuous
function f : [0,∞[→ [0,∞[ is (∇1/2, σ)-convex ((∇1/2, σ)-concave), then −f
(f) is operator monotone. We believe that it is a really challenging problem to
obtain results on the general forms of convex/concave functions with respect
to Kubo–Ando means. Our conjecture is that under not too strong conditions,
they have very special forms.
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