
Aequat. Math. 94 (2020), 1001–1092
c© The Author(s) 2020
0001-9054/20/061001-92
published online May 20, 2020
https://doi.org/10.1007/s00010-020-00720-7 Aequationes Mathematicae

Starshaped sets

G. Hansen, I. Herburt, H. Martini, and M. Moszyńska

Abstract. This is an expository paper about the fundamental mathematical notion of star-
shapedness, emphasizing the geometric, analytical, combinatorial, and topological properties
of starshaped sets and their broad applicability in many mathematical fields. The authors
decided to approach the topic in a very broad way since they are not aware of any related
survey-like publications dealing with this natural notion. The concept of starshapedness is
very close to that of convexity, and it is needed in fields like classical convexity, convex anal-
ysis, functional analysis, discrete, combinatorial and computational geometry, differential
geometry, approximation theory, PDE, and optimization; it is strongly related to notions
like radial functions, section functions, visibility, (support) cones, kernels, duality, and many
others. We present in a detailed way many definitions of and theorems on the basic proper-
ties of starshaped sets, followed by survey-like discussions of related results. At the end of
the article, we additionally survey a broad spectrum of applications in some of the above
mentioned disciplines.
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1. Introduction

While convex geometry has a long history (see, for instance, the bibliographies
in [453] as well as in [185,232,234,292]), going back even to ancient times
(e.g., Archimedes) and to later contributors like Kepler, Euler, Cauchy, and
Steiner, the geometry of starshaped sets is a younger field, and no historical
overview exists. The notion of starshapedness is a natural generalization of that
of convexity. Its various versions appear later, starting with the beginning of
the 20th century (see, e.g., [6,117]). An intensive development started in the
60’s, notably with the pioneering work of Léopold Bragard (see [68–76]); many
papers appeared also in the 70’s, 80’s, and later. This branch of geometry is still
actively developing, and it has numerous applications. Starshaped sets come
up naturally in many fields, including functional analysis, classical geometry
(e.g., as star polytopes), computational geometry, integral geometry, mixed
integer programming, optimization, operations research, etc. (see, e.g., [136,
143,151,165,418], but also our Sects. 14, 17, 19).

This survey is a first exposition on starshapedness in the broadest sense,
following Victor Klee’s suggestion to one of the authors, of writing such a
survey. It reflects (to our best knowledge) a very large part of all existing lit-
erature. However, we were not able to cover all existing topics and viewpoints;
the missing aspects might yield enough material for a second part.

For the sake of convenience, we give here a list of our Sections:

1. Introduction
2. Basic notions and definitions
3. Cones
4. Starshaped sets and visibility
5. Star generators. Representations of the kernel
6. Krasnosel’skii-type theorems
7. Asymptotic structure of starshaped sets
8. Support cones
9. Separation of starshaped sets

10. Extremal structure of starshaped sets
11. Dimension of the kernel of a starshaped set
12. Admissible kernels of starshaped sets
13. Radial functions of starshaped sets
14. Sums, unions, and intersections of starshaped sets
15. Spaces of starshaped sets
16. Selectors for star bodies
17. Star duality, intersection bodies, and related topics
18. Extensions and generalizations
19. Applications and further topics

19.1 Discrete and computational geometry
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19.2 Inequalities
19.3 Starshapedness in differential geometry
19.4 Starshaped sets and PDE
19.5 Starshapedness in fixed point theory
19.6 Starshaped sets in approximation theory
19.7 Applications of starshapedness in optimization
19.8 Further topics.

2. Basic notation and definitions

The geometry of starshaped sets is developed mainly in Euclidean spaces, but
many results have generalizations in topological vector spaces. Starshaped sets
are also considered in more general settings (see Sect. 18). Unless otherwise
stated, the framework in which we shall work is the d-dimensional Euclidean
space R

d (with origin 0), and we shall use standard concepts from set theory,
topology, linear algebra, and convexity. If A ⊂ R

d is any set, its complement
will be denoted by A′. If a, b are different points, by [a : b], [a : b), and
(a : b) we shall denote the segment with endpoints a and b, the half-line or
ray with origin a through b, and the line through a and b, respectively. The
replacement of [ by ] in the definition of [a : b] or [a : b) simply means that the
endpoint or origin a does not belong to the segment or ray; analogously for the
replacement of ] by [ in [a : b]. In the case of segments we extend this definition
agreeing that [a : a] = {a}, and we say that a segment is non-degenerate if
its endpoints are different. Similarly, open and closed intervals in R will be
denoted by ]α : β[, [α : β], [α : +∞[, etc. We shall denote half-lines from the
origin and lines through the origin by Δ and Γ, respectively, and sometimes
we shall refer to such a Δ as a direction. When necessary, we shall write Δu

instead of Δ for the half-line [0 : u), where u �= 0. Some authors use different
notations, in particular Δ (a, b) for the non-degenerate segment with endpoints
a and b, which is a special case of the notation for the k -dimensional simplex
with vertices x0, . . . , xk; that is the set

Δ(x0, . . . , xk) := {t0x0 + · · · tkxk | t0, . . . , tk ≥ 0, Σk
i=0ti = 1},

where x0, . . . , xk ∈ R
d, 1 ≤ k ≤ d, are affinely independent points. But we

shall reserve the greek letter Δ for half-lines.
If A ⊂ R

d, B ⊂ R
d, and Λ ⊂ R, then A + B = {a + b : a ∈ A, b ∈ B}

(Minkowski sum) and ΛA = {λa : λ ∈ Λ, a ∈ A}. When A or Λ are singletons,
we shall simply write a + B and λA. If x is a point and X is a set, we shall
write x ∪ X instead of the more clumsy {x} ∪ X.

We refer to standard texts for the basic concepts of convexity (e.g., [235,
325,431,453,515,527,538]). If A ⊂ R

d is any set, its affine hull will be denoted
by aff A, its convex hull by conv A, and its relative interior (with respect to
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aff A) and interior will be denoted by relintA and intA, respectively. For the
closure and the boundary of A we will write cl A and bdA, respectively. By
U (x : ε) and B (x : ε) we shall denote the open and closed balls with center
x and radius ε. The closed unit ball B (0 : 1) will be denoted by B, and the
unit sphere bdB by Sd−1. A nonempty compact subset A of R

d such that
intA is connected is a body if cl (intA) = A. More generally, if we drop the
boundedness condition, we say that A is a hunk or regular domain. The family
of all compact convex sets in R

d is denoted by Kd, and the family of convex
bodies is denoted by Kd

0. If A is a set and p /∈ A, the join of p and A, denoted
by [p : A], is the union of all segments [p : a] for a ∈ A. More generally, the
join of two disjoint sets A and B is the union [A : B] of all segments [a : b]
with a ∈ A, b ∈ B. If A and B are convex, [A : B] coincides with conv(A∪B),
which we shall also denote by conv(A,B) (see [515]). If A is a closed convex
set, we denote by ext A the set of extreme points of A. As usual, flats are the
translates of subspaces of any dimension, and we say that a set S is line-free
if there is no line contained in S.

A point set centered at the origin will simply be called a centered set. By Md

we denote a d-dimensional normed or Minkowski space, i.e., a d-dimensional
real Banach space whose unit ball is a d-dimensional centered, compact and
convex set (see the monograph [492], introducing this field).

3. Cones

Cones play an important role in the geometry of starshaped sets. A general
reference for cones is [283]. A set C ⊂ R

d is a cone if there exists a point
a ∈ R

d such that

]0,∞[·(C − a) ⊂ C − a.

The point a is then called an apex of the cone, and it does not necessarily
belong to the cone. A cone may not have only one apex; but if one of its apices
belongs to the cone, then all of them belong to it. The set of all apices of C is
a flat called the summit of C, and it is denoted by γC1. Therefore

γC = {y : ]0,∞[·(C − y) ⊂ C − y}.

If γC ⊂ C, the cone is called sharp; otherwise it is dull. A sharp cone C
is salient if no line through any of its apices is included in C, and in that
case it has a unique apex. If C is a salient cone with apex a, the opposite
cone of C is the cone opp C = 2a − C. In particular, if C = [a : p), then
opp [a : p) = 2a − [a : p) is the half-line with origin a in the opposite direction
of [a : p).

1In the same way we can define the summit of A for any subset A of a linear space. It is
always an affine subvariety of aff A (see [283, pp. 14–15]).
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For any cone C with apex a, its translate to the origin C0 = C −a is called
the centralized cone of C.

If V is a compact convex set and K is a convex cone with apex 0, then
V + K is a convex conic tail.

If A ⊂ R
d and a ∈ R

d, the conic hull of A from a is the set

[a : A) = {a} + [0,∞[·(A − a).

Thus, [a : A) is the smallest (with respect to inclusion) sharp cone with
apex a including A. If a = 0, it will be simply called the conic hull of A and
denoted by C(A). If A is a convex set, then [a : A) is a convex cone for any a.
The witness cone [a : A)0 of A is the centralized conic hull of A from a:

[a : A)0 = [a : A) − a.

If a /∈ A and A is convex, the convex cone [a : 2a−A) =
⋃

x∈A
[a : 2a−x)

is said to be opposite to [a : A).
It is well known (see [24]) that if A is convex and compact, then [a : A) is

a closed convex cone, but this may not be the case if A is merely closed.

4. Starshaped sets and visibility

The notion of starshaped set is a natural generalization of that of a convex set.
While a set C ⊂ R

d is convex if ∀x ∈ C and ∀y ∈ C the segment [x : y] ⊂ C,
a set S ⊂ R

d is starshaped if ∃x ∈ S such that ∀y ∈ S the segment [x : y] ⊂ S.
A closely related notion is that of visibility : given two points x, y of a set S,
we say that x sees y via S if [x : y] ⊂ S. If S is a set and x ∈ S, the star of
x in S is the set st(x : S) = {y ∈ S : [x : y] ⊂ S}, that is, the set of all points
of S which are seen from x via S. If A ⊂ S, the star of A in S is the set
st (A : S) =

⋂
x∈A

st (x : S). A set S is said to be starshaped if there exists
some x ∈ S such that st(x : S) = S. The kernel of S, denoted by kerS, is
the set of all x ∈ S such that st(x : S) = S, and its elements are called star
centers of S. This concept was defined by Brunn [117]. It is easy to see that
ker S is a convex set. Obviously, S is convex if and only if kerS = S. Some
authors speak of convex kernel, or mirador, instead of kernel. Sometimes, if
p ∈ ker S, we shall say that S is starshaped at p. A starshaped set in R

d is
called a starshaped body (or star body) if it has nonempty interior.

Without explicit mention we shall assume that all starshaped sets are non-
empty.

Remark 1. Bragard [69] proved that

ker
∑n

i=1
(αiSi) ⊃

∑n

i=1
αi ker Si.
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If S is a (starshaped) set, a convex component of S is a maximal (with
respect to inclusion) convex subset of S. The following problem is due to
Valentine (Problem 9.3 in [527]): characterize starshaped sets in a Minkowski
space in terms of convex components of these sets. A solution of this problem
was given independently by Toranzos [506] and Smith [467]:

Theorem 2. A subset of a linear space is starshaped if and only if the inter-
section of all its convex components is nonempty.

In the following section we will present a more precise result.
Let w, z ∈ [x : y). We shall say that z is subsequent to w in [x : y) if

z /∈ [x : w]. If S is a starshaped set and m ∈ ker S, we shall say that a point
l ∈ S is the last point of a ray [m : x) in S if l ∈ [m : x) and there is no point
y ∈ [m : x) ∩ S subsequent to l in [m : x). Obviously, such points may not
exist if S is not closed.

An easy consequence of the definitions is the extension (to starshaped sets)
of the linear accessibility theorem for convex sets, which states that if C is a
convex set, m ∈ intC, and x ∈ clC, then [m : x[ ⊂ int C. The corresponding
result for starshaped sets, which is a basic tool for many problems (see [255,
441,527]), is given by

Theorem 3. Let S be a starshaped set such that int kerS �= ∅. If m ∈ int ker S
and x ∈ cl S, then [m : x[ ⊂ int S.

Corollary 4. If S is a closed starshaped set such that int ker S �= ∅, then S is
a hunk.

If C is a closed convex set and x ∈ bdC, then it is obvious that C ∩ V
is convex for every convex neighborhood of x. Apparently, the boundary of
a closed starshaped set S, which is not convex, must contain points x such
that S ∩ V is not convex whatever the convex neighborhood V of x is. Such
points are called points of local nonconvexity of S. More precisely: a point
x ∈ bdS is a point of local nonconvexity of S if for every neighborhood V
of x the set S ∩ V is not convex. The set of points of local nonconvexity of
a set S is denoted by lnc S. Points of S that are not of local nonconvexity of
S are said to be points of local convexity of S, and the set of all such points
is denoted by lcS. A classical theorem of Tietze (see [494] and also [450,476])
states, roughly, that a compact and connected set S (a compact starshaped
set in particular) is nonconvex if and only if in its boundary there are points
of local nonconvexity. This was generalized by Klee (see [298,299]):

Theorem 5. Let S be a closed connected set in a locally convex linear topological
space. Then the following conditions are equivalent: (i) lnc S = ∅, (ii) S is
convex.

If S is a closed connected nonconvex set, then for every convex component
C of S there are local nonconvexity points of S arbitrarily close to bdC. More
precisely, Toranzos [509] proved
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Theorem 6. Let S be a closed connected nonconvex set, and let K be a convex
component of S. Then for every neighborhood V of the origin

(K + V ) ∩ lnc S �= ∅.

If lnc S is compact, then in every convex component of S there exist points
of local nonconvexity:

Theorem 7. Let S be a closed connected set such that lnc S is compact or
empty, and let K be a convex component of S. Then the following conditions
are equivalent: (i) K = S, (ii) K ∩ lnc S = ∅.

In [4], a sufficient condition for a compact set S in 3-space to be locally
starshaped is proved; this condition is given in terms of local nonconvexity
points of S. In [482] the following is shown: Let S be a compact, connected
subset of a Banach space, and for any x ∈ S let S(x) be the set of all points from
S which can be seen from x via S. Then S is starshaped iff the intersection
of all closures of convex hulls of the sets S(x) is nonempty, where x runs
through every suitable neighborhood of points of local nonconvexity of S. Using
Valentine’s definition of mild convexity points of sets in topological vector
spaces, the following theorem is proved in [187]: Let S be an open, connected
set in a locally convex Hausdorff space over the reals. If the boundary of S
contains exactly one point which is not a mild convexity point of S and this
point is not isolated in this boundary, then the dimension of the space is 2 and
S is starshaped.

McMullen [376] proved the equivalence of the following (and more) prop-
erties of a compact set S in R

d: (1) each homothetic image λS with 0 < λ < 1
is the intersection of a family of translates of S; (2) the set S is starshaped
and each maximal convex subset of it is a cap-body of the kernel (i.e., the
convex hull of kerS and a countable set of points outside of kerS whose pair-
wise joining segments meet ker S). Based on such equivalences, he proved the
following nice characterization of starshaped sets among compact sets: S is
starshaped if and only if for each 0 < λ < 1 there exists a point zλ such that
(1 − λ)zλ + λS ⊂ S.

A set S is said to have the finite visibility property, or to be a finitely star-
shaped set, or also finitely starlike set, if for every A ⊂ S with cardA < +∞,
there is xA ∈ S which sees every point of A via S, see [7,90,104,413,435,436].
Edelstein, Keener and O’Brien [176] confirmed that S is starshaped if and only
if the set of regular points of S has the finite visibility property. In [20] it is
proved that the closure of a bounded finitely starlike set is starshaped, and
the author gives an example to illustrate that the boundedness condition can-
not be relaxed. Based on this, related versions of Helly’s and Krasnosel’skii’s
theorem are derived. In [481] it is proved that in a uniformly smooth and
uniformly rotund Banach space B, the closure of a bounded S ⊂ B is star-
shaped if and only if S has the finite visibility property, where B is said to be
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uniformly rotund if and only if for any ε > 0 there exists δ(ε) > 0 such that
1 −

∥∥ 1
2 (x + y)

∥∥ ≥ δ whenever ‖x − y‖ ≥ ε and ‖x‖ = ‖y‖ = 1, and it is said
to be uniformly smooth if and only if for any ε > 0 there exists δ(ε) > 0 such
that 1 −

∥∥ 1
2 (x + y)

∥∥ ≤ ε ‖x − y‖ whenever ‖x − y‖ ≤ δ and ‖x‖ = ‖y‖ = 1.
In [175] it is proved that a normed linear space is infinite-dimensional

[reflexive] iff it contains a weakly closed, linearly bounded [bounded] set which
has the finite visibility property but fails to be starshaped. In the definition of
the finite visibility property replacing the word “finite” with the word “count-
able”, Borwein et al. [65] derived results of the following type: In metrizable
locally convex spaces every relatively weakly compact subset with the finite
visibility property has the countable visibility property. The authors present
examples of a non-starshaped set with the countable visibility property, and
also of a set having the finite visibility property, but not the countable visibility
property. Further related results can be found in [66].

A notion somewhat more restrictive than starshapedness was defined by
Demianov and Rubinov (cf. [157,441]): let S be a closed proper subset of R

d

with non-empty interior. Then S is said to be strongly starshaped whenever
there exists an a ∈ intS such that for every u ∈ Sd−1 the half-line a+Δu does
not intersect the boundary bdS more than once. We also say that S is strongly
starshaped at a, and some authors also say that S is radiative at a. The set
of all a ∈ S with these properties is denoted by ker∗ S, and we call it the
strong kernel of S. Bragard [69] and also Shveidel [461] proved that if S ⊂ R

d

is strongly starshaped, then ker∗ S is convex. A strongly starshaped set is
starshaped, but the converse is not true. If S is strongly starshaped, the point
a mentioned in the definition must belong to kerS; that is, ker∗ S ⊂ ker S,
because if a ∈ intS\ ker S, then there exists x ∈ S such that [a : x] � S.
Whence, [a : x] ∩ bdS must include at least two different points because S is
closed. As a direct consequence of the linear accessibility theorem (Theorem
3) we obtain the following: if S is a closed starshaped set, then

int kerS ⊂ ker∗ S ⊂ ker S

(see also [69,157, Chapter 6]). Therefore, if a closed starshaped set S is not
strongly starshaped, then int kerS = ∅ (see also [442]).

A set S in R
d is an Ln set (see [116,268,479,480,528]) if every pair of

points of S can be joined by a polygonal arc in S consisting of at most n
line segments. In [483] short proofs of the following results of Valentine are
given: Let S be closed and connected in R

d. If S has at most n points of local
nonconvexity, then S is an Ln set. If the set of points of local nonconvexity of
S can be decomposed into n convex sets, then S is an L2n+1 set.

Another extension of the notion of starshapedness, called Δ-starshapedness,
was introduced in [211], see also Sect. 0.7 of Gardner′s book [204]. A set A ⊂ R

d

is Δ- starshaped at a point a (which may be outside of A), whenever for every
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line a + Γ through a the intersection (a + Γ) ∩ A is connected. Clearly, if A
is Δ-starshaped at a point a ∈ A, then A is starshaped at a. Also, for every
a ∈ R

d, if A is Δ-starshaped at a, then [a : A] is starshaped at a.
Melzak [378] investigated properties of starshaped sets in 3-space (extend-

ing Blaschke’s selection theorem suitably and representing the kernel as the
intersection of certain systems of half-spaces), and he showed that for any
convex set C there is an almost ball-shaped body with kernel C.

In [526] minimal (with respect to inclusion) sets of visibility are used to
characterize planar compact sets which are either convex or starshaped with
respect to one point. The analogous problems for closed sets or higher dimen-
sional analogues are posed as open questions.

Stanek [474] characterized starshapedness as follows: A set S is p- arcwise
convex if each pair x ∈ S, y ∈ S can be joined by a convex arc C(x, y) lying
in the intersection of S and the triangle (p, x, y). A set is locally p-arcwise
convex if each point of S has a neighborhood whose intersection with S is
p-arcwise convex. The author shows that a closed connected set in a linear
topological space is p-arcwise convex if and only if it is locally p-arcwise convex,
which is equivalent to being starshaped with respect to p. Another topological
characterization of starshapedness is given in [316].

In [58,61], and Chapter II of [59] the notion of starshapedness is also
extended to normed spaces. More precisely, extensions of the notion of star-
shapedness, defined with the help of generalized convexity notions and mainly
useful for metrical problems in normed spaces, are discussed there. The first one
is the so-called d- starshapedness defined via metric segments. This is done as
follows: In the definitions of segments and starshapedness, usual segments are
replaced by (metric or) d-segments, which are the sets of all points “between”
the two segment endpoints which satisfy the triangle inequality with equality,
with respect to the metric d of the space. Thus, the d-segment [x : z]d with end-
points x and z in a normed space is the set {y : d (x, z) = d (x, y) + d (y, z)},
where d(x, z) denotes the usual distance in this normed space. This useful
concept was introduced by Menger [379]. It is clear that in strictly convex
normed spaces all d-segments are usual line segments, but if the norm is not
strictly convex, then d-segments can be of any dimension between 2 and the
full dimension of the space. Thus, the shape of d-segments strongly depends
on the shape of the unit ball. And since in the definition of d-starshaped sets
(see, e.g., Sect. 15 of [59] for a more recent representation) the connecting
d-segments creating the corresponding d-visibility have to be contained in the
respective sets, the geometric properties of the unit ball are very important.
Basic properties of d-starshaped sets were already derived in [60,472,496,497].

Closely related to d-starshapedness is a second generalization of usual star-
shapedness, the so-called c-starshapedness introduced in [472]. A third type
of starshapedness, H-starshapedness (based on the so-called H-convexity), is
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less related to normed spaces and is introduced via restricted intersections of
halfspaces (see [60] and Chapter III from [59]).

The authors of [176] extend basic properties of finite visibility of starshaped
sets to infinite-dimensional normed spaces if these spaces have a uniformly
convex and uniformly smooth norm. E.g., Krasnosel’skii’s theorem is extended
this way.

5. Star generators: representations of the kernel

If A is any set, then it is clear that kerA = st (A : A) =
⋂

x∈A
st (x : A). A

natural question arises: are there subsets D ⊂ A, D �= A, such that ker A =⋂
x∈D

st (x : A)? If such a set D exists, we say that D is a star generator of
ker A, or that D star generates ker A (see [493]). A considerable amount of
research is dedicated to finding star generators for the kernel of a starshaped
set S (cf. [515]). The following early result is due to Bragard (see [75]).

Theorem 8. If S is a closed set in R
d, then bdS is a star generator of ker S.

Certain subsets of a star generator are also star generators (see [493]):

Theorem 9. Let S be a closed set in R
d, D a star generator of ker S, and M

a dense subset of D. Then M is a star generator of ker S.

Theorem 10. Let S be a compact starshaped set in R
d and D a star generator

of ker S. Then there exists a countable dense subset M of D which is a star
generator of ker S.

Theorem 8 was generalized in several directions, pointing to other subsets of
bdS that are star generators of ker S. We shall return to the subject repeatedly.
A related question arises: is it true that if D is a star generator of ker A, then
the set A can be recovered from D, i.e.,

A =
⋃

x∈D

st (x : A)?

For D = bdA the answer is positive.
More generally: is there a family F of subsets of a starshaped set S such

that

S =
⋃

F∈F
F (1)

and

ker S =
⋂

F∈F
F ? (2)

In [511], Toranzos called any collection F of subsets of a starshaped set S a
crown of S if it satisfies (2), and he called the collection F (not necessarily
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a crown) a covering collection if it satisfies (1). The paper [511] contains a
quite complete and detailed summary, up to 1996, of many related results,
proposes a general approach to these matters and suggests several lines for
further study. In [506] (see also [515]) Toranzos proved that the set of convex
components of a starshaped set constitutes a crown.

Theorem 11. If F is a covering family of convex components of a starshaped
set S, then F is a crown, that is,

S =
⋂

F∈F
F.

A point y ∈ S clearly sees x ∈ S via S if and only if there exists a neigh-
borhood V of x such that V ∩S ⊂ st(y : S). The nova, or clear star, of x in S,
denoted by nova(x : S), is the set of all points of st(x : S) that clearly see x via
S. If x and y are points in S, y is a point of critical visibility of x in S, denoted
by y ∈ cv(x : S), if y ∈ intS ∩ bd (st (x : S)). Stavrakas [475] proved that the
family of novae of points of local nonconvexity of a compact set S ⊂ R

d is a
crown of S. In [512] Toranzos and Forte Cunto gave a generalized version of
this result, namely

Theorem 12. Let S be a closed connected subset of R
d (or of a real locally

convex topological vector space E) such that lnc S is nonempty and compact.
Then the family of novae of points of local nonconvexity of S is a crown of S.

Further levels of low visibility are studied in [193].
A point x ∈ S is a k-extreme point of S (see [13,493]) if there is no k-

simplex Δ(x0, . . . , xk) ⊂ S such that x ∈ relintΔ(x0, . . . , xk). The set of all
k-exteme points of S is denoted by extkS. Independently, Kenelly et al. [289]
and Tidmore [493] proved the following statement:

Theorem 13. Let S be a compact starshaped subset of Rd. The family F =
{st (x : S) : x ∈ extd−1S} is a crown of S.

If x and y are points of a starshaped set S, x has higher visibility via S than
y if st (y : S) ⊂ st (x : S). A point x ∈ S is called a peak or point of maximal
visibility in S if there exists a neighborhood V of x in S such that x has higher
visibility in S than any other point of S∩V . The following theorem was proved
by Cel [131], and previously for compact sets by Toranzos and Forte Cunto
[513]; see also the earlier papers [127–129] by Cel.

Theorem 14. If A is an open connected subset of R
d or intA is connected and

A = cl (intA), then ker A is the set of all points of maximal visibility in A.

The visibility cell of x in S is the set vis (x : S) of all the points of S having
higher visibility via S than x. Toranzos proved in [509] the following statement.
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Theorem 15. Let S be a closed connected set with lnc S being compact. Then
the family of visibility cells of all points of local nonconvexity of S is a convex
crown of S.

Let y ∈ bdS and x ∈ st (y : S). In [510] Toranzos2 defined the notion of
inward ray as follows: [x : y) is said to be an inward ray through y if there exists
t ∈ [y : 2y − x) = opp [y : x), t �= y, such that ]y : t[ ⊂ intS. Otherwise [x : y)
is an outward ray through y. The inner stem of y in S is the set ins (y : S)
formed by y and all the points of st (y : S) that issue outward rays through y.

For the following theorem we refer to [432,510].

Theorem 16. If S is a nonconvex hunk, then the family

F = {ins (x : S) : x ∈ lnc S}
is a crown of S.

Toranzos proved in [510] the following relations.

Theorem 17. Let S ⊂ R
d be a closed connected set and y ∈ bdS. Then

vis (y : S) ⊂ ins (y : S) ⊂ st (y : S) ,

y ∈ lcS =⇒ ins (y : S) = st (y : S) ,

x ∈ ins (y : S) =⇒ [y : x) ∩ st (y : S) ⊂ ins (y : S) .

In [192] the following was shown for a smooth planar Jordan domain whose
boundary has only finitely many inflection points: the kernel of such a star-
shaped domain S is the intersection of the stars of the inflection points in the
boundary of S. Also related Krasnosel’skii-type theorems are derived, yielding
conditions for the kernel of S to be 1- or 2-dimensional and given in terms of
the mentioned inflection points.

Based on the PhD Thesis [430] of Robkin and properties of points of spher-
ical support, characterizations of the kernel of starshaped sets are presented
in [460].

For a closed starshaped subset S of the plane whose boundary is a contin-
uously differentiable simple closed curve, Halpern [252] proved the following:
The boundary of the kernel of S is contained in the union of the boundary of
S and the tangent lines to the boundary at its inflection points. In particular,
if only a finite number m of inflection points exists in the boundary of S, and
if the intersection of both boundaries (also that of the kernel) is empty, then
the kernel is a polygon with at most m sides. Further intersection theorems
based on inflection points and yielding the kernel of S are given.

In [47] the notion of affinely starshaped sets was introduced, and a charac-
terization of affine kernels is given there.

2There are some mistakes in Toranzos’ paper, that were corrected in the Thesis [432] of
Rodŕıguez. Part (a) of Theorem 4.1 of [510] is false, but the Main Theorem 4.3 is true and
was proved in [432].
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6. Krasnosel’skii-type theorems

Krasnosel’skii’s classical theorem (see [318]) states that a nonempty compact
subset S of R

d is starshaped if and only if any d + 1 points of S are visible via
S from a common point. Its proof relies on Helly’s classical theorem (cf. [261])
which states that if F is a family of convex sets in R

d, then
⋂

F∈F
F �= ∅

if and only if any d + 1 members of F have a nonempty intersection. A
Krasnosel’skii-type theorem for a set S results as the conjunction of a the-
orem about the representation of kerS as the intersection of a certain fam-
ily of subsets of S and a Helly-type theorem applicable to that family. For
Helly’s theorem and its consequences we refer to the classical paper of Danzer,
Grünbaum, and Klee [150] and also the more recent, excellent survey [172].
The difficulty of this conjunction resides in the fact that the sets of this family
are not necessarily convex, as a Helly-type theorem usually requires. Normally,
this difficulty is overcome by proving a new representation theorem for kerS as
the intersection of the closed convex hulls of the family members. It is common
to call this new representation theorem Krasnosel’skii-type Lemma; see [512],
where we find the next three theorems.

Theorem 18. Let S be a compact hunk in R
d. S is starshaped if and only if for

every subset P ⊂ lnc S with cardinality card(P ) ≤ d + 1 there exists a point
x ∈ S that clearly sees every point of P .

Theorem 19. Let S be a hunk in R
d such that lnc S is compact and there exists

y0 ∈ lnc S with st (y0 : S) bounded. Then S is starshaped if and only if for every
subset P ⊂ lnc S with card (P ) ≤ d + 1 there exists a point x ∈ S that clearly
sees every point of P .

Theorem 20. Let S be a compact hunk in R
d such that for every M ⊂ lnc S

with card (M) ≤ d + 1 there exists a ball B of radius δ > 0 included in S and
such that each point of B clearly sees every point of M . Then S is starshaped,
and ker S includes a ball of radius δ.

On the same line Rodŕıguez [434] proved the following results.

Theorem 21. Let S ⊂ R
d be a nonconvex hunk such that for every set M ⊂

lnc S with k elements (k ≤ d + 1) there exists a point p ∈ S that sees each
of the points of M and issues outward rays through these points. Then S is
starshaped.

Theorem 22. Let S ⊂ R
d be a nonconvex hunk, and δ > 0 be such that for

every set M ⊂ lnc S with k elements (k ≤ d+1) there exists a disk D of radius
δ included in the star of each point of M , and such that every point of D issues
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an outward ray through each point of M . Then ker S includes a disk of radius
δ.

The theorems of Helly and Krasnosel’skii are in fact equivalent, see [62],
and also the compactness property cannot be dropped (see [96,97]). Direct
and natural refinements and extensions of Krasnosel’skii’s original theorem can
be found in [57,98,101,133,180,190,311,385,528,529], see also the monograph
[538].

Stavrakas (see [478]) proved a Krasnosel’skii-type theorem for (d − 2)-
extreme points which combines and generalizes known results.

Krasnosels’skii’s theorem is also discussed in the monographs [59] (section
15 and p. 161), [61,148] (see section E2 there), and [337,545]. The following
nice variant for polygons was proved in [386]: A side of some polygon is called
a side of inflection if one of its two angles is concave and the other one is
convex. Let P be a planar polygon with at least three sides of inflection. If to
each triple of sides of inflection there is a point of P from which at least one
point of each of the three sides can be seen, then P is starshaped.

In [312,314,315] combinatorial characteristics of convexity spaces related
to convex sets and starshaped sets (and, in particular, with Krasnosel’skii’s
theorem) are compared, yielding results on convex sums and product spaces.

Breen wrote many interesting papers on Krasnosel’ski-type results for star-
shaped sets. They discuss the following issues: getting conditions for the size
and/or dimension of the kernel of a starshaped set (see [79,80,82,83,85,88,97],
and further references therein), (clear) visibility of point sets of local noncon-
vexity (cf. [80,82,85,87,88,92,93,97]) or of (d − 2)-extreme points of a star-
shaped set (see [81]), and conditions for planar bounded sets which are almost
starshaped if the “Krasnosel’skii number” 3 is replaced by 4 (see [89,91]). The
property of being “almost starshaped” is defined in Sect. 18.

One might interpret Krasnosel’skii’s theorem as the “starshapedness ana-
logue” of Helly’s theorem, which originally refers to convex sets. However,
there also exist direct analogues of Helly-type theorems referring to families
of starshaped sets. We start with [105], where it was shown that, in a family
F of compact convex sets in R

d, any d + 1 or fewer members have a star-
shaped union if and only if the intersection of all members of F is nonempty.
In [53,54] the following extension of Helly’s theorem was derived: If F is a fam-
ily of compact sets in R

d and any d + 1 (not necessarily distinct) sets from F
have an intersection which is nonempty and starshaped, then the intersection
of all the sets from F is nonempty and starshaped. And here “intersection” can
also be replaced by “union”. Concerning “union” we also refer to [270,313].
Vesely [534] reproved the following result on (d + 1)-families of convex sets
any d-tuple of which has a common point and whose union is starshaped: If
either all members of such a family are closed, or all of them are open, then
their intersection is non-empty. Closely related, Breen [106] showed that if any
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d+1 (not necessarily distinct) sets from F intersect in a starshaped set whose
kernel contains a translate of a set A, then the intersection of all sets from F ,
also a starshaped one, has a kernel containing a translate of A. This paper also
contains sharper results for the planar case. Continuing this, the following was
derived in [107]: if every countable subfamily of F has a starshaped intersection
whose kernel is at least k-dimensional, then the intersection of all members of
F is also starshaped with kernel at least k-dimensional (0 ≤ k ≤ d); and if
every countable subfamily of F has a starshaped union, then the union of all
members of F is also starshaped, with kernel at least k-dimensional. And if
every countable subfamily of F has an intersection expressible as a union of k
starshaped sets, each having a d-dimensional kernel, then the intersection of
all is nonempty and expressible as a union of k such starshaped sets; if on the
other hand members of F are compact and every finite subfamily of F has a
union of k starshaped sets as its intersection, then this intersection is again a
union of k starshaped sets, see [110].

In [108] the following Helly-type theorems are proved: for a nonempty finite
family F of closed sets in R

d, let k ≤ d+1, L be a (d−k +1)-dimensional flat
in R

d, and T be the union of all members of F . If every union of at most k
members of F is starshaped and its kernel contains some translate of L, then
T is starshaped, and its kernel also contains a translate of L. And if every
union of at most k members of F is starshaped and the kernel of each set in
the union meets some translate of L, then there exists a translate L0 of L such
that every point of T sees some point of L0 via T .

The paper [21] deals with finite unions of starshaped sets. The authors
solve a problem posed by F. A. Valentine on page 178 of [527]. Namely, if the
ordered pair of sets (S,K) in a linear topological space is of Helly type (n+1, n)
(i.e., for every n + 1 points in S there is a point of K that sees at least n of
these points via S), then, for S closed, K compact, and n > 2, the nontrivial
visibility sets in K are pairwise disjoint, also yielding sufficient conditions
for the starshapedness of S. In [22] these investigations are continued, also
concerning starshapedness when the equality K = S holds.

In [58,60,61,501,504], and Sect. 15 of [59] Krasnosel’skii’s theorem and
related statements are extended to normed spaces, using again the concept of
d-starshapedness (see our explanations of d-segments, d-visibility etc. in Sect.
4). Here respective analogues of points of non-convexity play an important role
(see again [501,504]). In an analogous way, H-convexity is used in [60] to give
an extension of Krasnosel’skĭı’s theorem for H-starshaped sets.

For further studies on intersection formulae and Krasnosels′ skii-type the-
orems in more general frameworks we refer to [132] and the references therein.
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7. Asymptotic structure of starshaped sets

The following results describe “asymptotic properties” that closed starshaped
sets may have. Recall that for convex sets unboundedness implies the existence
of half-lines included in these sets. For properties of unbounded convex sets
we refer, for example, to Rockafellar [431]. The following theorems from [255]
collect related statements for starshaped sets.

Theorem 23. Let S be an unbounded closed starshaped set. Then there exists
a half-line Δ such that ker S + Δ ⊂ S. Moreover, if ker S is unbounded, then
S + Δ ⊂ S, where Δ is now a half-line such that m + Δ ⊂ ker S for some
m ∈ ker S.

Corollary 24. Let S be a closed starshaped set and Δ a direction. If m+Δ ⊂ S
for some m ∈ ker S, then ker S+Δ ⊂ S. If m+Δ ⊂ ker S for some m ∈ ker S,
then ker S + Δ ⊂ ker S and S + Δ ⊂ S. Conversely, if S + Δ ⊂ S for some
direction Δ, then ker S + Δ ⊂ ker S.

Corollary 25. Let S be a closed starshaped set. If there exists a flat F ⊂ S,
then ker S + (F − F ) ⊂ S.

Definition 26. Let S be a closed starshaped set and let Δ be a direction. We
say that Δ is a recession direction of S if kerS + Δ ⊂ ker S, and it is called
an infinity direction of S if ker S + Δ ⊂ S. The set of all recession directions
of S will be called the recession cone of S (see, e.g., [462]), denoted by rcS,
and the set of all infinity directions of S will be called the infinity cone of S
and denoted by icS.

Note that a recession direction of a starshaped set S is a recession direction
of the convex set ker S.

The following figures, in which the absence of borders means that the set
continues in the “natural” way, illustrate these concepts.

For the set S in Fig. 1, we have

icS = {λ(0, 1) : λ ≥ 0} ∪ {μ(1, 0) : μ ≥ 0} ,

rcS = {(0, 0)} ,

and for the set S in Fig. 2 we have

icS = R
2\ {λ(1, 0) + μ(0, 1) : λ > 0, μ > 0} ,

rcS = {λ(−1, 0) + μ(0,−1) : λ ≥ 0, μ ≥ 0} .

The kernel of a starshaped set S may also include lines or, more generally,
flats, but in those cases the structure of S is relatively simple.

Theorem 27. Let S be a closed starshaped set and assume that there exists a
flat F ⊂ ker S. Then S ∩ (F − F )⊥ is starshaped and

S = S ∩ (F − F )⊥ + (F − F ) .



Vol. 94 (2020) Starshaped sets 1017

Figure 1. Infinity cones

Figure 2. Infinity and recession cones

Moreover, if F is a flat included in ker S and there is no flat F ′ such that
F � F ′ ⊂ ker S, then ker

[
S ∩ (F − F )⊥

]
is line-free.

Corollary 28. Let S be a closed starshaped set. If a set H ⊂ ker S is a hyper-
plane, then S is a convex set of one of the following types: (a) the whole space;
(b) a closed half-space; (c) a layer between two parallel hyperplanes. In cases
(b) and (c) the bounding hyperplanes of S are parallel to H.

This generalizes known results on convex sets; see [238, p.26 (Exercise 12),
486].

Here we also mention the related paper [225] in which useful properties
of the kernels of usual starshaped sets and their analogues for sets which are
starshaped “at infinity” are studied and important links between them are
shown.

8. Support cones

Support cones of starshaped sets can be seen as analogues of support half-
spaces for convex sets. According to Hansen and Martini [255] we have that if
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S ⊂ R
d is any set, a convex cone C with apex a and non-empty interior is a

support cone of S at a if a ∈ S, S ⊂ (intC)′ and C is a maximal (with respect
to inclusion) convex cone with these properties.

Theorem 29. Let S ⊂ R
d be a closed starshaped set with int ker S �= ∅. Then

for every x ∈ bdS there exists a support cone of S at C.

Theorem 30. Let S ⊂ R
d be a closed starshaped set with int ker S �= ∅. Then

S =
⋂

x∈bdS
(intCx)′

,

where Cx is any support cone of S at x.

A well known lemma of Krasnosel’skĭı states that for a closed subset S of
a finite-dimensional space and a point s ∈ S, if [0 : s] �⊂ S, then there exists
a cone point z of S (i.e., a point z such that there is a closed half-space that
has z in its bounding hyperplane and contains the set {x ∈ S : [x : z] ⊂ S}
so that 0 does not belong to the closed convex hull of the star of z). Edel-
stein, Keener, and O′ Brien extended this result in [176] to infinite-dimensional
normed spaces with uniformly convex and uniformly smooth norms. Using this
result they proved that a set S is starshaped if it satisfies the above assump-
tions, is bounded and has a finite visibility property.

Let K be a closed subset of a Banach space. For x ∈ K, the pseudotangent
cone P (K,x) to K at x is the closed convex hull of the set

{y : y = lim tn(xn − x), where xn → x and tn ≥ 0} .

If K is starshaped, then its convex kernel is a subset of the union of all sets
P (K,x) + x for all x ∈ K. The central result of [63] is that this intersection
actually equals the convex kernel when K is boundedly relatively weakly com-
pact. Also, the author applies this to an extension of Krasnosel’skii’s theorem.

9. Separation of starshaped sets

It is clear, and can be shown with elementary examples, that there are pairs
of disjoint closed starshaped sets S1 and S2 such that there is no hyperplane
separating them. They cannot even be separated by cones, despite the fact
that cones play a role for starshaped sets analogous to that of half-spaces for
convex sets, see Fig. 3.

However, it is possible to separate them by means of complementary star-
shaped sets, in analogy with the Stone–Kakutani separation lemma for disjoint
convex sets. This was proved by Drešević [170].

Theorem 31. Let S and T be two disjoint sets, in a real linear space L, star-
shaped at points p and q, respectively. Then there exist sets C and D, starshaped
at p and q, respectively, such that:

S ⊂ C, T ⊂ D, C ∩ D = ∅, and C ∪ D = L.
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Figure 3. No cone separation is possible

A different kind of separation was studied by Shveidel [461]. Given two sets
A and B in R

d, he showed them to be separable if there exists a finite set of
linear functionals f1, . . . , fp such that

⋃p
i=1

{
x ∈ R

d : fi(x) ≤ 0
}

�= R
d and for

any a ∈ A, b ∈ B the inequality fi (a) ≤ fi (b) holds for some i, 1 ≤ i ≤ p.
Also, he said that a vector g is a feasible direction for a set A at a point x0 if
there exist sequences (gi) and (αi) such that gi ∈ R

d, αi ∈ R, gi → g, αi ↓ 0,
x0 + αigi ∈ A. He proved that given two sets starshaped at a point, one has
to shift them in order to get separable sets. More precisely, this is given in

Theorem 32. Assume that A and B are starshaped at the origin, B − A is
closed, a, b ∈ R

d, and either a − b /∈ B − A or a − b ∈ bd (B − A), but the
vector a − b is not a feasible direction of B − A at the point a − b. Then a + A
and b + B can be separated by d linearly independent linear functionals.

Another kind of separation of two sets by means of cones, where one of the
sets is starshaped and the other one is convex and compact, was studied by
Hansen and Martini [255]. They proved

Theorem 33. Let S and V be two disjoint sets, where S is closed and starshaped
with int kerS �= ∅, and V is compact. Then there exists a finite family of
convex cones Ki, i = 1, . . . , n, such that

V ⊂
⋃n

i=1
Ki,

⋃n

i=1
Ki ∩ S = ∅.

Theorem 34. Let S and V be two disjoint sets, where S is closed and starshaped
with int ker S �= ∅ and V is compact and convex. Then
(a) there exists a convex cone K with apex 0 such that V ⊂ V + K and

(V + K) ∩ S = ∅,
(b) there exist a compact convex set W � V and a convex cone K with apex

0 such that V ⊂ W + K, (W + K) ∩ S = ∅, V ⊂ int (W + K), and
S ⊂ int (W + K)′.
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Rubinov and Shveidel [444] considered closed subsets of a Euclidean space
that are strongly starshaped with respect to infinity. They gave geometric
characterizations and separation properties for the members of such classes.

In [443] the useful notion of conical support collection was introduced,
namely referring to the separability of starshaped sets. The authors use this
concept for generalizing distances between convex sets to a best approximation-
like starshaped distance. It is shown that even some problems involving the
distance function to arbitrary (not even starshaped) sets can be studied by
means of starshaped analysis.

Let A be a subset of a (real) Banach space and x /∈ A. The authors of
[382] discuss cone-separability in terms of separation by a collection of linear
functionals and give, based on this, necessary and sufficient conditions for the
cone-separability of A and x. Within this framework, they characterize star-
shaped separability. They apply such separability to approximation problems
for starshaped sets. Also in [442] the separability of two starshaped sets by
a finite collection of linear functions is discussed, and the same is done in
[444] with respect to infinity, but again by finite collections of linear functions.
In [461] it is shown that under natural assumptions two star-shaped subsets
of the d-dimensional Euclidean space can be separated by a finite number of
(and even only d linearly independent) linear functionals. In these assumptions
geometric properties of recession cones of the considered sets and their com-
plements play a role, and the obtained separation statements are then applied
to an optimization problem.

10. Extremal structure of starshaped sets

Extreme points play an important role in the theory of convex sets and in
convex analysis; see, for example, Chapter 2 in [453] and Sect. 18 in [431],
respectively. Further related monographs, also showing important relations to
optimization theory, are [67,269,441,464,522].

A more general concept was defined by Asplund [13] for sets not necessarily
convex: if S is a subset of a linear space L, a point x ∈ S is a k-extreme point
of S if no k-simplex ∇ exists such that x ∈ relint∇ ⊂ S. Kenelly, Hare, Evans,
and Ludescher [289], Tidmore [493], and Stavrakas [477] studied properties
of the set of k-extreme points of a starshaped set. They proved the following
statements.

Theorem 35. Let S be a compact starshaped subset of R
d (d ≥ 2). Then the

set S(d − 2) of (d − 2)-extreme points of S is a star generator of ker S.

Theorem 36. Let S be a compact starshaped subset of R
d such that dim S ≥ 3.

Then S(d − 2) is an uncountable set.



Vol. 94 (2020) Starshaped sets 1021

Stavrakas (see [477]) proved a somewhat more general result. For a set
S ⊂ R

d he said that S has the half-ray property3 if for every x ∈ S′ there
exists a half-line Δ such that (x + Δ) ∩ S = ∅.

Theorem 37. Let S ⊂ R
d (d ≥ 2) be a compact set such that
⋂

x∈S(d−2)
st (x : S) �= ∅.

Then the following statements are equivalent:
(a) S has the half-ray property;
(b) kerS =

⋂
x∈S(d−2) st (x : S).

Also the following statement is from [477].

Theorem 38. Let S ⊂ Rd (d ≥ 2) be a compact set. Then the following prop-
erties are equivalent:
(a) S is starshaped;
(b)

⋂
x∈S(d−2) st (x : S) �= ∅ and S has the half-ray property.

Akin to these results, Rodŕıguez studied in [433] the external visibility of
a closed set S (see also [119,530]), which is practically the study of visibility
in the complement of S, and connects the external visibility of a certain set S
with properties that involve points of S instead of points in its complement.
She defined the algebraic hull of a set A ⊂ R

d as the set algA of all y ∈ R
d

such that there exists x ∈ A with [x : y[⊂ A. This is the set of all points in
R

d linearly accessible in A from points of A, and, if S ⊂ R
d is a closed set

such that algS = S and algS′ = clS′, she says that S has the shining boundary
property if S′ has no bounded connected components and for each boundary
point of S there exists a ray issuing from it which is disjoint with intS. She
proved the following two theorems.

Theorem 39. Let S ⊂ R
2 be a body such that algS = S and algS′ = clS′. Then

S has the half-ray property if and only if S has the shining boundary property.

Theorem 40. Let S ⊂ R
2 be a compact set such that algS = S and algS′ =

clS′. Then S is starshaped if and only if S has the shining boundary property
and the intersection of the stars of 0-extreme points is nonempty.

The extension of both results to higher dimensions remains an open prob-
lem. Further results on external visibility and illumination properties were
studied in [194,220,372,437].

Continuing [289], Goodey [221] proved that a compact subset S of R
d is

starshaped if and only if it is nonseparating and the intersection of the stars
of (d − 2)-extreme points of S is nonempty.

3Note that the term half-ray refers to what is usually called half-line or ray.
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Another useful concept was defined by Martini and Wenzel [371]: let S
be a compact starshaped set, and K be a nonempty convex and compact
subset of ker S. Then a point q0 ∈ S\K is an extreme point of S modulo K
if q0 /∈ conv (K ∪ {p}) for all p ∈ S\ (K ∪ {q0}). They studied the operator
σ = σK : P

(
R

d\K
)

→ P
(
R

d\K
)

defined as follows: for a set A ⊂ R
d\K,

σ (A) consists of A as well as all points x ∈ R
d\ (A ∪ K) such that there exists

some z ∈ A with [z : x] ∩ K = ∅, but [z : x) ∩ K �= ∅. In other words, if
A ⊂ S\K, then σ (A) \A consists of those points of S\ (A ∪ K) which lie in
some segment [z : x] with z ∈ A and x ∈ K. They proved the following

Theorem 41. Let K �= ∅ be a convex subset of R
d. Then for every A ⊂ R

d\K
the set τK (A) = K ∪ σK (A) is starshaped, and every point x ∈ K is a star
center of τK (A).

Formica and Rodŕıguez studied in [194] relations between visibility and
illumination operators.

A basic theorem of classical convexity, usually referred to as Minkowski’s
theorem, states that a compact, convex subset of R

d may be “recovered” from
the set of its extreme points, in the sense that the set itself is the convex hull of
the set of its extreme points. This theorem was generalized in several directions,
e.g. regarding unbounded sets by Klee (see [12,296,297,410]), subsets of spaces
of infinite dimension by Krein and Milman (see [319]), etc.; today it is common
to call it in general the Krein–Milman theorem for convex sets; see, e.g., Sect. 4
in [325], Sect. 1.4 in [453], and Sect. 2.6 in [538]. Klee in [299], Martini and
Wenzel in [370,371], and Hansen and Martini in [255] extended these results
to starshaped sets (see also [44,256]). In [371] the following statements are
proved.

Theorem 42. Let S be a compact starshaped set, and K be a nonempty compact
convex subset of ker S. Then the set S0 of extreme points of S modulo K
satisfies the condition

S = τK (S0) = K ∪ σK (S0) .

Moreover, if S1 ⊂ S\K satisfies τK (S1) = S, then S0 ⊂ S1. In other
words, S1 = S0 is the uniquely determined minimal subset of S\K satisfy-
ing τK (S1) = S.

For closed convex sets, the 0-extreme points are just the extreme points.
Recall that if C ⊂ R

d is a closed convex set, a point p ∈ C is an extreme point
of C if and only if there are no points x, y ∈ C such that p ∈ ]x : y[. This is
equivalent to the statement that C\ {p} is convex. In this sense we may say
that extreme points are dispensable. This view was extended to starshaped
sets by Klee [300] and, independently with a different approach and without
limiting to the case of compact sets, by Hansen and Martini [255]. In the latter
paper the authors say that a point p of a closed starshaped set S is dispensable
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if ker (S\ {p}) = (ker S) \ {p}. Roughly speaking, this means that dropping the
point p from the set does not change its kernel. The set of dispensable points
of S is denoted by dispS. Obviously, dispS ⊂ bdS. Points of S that are not
dispensable are called indispensable. It is clear that p ∈ S is indispensable if
and only if there exist points x ∈ ker S and y ∈ S such that p ∈ ]x : y[.

In turn, the following theorems were proved in [255].

Theorem 43. Let S be a closed starshaped set with ker S compact. Then

S = (kerS + reS) ∪ [kerS : dispS] .

Theorem 44. Let S be a closed starshaped set with ker S compact. Then

S = (kerS + rcS) ∪ [conv (ext ker S) : dispS] .

For compact starshaped sets they proved

Theorem 45. Let S be a compact starshaped set. Then
(a) S = [conv(ext kerS) : disp S];
(b) if f is a real linear functional, then there exists a point x ∈ ext ker S ∪

disp S such that

f(x) = sup
y∈S

f(y).

If S is a compact starshaped set, its set of dispensable points is a covering
star generator of kerS. This can be expressed as follows.

Theorem 46. Let S be a compact starshaped set. Then

S =
⋃

x∈disp S

st (x : S) ,

ker S =
⋂

x∈disp S

st (x : S) .

11. Dimension of the kernel of a starshaped set

If C ⊂ R
d is a set, the dimension of C, denoted dim C, is by definition

the dimension of affC [527]. It is obvious that if C is convex, this dimen-
sion coincides with the dimension of the (unique) convex component of C. For
starshaped sets the situation is completely different. Consider the following
example in R

3:

S =
{

(ξ, ν, ζ) : ζ ≥
(
ξ2 + ν2

)1/2
}

∪ {(ξ, ν, ζ) : ζ = 0}
∪ {(ξ, ν, ζ) : ξ = ν = 0, ζ ≤ 0} .

Then dim(affS) = 3 and ker S = {(0, 0, 0)}, whence dim ker S = 0, but S has
convex components of dimensions 1, 2 or 3. It is obvious that if S has more
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than one point, then every convex component of S has dimension greater than
0.

Answering a question in Valentine [527], Larman [322] found a condition
which ensures that the kernel of a compact set S consists of exactly one point.
For a compact set S and subsets A, B, and C of R

d (or of a topological vector
space E) of dimension at least two, he denoted by (A,B,C) the set of those
points of S which can be seen, via S, from a triad of points a, b, and c, with
a ∈ A, b ∈ B, and c ∈ C. He said that S has property P if, whenever A is a
line segment and B, C are points of S which are not collinear with any point
of A, then the set (A.B,C) has linear dimension at most one, and degenerates
to a single point whenever A is a point. He proved

Theorem 47. Let S be a compact subset, of dimension at least two, of a topo-
logical linear space L. If S has property P, then ker S consists of exactly one
point.

Several authors studied bounds for the dimension of the kernel. A general
result was found by Toranzos (see [507]). He said that a starshaped set S has
the property (αk) if every affinely independent (k + 2)-tuple P ⊂ S satisfies
the condition dim st (P : S) ≤ k − 1; see also [189,258]. Toranzos [507] proved

Theorem 48. If S has the property (αk) and dim S > k, then dim (kerS) ≤
k − 1.

Kenelly et al. [289] found an upper bound for the dimension of the kernel
in terms of convex components. They called a collection of intersecting flats
intersectionally independent if none of the flats contains the intersection of the
remaining flats. By definition, a single flat is taken to be an intersectionally
independent collection. A collection of sets is called intersectionally indepen-
dent if the collection of containing flats is intersectionally independent.

Theorem 49. Let S ⊂ R
d be a set. If S contains k intersectionally independent

convex components Si, 1 ≤ i ≤ k, then dim ker S ≤ min (dim Si) − k + 1.

Stavrakas [475] studied the question by means of the set lncS of points of
local nonconvexity of S. He proved

Theorem 50. Let S be a compact connected subset of R
d. Then

dim kerS ≥ k for 0 ≤ k ≤ d

if and only if there exists a flat H, with dim H = k, and a point x ∈
relint (H ∩ S) such that given y ∈ lnc S, there exist open sets Ny and Ny

x

such that Ny
x ∩ S ∩ H sees Ny ∩ S.

On the same lines Toranzos and Forte Cunto [512] proved

Theorem 51. Let S be a closed connected subset of a real, locally convex, linear
topological space E such that lnc S is compact and nonempty, and let α be
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a cardinal, finite or infinite. Then dim kerS ≥ α if and only if there exist
an α-dimensional flat H and a point x ∈ relint (H ∩ S) such that, for every
y ∈ lnc S, there exists a neighborhood Uy of the origin satisfying the condition

(x + Uy) ∩ H ∩ S ⊂ nova (y : S) .

In [78] the results of [77] on (d − 2)-dimensional kernels were extended
to subsets S of linear topological spaces, where additional properties like the
following ones are taken into consideration: the maximal contained convex set
has dimension d − 1, and the intersection of the affine hull of the kernel of S
with S is the kernel itself.

Using a modified type of visibility (replacing contained segments by con-
tained rays), the author of [126] proved certain theorems combining Kras-
nosel’skĭı’s theorem and statements on the dimension of the respective kernel.

12. Admissible kernels of starshaped sets

A natural question, posed by L. Fejes Toth, is whether any convex set is the
kernel of some non-convex starshaped set. de Bruijn and Post [417] answered
this question for the planar case, and Klee [301] gave a general answer with

Theorem 52. A closed convex subset K of R
d is the kernel of a non-convex

starshaped set whenever K contains no hyperplane.

Independently, Breen solved the problem for compact sets in [84].

13. Radial functions of starshaped sets

The notion of radial function of starshaped sets is widely discussed in Sects.
0.7, 0.8 and 0.9 of Gardner’s monograph [204]; various properties (such as the
known polar relation to support functions, or differentiability conditions) and
related notions (like radial linear combination and radial metric) are given
there in a comprehensive way, also concerning the more general definition of
starshapedness given in Sect. 0.7 of this monograph.

If S is a closed starshaped set, m ∈ ker S and u ∈ Sd−1, then there are two
possibilities: (i) there exists a last point p of m + Δu in S, (ii) m + Δu ⊂ S.
In the first case, let

ρm,S(u) = sup {λ ∈ R : m + λu ∈ S} .

The radial function of S at m is the function rm,S : Sd−1 → R+ defined by

rm,S(u) =
{

ρm,S(u) if m + Δu � S
+∞ if m + Δu ⊆ S

.
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As an immediate consequence of this definition we have

rm,S > 0 if and only if m ∈ intS.

Also, by the linear accesssibility theorem, if S is compact and m ∈ int kerS,
then rm,S is a Lipschitz function, whence it is continuous. Other relations
between the structure of S and the continuity of the radial function are:

• If rm,S is continuous, then S is a compact hunk (star body).
• If S is strongly starshaped at 0, then r0,S is continuous. For the case that,

in addition, S is compact, Klain [294] proved that the volume V (S) can
be expressed by the formula

V (S) =
1
d

∫

Sd−1

(r0,S)d
dσ,

where σ is the (d − 1)-dimensional spherical Lebesgue measure.

The role of the radial function at 0 of a set S starshaped at 0 is analogous
to that of the support function for a convex set. In particular, r0,S determines
S uniquely.

Properties of the radial function are different, depending on whether m ∈
int kerS or m /∈ int kerS holds (see [257,506]). For the non-compact case see
also [392,429,431,453]. If S is compact and m ∈ int ker S, then rm,S is a
Lipschitz function, as noted before. More precisely: let r < R be two positive

real numbers, k = R
[
(R/r)2 − 1

]1/2

and, for u1, u2 ∈ Sd−1, let d (u1, u2) be
the angle between Δu1 and Δu2 . Toranzos [506] proved the following statement.

Theorem 53. If S is a compact starshaped set such that 0 ∈ int ker S and
rB ⊂ S ⊂ RB, then for every u1, u2 ∈ Sd−1

|r0,S(u1) − r0,S(u2)| ≤ kd(u1, u2)

holds, and k is the best Lipschitz constant valid for all such sets.

This result applies with obvious changes to rm,S if S is a compact star-
shaped set with int ker S �= ∅ and m ∈ int ker S. If m /∈ int kerS, the prop-
erties of rm,S are related to the structure of bdS. Hansen and Martini [257]
proved

Theorem 54. Let S �= R
d be a closed starshaped set and m ∈ bd kerS. Then

the radial function rm,S of S at m is upper semicontinuous at every u ∈ Sd−1

and fails to be continuous at such a point u if and only if the half-line m+Δu

contains at least two indispensable boundary points of S.

For the definition of dispensable and indispensable points of a starshaped
set see Sect. 10.
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Corollary 55. Let S �= R
d be a closed starshaped set. If dispS = bdS (that

is, S has no indispensable boundary points), then all radial functions of S are
continuous.

Theorem 56. Let S �= R
d be a closed starshaped set such that int ker S �= ∅.

Then for each m ∈ bd ker S there exists an open hemisphere Sd−1
m of Sd−1

such that rm,S

(
Sd−1

m

)
= 0 if and only if S is convex.

Corollary 57. Let S be a closed starshaped set such that int kerS �= ∅. Then
S is non-convex if and only if there exists a point m ∈ bd ker S such that the
set

{
u ∈ Sd−1 : rm(u) �= 0

}
contains a closed hemisphere of Sd−1.

For the case of Δ-starshaped sets, a more general notion of radial function
was introduced by Gardner [204]: for a nonempty compact set A which is
Δ-starshaped at 0 and u ∈ Sd−1, he introduced

ρA(u) = sup{λ : λu ∈ A}.

This notion coincides with the radial function at 0 of the starshaped set [0 : A].

Definition 58. The reciprocal of the radial function at 0 is called the gauge
function gA : R

d\{0} → R+, defined for x ∈ R
d\{0} by

gA(x) = inf {λ : x ∈ λA} .

Using their gauge functions, in [361] d-dimensional starshaped sets are
investigated by means of their images in the space of all positively homo-
geneous continuous functionals, considered over the d-dimensional Euclidean
space.

We now mention results of a more applied nature, namely in the sense that
radial functions are taken as a tool to solve (mainly geometric) problems.

We start with questions from the field of geometric tomography, dealing
with the retrieval of information on geometric objects from data concerning
their projections onto and sections by lower dimensional flats. Further results
from geometric tomography (not described in this section), e.g. related to
the Busemann–Petty problem and the notions of intersection body, cross-
section body, as well as centroid body , are presented in Sect. 17 below. Since
we discuss such problems concerning shapes and also measures of sections of
starshaped sets by flats, the reader should consult, as starting points for our
respective discussions here (and also in Sect. 17 below), Chapters 6, 7, 8, and
9 of Gardner’s monograph [204]. An old result of Funk states that any star-
shaped body S having continuous radial function with respect to the origin 0
and centered at 0 is uniquely determined by its i-th section function (i.e., by
the i-dimensional volumes of its sections with all i-dimensional subspaces, for
some i from 1 to d − 1). This is related to Lutwak’s dual Brunn–Minkowski
theory (see [336,337]), and the authors of [210] continued these investigations.
They showed that, up to reflection at 0, no starshaped body S with contin-
uous radial function, but without centeredness at 0, is determined in such a
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way. In addition, they proved also that the set of starshaped bodies that are
determined (up to reflection at the origin) in this way is nowhere dense in
their own family. In particular, also for i = d − 1 the verified non-uniqueness
holds if S is not centered at o. Inspired by this, in [55] it was proved that a
compact body starshaped with respect to the origin is uniquely determined by
the (d − 1)-volumes and the centroids of its hyperplane sections through the
origin. This result is mainly based on the proof that if the volumes and cen-
troid functions of two convex bodies are close, then their radial functions are
also close, where closeness is defined in terms of the L2 norm. Funk’s section
theorem can also be read like this: if K and L are origin-centered star bodies
in Euclidean d-space whose i-dimensional central sections (for some i between
1 and d−1) all have equal volume, then K = L. Extending this, the authors of
[343] verified the same result under the assumption that K is origin-centered
and L is only starshaped with respect to the origin. The related paper [227] also
considers origin-centered star bodies in R

d and their radial functions. Let S be
such a body, and let H denote an open connected set of hyperplanes through
the origin covering R

d. If for some H0 from H, S osculates a ball centered at
the origin to infinite order along H0, and S has constant cross-sectional areas
when intersected by hyperplanes from H, then S is that ball. These results are
then extended to give conditions under which two origin-centered star bod-
ies in d-space are equal (up to a set of measure zero). Also counterexamples
are constructed to show that the infinite order osculation condition cannot be
replaced by finite order conditions. Without the osculation hypothesis there
are counterexamples, and similar results were proved for areas of projections
(instead of section areas). The proofs are mainly based on properties of the
radial function of S, Radon transforms, as well as cosine transforms. Using
spherical harmonics, Groemer (see [229,231] and [230, Sect. 5.6]) studied sim-
ilar properties obtained with sections of star bodies with continuous radial
function, and he also derived related stability results; see also [224]. A def-
inition of star body which is more general than the usual one was given in
[211], see also Sect. 0.7 of [204] and our Sect. 4: the body should intersect
all lines through the star center in a line segment. With additional conditions
on the radial function, also more general than the usually considered ones, a
star body can even be disconnected. Numerous problems in the spirit of geo-
metric tomography, e.g. about central sections of such bodies S, are studied
in this setting. For example it is proved that if S is centrally symmetric and
all i-dimensional sections through the center have equal i-dimensional volume,
then S has to be a ball. On the other hand, the authors construct non-spherical
examples with concurrent sections of equal i-volumes. If S is such a body (not
centrally symmetric) with concurrent sections of constant i-volume for two
different values of i, then S is a centered ball. Further results in this direc-
tion, again for star bodies with continuous radial function, were obtained in
[210]. In [532] the radial function of two-dimensional starshaped sets having a
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uniform density function are used to answer tomographic questions on these
sets. In particular, it is shown that such an object is uniquely determined by
its parallel projections sampled over an angular range of 180 ◦ with a detector
that only covers an interior field-of-view, even if the density of the object is
not known.

There are various results on pairs of convex bodies with homothetic and
similar sections; the reader is referred to Sect. 7.1 of Gardner’s book [204].
A recent contribution in this direction regarding starshaped sets is [8]. In
this paper the authors show that starshaped sets of dimensions d ≥ 4 with
directly congruent sections coincide up to translation and some special orthog-
onal transformation.

The paper [144] contains a characterization of balls among smooth bounded
starshaped domains by the constancy of a function involving principal curva-
tures and the cut value of boundary points. This geometric result yields sev-
eral applications to various symmetry questions for PDE’s. The author of [375]
studied radial functions of compact sets in R

d starshaped with respect to the
origin, which are used to describe the starshaped attainability of a differential
inclusion; in this framework directional derivatives are investigated.

Petty [414] defined the boundary of a centroid body with respect to bounded
measurable sets S of positive measure via the loci of centroids of mass-
distributions in half-spaces, after symmetrizing S yielding a center z. It turns
out that if S is strictly starshaped relative to z, then it is uniquely deter-
mined by its centroid surface. In [245], the authors brought centroid bodies
into connection with the floating body problem. They studied planar bodies
S starshaped at the origin which float in equilibrium at every position and
have non-uniform density. Their boundary is parametrized by polar coordi-
nates, and the centroids of their boundary arcs and respective polar regions,
generated in half-planes bounded by lines through the origin, are also consid-
ered. It was shown that if the loci of these centroids are, in both cases, circles
centered at the origin, then S floats in equilibrium at every position. Further-
more, two characterizations of the Euclidean disc were obtained, namely for
the case when S is starshaped with respect to each of these centroids. Campi
[123] investigated the reconstruction of sets S in R

d, which are starshaped
with respect to the origin, given the volumes of the intersections of S with
half-spaces determined by (d − 1)-dimensional subspaces. Rubin [440] derived
an explicit inversion formula for the Radon-like transform that assigns to a
function on the unit sphere the integrals of that function over hemispheres
lying in lower-dimensional central cross-sections. The results are applied to
determining star bodies from the volumes of their central half-sections.

Now we will discuss some geometric inequalities related to starshapedness.
The Chernoff inequality, concerning the area and width function of planar
convex curves and characterizing the circle as extremal curve, was somewhat
dualized in [554]: Replacing some k-th order support function occuring in the
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more general Chernoff–Ou–Pan inequality by the dual k-order radial function,
a somewhat “dual” inequality for starshaped curves in the plane is obtained
which analogously contains the area of the enclosed region. Let D1, D2 be
two concentric disks, and let S be a compact, planar set included in D1 that is
starshaped with respect to all points of D2. Using radial functions, the authors
of [516] found a sharp upper bound on the perimeter of S.

In [30] a very general form of the isodiametric inequality for measurable
sets was obtained; the unit sphere of the linear space under consideration is the
boundary of a compact body which is starshaped with respect to the origin.

For a compact starshaped set S in R
d having the origin as interior point of

its kernel, the author of [536] derived the smallest Lipschitz constant for the
radial projection of the unit sphere of R

d on the boundary of S. (This naturally
continues the work of Toranzos [506].) He also found the least upper bound of
the upper outer surface area (in the sense of Minkowski) of the boundary of a
compact starshaped set contained in the unit ball and containing a concentric
ball in its kernel.

14. Sums, unions, and intersections of starshaped sets

We will start with theorems on several types of “addition of starshaped sets”.
As a consequence of Remark 1 (see [69]), we infer that if S1 and S2 are

starshaped, then so is S1 + S2 (see also [391]). The analogue of this result
for sets strongly starshaped at a and with closed Minkowski sum was proved
in [461]. Generally, the Minkowski sum of closed starshaped sets need not be
closed. For strongly starshaped sets Shveidel [461] proved the following

Theorem 59. Let S1 and S2 be closed sets strongly starshaped at 0. If there are
no a1, a2 and x �= 0 such that {a1 + tx : t ≥ 0} ⊂ S1 and {a2 + tx : t ≤ 0} ⊂
S2, then S1 + S2 is closed.

The assumption of strong starshapedness is essential in the above theorem.

Remark 60. The Minkowski sum of sets Δ-starshaped at a point a need not
be Δ-starshaped at a.

While the Minkowski addition has especially nice properties for compact
convex sets (e.g., the cancellation law is satisfied), for star bodies the so called
radial addition +̃ is more natural and is commonly used. It is defined by means
of radial functions as follows:

ρS1+̃S2
(u) := ρS1

(u) + ρS2
(u) for every u ∈ Sn−1.

It is easy to see that if S1 and S2 are star bodies, then S1+̃S2 is a star body.
Moreover,

S1+̃S2 ⊂ S2 + S2.
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For the radial sum of star bodies, Lutwak proved (in [337]) the following the-
orem, called the dual Brunn–Minkowski inequality, which is an analogue of
the Brunn–Minkowski inequality for convex bodies (compare with Sect. 6.1 in
[453]).

Theorem 61. Let S1 and S2 be star bodies in R
d. Let 0 ∈ ker Si and assume

that ρSi
is continuous on its support for i = 1, 2. Then

Vd(S1+̃S2)1/d ≤ Vd(S1)1/d + Vd(S2)1/d.

Equality holds if and only if either d = 1 or d ≥ 2 and S2 = λS1 for some
λ > 0.

We mention that this section is also related to Sect. 17 below. For a set S
and a hyperplane H, the Minkowski symmetral of S at H is the set S+T , where
T denotes the reflection of S at H. Clearly, S + T is symmetric with respect
to the hyperplane H. It is known that successive Minkowski symmetrizations
of compact, convex sets in different suitable directions yield a sequence of
sets that converges, in some sense, to the Euclidean ball. In [188] the authors
derived upper bounds for the number of Minkowski symmetrizations which
are necessary to transform a starshaped set in R

d into another one which, in
the Hausdorff metric, is arbitrarily close to the Euclidean ball. Further related
results given in [188] treat starshaped sets of given mean width. The paper
[531] contains a result on the interior of the Minkowski sum of two starshaped
sets compared with the Minkowski sum of their interiors.

Given two sets starshaped with respect to the origin, one can consider a
natural addition of points of both sets lying on the same ray emanating from
the origin. Based on this type of addition, Gardner [205] proved a dual Brunn–
Minkowski inequality, with equality iff these sets are homothets modulo a set
of measure zero.

Similarly, a “dual” of the Orlicz–Brunn–Minkowski theory (an important
extension of the classical Brunn–Minkowski theory) was developed. It is well
known that Orlicz spaces are Banach spaces of measurable functions which
generalize Lp spaces (for Lp spaces see our Sect. 17). In recent years, cer-
tain types of results on convexity and related fields were extended to Orlicz
spaces. In particular, the Orlicz–Brunn–Minkowski theory represents a gen-
eralization of the Lp-Brunn–Minkowski theory analogously to the way how
Orlicz spaces generalize Lp spaces, see our discussion of Lp intersection bod-
ies in Sect. 17 below. The Orlicz–Brunn–Minkowski theory was introduced in
[206,341] established the Orlicz–Brunn–Minkowski theory by defining the use-
ful notion of Orlicz addition; this paper contains many results on operations
between compact convex and compact starshaped sets. Independently, [541]
introduced the Orlicz addition of convex bodies containing the origin in their
interiors and obtained the Orlicz–Brunn–Minkowski inequality. In [281,561]
Orlicz dual mixed volumes and the harmonic Orlicz sum of star bodies were
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studied, yielding interesting properties of the Orlicz harmonic combination and
the harmonic Orlicz addition version of the Brunn–Minkowski inequality. The
dual theory of the Orlicz–Brunn–Minkowski theory, concerning star bodies,
was introduced in [208,562], together with the key notion of Orlicz radial sum
of two star bodies. This is based on their radial functions and has, for example,
the Lp harmonic radial sum as subcase. With this tool, the authors established
the dual Orlicz–Minkowski inequality and the dual Orlicz–Brunn–Minkowski
inequality for star bodies. Moreover, the equivalence between these two impor-
tant inequalities was also shown. The authors of [207] introduced more general
notions of volume and curvature of star bodies that include many previously
considered types of dual mixed volumes and dual curvature types, in partic-
ular also a new general dual Orlicz-type curvature measure. They established
general variational formulas for such general volumes of two Orlicz-type lin-
ear combinations. One of them yields a new dual Orlicz–Brunn–Minkowski
inequality, dual Orlicz–Minkowski-type inequalities and uniqueness results for
star bodies.

We shall now deal with unions and intersections of starshaped sets. In
general, neither the union nor the intersection of starshaped sets is starshaped.
However, the following statements (which are Helly-type theorems) are true;
see [54].

Theorem 62. Let St be a starshaped compact set in R
d, for t ∈ T , where the

cardinality card T ≥ d+1. Assume that, for every subfamily {St : t ∈ T0} with
card T0 ≤ d + 1, the set

⋂
t∈T0

St is starshaped. Then
⋂

t∈T St is starshaped.

The dual theorem holds, too.

Theorem 63. Let St be a starshaped compact set in R
d, for t ∈ T , where card

T ≥ d+1. Assume that, for every subfamily {St : t ∈ T0} with card T0 ≤ d+1,
the set

⋃
t∈T0

St is starshaped. Then
⋃

t∈T St is starshaped.

Remark 64. The intersection of a decreasing sequence of compact starshaped
subsets of R

d is starshaped (see [35,125]). But the union of an increasing
sequence of starshaped subsets of R

d need not be starshaped (see [259]).

In [29] the authors considered nested (decreasing and increasing) sequences
of starshaped sets in Banach spaces. The intersection, if decreasing, and the
closure of the union, if increasing, were studied in view of the preservation
of these properties, and related results for starshaped sets in reflexive spaces
were obtained.

Let us now concentrate on families of sets starshaped at a point. The fol-
lowing statement is known and obvious: if St is starshaped at a for every t ∈ T ,
then

⋃
t∈T St and

⋂
t∈T St are starshaped at a.

Analogous results are valid for finite intersections and finite unions of
strongly starshaped sets and for arbitrary intersections and finite unions of
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Δ-starshaped sets (compare [442, Proposition 2.3], [69, 2.9], and [390, Propo-
sition 14.1.7]). Moreover, let Si be bodies starshaped at 0, for i = 1, . . . , k, and
let S =

⋃k
i=1 Si and S0 =

⋂k
i=1 Si. Then S and S0 are bodies starshaped at 0,

and for every u ∈ Sd−1

ρS(u) = max
i=1,...,k

ρSi
(u), ρS0

(u) = min
i=1,...,k

ρSi
(u)

(see [390]).
The following problem, closely related to the classical ”Art Gallery Prob-

lem” stated by Victor Klee many years ago (cf. the discussion in our Sect. 19,
the part on discrete and computational geometry), was open for a long time
(see [514]).

Problem 65. What geometric conditions are sufficient, for a set X ⊂ R
d, to

be a finite union of k starshaped subsets?

Partial solutions, for various k and d, were given by several authors, in
particular for k = 2 and arbitrary d (see [102,303]). Some results in the plane
can be found in [94,95,103,111], and solutions for arbitrary k and d were given
in [514].

The paper [100] contains characterizations of a compact set S in R
d that

is a finite union of starshaped sets, using sequences of certain compact sets
converging to S.

Hare and Kenelly [259] showed that the intersection of the maximal (with
respect to inclusion) starshaped subsets of a compact, simply connected set in
the plane is starshaped or empty. In [499] it was shown that if the intersection I
of all maximally inclusive starshaped subsets of a compact set M is nonempty,
then there exists a maximally inclusive star-like subset S of M whose kernel
is contained in the kernel of I. Continuing this, the same author proved in
[503] the following (we use the same notation): Let T be a triangle with the
property that if at least two of its vertices are contained in I, then all its edges
are contained in the given compact set M . Then I is starshaped or empty
iff any such triangle T lies in M . From this, the result of Hare and Kenelly
[259] follows. Analogous results for planar Ln-starshaped sets M (having a
point x such that any point can be joined with x by a broken line within
M , which consists of at most n segments), and c- and d-starshaped sets (see
our Sect. 6) are proved in [498,500], respectively. In the latter paper, also
sufficient conditions are given under which a closed set is the union of two of
its c-starshaped or d-starshaped subsets. And in [502] sufficient conditions for
finite unions of d-convex, d-starshaped, and Ln-starshaped sets are given.

A compact set S has property P if there is a line l such that each triple
of points x, y, z in S determines a point p on l for which at least two of the
segments [x : p], [y : p], and [z : p] are from S. If S is the union of two
starshaped sets, then it has property P . Valentine [527, p. 178, problem 6.6]
suggested that property P might characterize unions of two starshaped sets,
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but Larman [323] found a counterexample and gave an additional condition
yielding the wanted characterization (see also Koch and Marr [303]).

In [86,111] unions of two starshaped sets in the plane are characterized
with the help of the notion of clear visibility; some results fail when “clear
visibility” is replaced by usual “visibility”. Also the paper [505], dealing with
d-starshapedness, is related to this type of results.

A compact set S in the plane is called staircase connected if every two points
from S can be connected by an x-monotone and y-monotone polygonal path
whose sides are all parallel to the coordinate axes. In [344], staircase analogues
of stars and kernels were introduced and investigated, and in [345] it was proved
that if the so-called staircase k-kernel (this k describes minimal edge numbers
of connecting staircase paths) is not empty, then it can be expressed as the
intersection of a covering family of maximal subsets of staircase diameter k of
S.

Starshaped and so-called co-starshaped sets can be represented as intersec-
tions of finite unions of closed half-spaces and are essential in optimization
theory. Shveidel [463] derived conditions under which sets are starshaped or
(strongly) co-starshaped: e.g., a finite union of closed half-spaces is strongly
co-starshaped if and only if it differs from R

d. He also obtained properties of
associated kernels or co-kernels, conditions for finite unions of starshaped sets
to be starshaped, and convex sets to be co-starshaped, as well as a necessary
and sufficient condition for a polyhedral set to be co-starshaped.

Breen [99] examines how intersections of a given set S with various flats
will yield conclusions about the starshapedness of S. A sufficient condition for
a compact set S to be a union of m starshaped sets is derived, and this yields
the following characterization of compact starshaped sets: Let S be a compact
set in Euclidean d-space, p ∈ S be fixed, and k be a fixed integer between 1
and d. Then S is starshaped with p as a point from its kernel if and only if, for
every k-dimensional flat F passing through p, the intersection of S and F is
starshaped. A little bit different is the following result which, however, is also
based on intersections with flats. Namely, Tamássy [489] derived (generalizing
a result of P. Funk) the following characterization of balls in 3-space among
all starshaped bodies C centered at the origin and having smooth boundary.
Let ε > 0, Q be a fixed plane, and Q∗ be the set of planes passing through the
origin whose normals make an angle less than ε with Q. If the intersection of
C with each plane from Q∗ has area π, then C is the unit ball.

15. Spaces of starshaped sets

Several metrics have been studied on the family X of starshaped compact
subsets of R

d. Of course, since X consists of nonempty compact subsets of R
d,

one can use the Hausdorff metric ρH to measure distances in this family. For
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(X , ρH), Hirose proved a counterpart of the Blaschke Selection Theorem (see
[265]). The same result (in terms of gauge functions) was obtained by Beer (see
[33]), and [161] contains another approach. In [508] it was proved that compact
starshaped sets can be uniformly approximated (in the sense of the Hausdorff
metric) by starshaped polytopes and by starshaped smooth sets. A set S in R

d

is said to be m-starshaped if there is a subset M of S with non-empty interior
such that each pair of points x ∈ M , y ∈ S can be joined by a polygonal line
in S having at most m segments. In [171] a convergence theorem of Blaschke
type is proved for m-starshaped sets. Inspired by these results, Spiegel [473]
showed the completeness of the space of certain more general compact sets, in
the sense of the Hausdorff metric.

Another well known and frequently used metric is the radial metric δ (see,
e.g., [470], Sect. 0.7 in [204], and Sect. 14.3 in [388]): if A1, A2 are starshaped
with respect to 0, then

δ(A1, A2) = sup
u∈Sn−1

|ρA1
(u) − ρA2

(u)|.

For subsets of R
d starshaped at 0, the radial metric is topologically stronger

than the Hausdorff metric, i.e., any sequence convergent with respect to the
radial metric δ is convergent with respect to the Hausdorff metric ρH , but the
converse implication does not generally hold. However, the following result was
proved in [469], where, for any r > 0,

Sd(r) := {A ∈ Sd | rBd ⊂ ker A}.

Theorem 66. For any r > 0, the radial metric and the Hausdorff metric are
topologically equivalent in Sd(r).

Since a disadvantage of the radial metric is its (direct or indirect) depen-
dence on 0, some other metrics for the family Sd were introduced in [390,469].
The following metric δst was defined in [390]: for A1, A2 ∈ Sd, let

�δ(A1, A2) := sup
x1∈kerA1

inf
x2∈kerA2

δ(A1 − x1, A2 − x2)

and

δst(A1, A2) := max{�δ(A1, A2),�δ(A2, A1)} + ρH(ker A1, ker A2).

The function δst is a metric on Sd (see [388, Theorem 14.4.2]). It is called the
star metric.

Herburt [262] showed that the operation of taking convex hulls is, for some
classes of compact starshaped sets in R

d, not (Lipschitz) continuous with
respect to the radial metric and the star metric.

Closely related to these metrics and interesting for applications in non-
smooth optimization are the investigations on spaces of starshaped sets pre-
sented in [445,446]. Based on the isomorphism between the space of starshaped
sets considered there (see again [445]) and the space of continuous, positively
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homogeneous real-valued functions, in [404] the starshaped differential of a
directionally differentiable function was defined. The authors obtained formu-
lae for starshaped differentials of pointwise maxima and minima of a finite
number of directionally differentiable functions, investigated compositions of
them, and derived the respective mean-value theorem.

Quasidifferentials are the topic of the monograph [157]. In the paper [558]
notions from quasidifferential analysis are combined with starshapedness. A
quasidifferential of a quasidifferential function over x ∈ R

d consists of two
compact sets, and the authors successfully introduced the notion of star-
differential represented by a pair of starshaped sets.

Sójka introduced and studied other metrics for families of star bodies in
[470]. He used selectors for kernels to define these new metrics. Let us recall
that a selector for the family Kn is a function φ : Kn → R

n such that φ(A) ∈ A
for every A ∈ Kn. Let φ be a selector for Kn. Then, for A1, A2 ∈ Sn, the
functions δφ and δφ ker are defined as follows:

δφ(A1, A2) := δ(A1 − φ(ker A1), A2 − φ(ker A2)) + ||φ(ker A1) − φ(ker A2)||,
δφ ker(A1, A2) := δ(A1 − φ(ker A1), A2 − φ(ker A2)) + ρH(ker A1, ker A2).

These two functions are metrics (see [470, Proposition 4.3]). Moreover,
Sójka introduced one more metric, δL

φ , defined in terms of selectors and the
Lipschitz constant of the difference of radial functions of two star bodies.

Only for the metric ρH is the correspoding hyperspace separable. However,
the subclass of star bodies whose kernels have nonempty interior is separable
for the metrics ρH , δ, δφ, and δφ ker.

Several results concerning operations on starshaped sets are known, in par-
ticular on their continuity we have:

(i) The function ker : Sd → Kd is continuous with respect to δst and δφ ker,
but it is not continuous with respect to ρH , δ, δφ, δL

φ . But for the subclass
of star bodies whose kernel has nonempty interior the function ker is
continuous also with respect to the metric δL

φ (see [470]).
(ii) As is well known, the function conv is continuous on the class Sd with the

Hausdorff metric. However, as it was proved in [263], it is not continuous
for the radial metric and for the star metric. But for the subclass con-
sisting of star bodies with kernels contained in the interior, the function
conv is continuous with respect to the radial metric (see [263]).

Sójka [469] characterized homeomorphic embeddings of R
d into itself pre-

serving the class of bodies starshaped at 0.
To finish this section, let us mention some papers concerning generic proper-

ties of a hyperspace of compact starshaped sets. In [237,550,551] some generic
properties of compact starshaped sets with respect to the Hausdorff metric
were derived. For instance, most compact starshaped sets X are nowhere dense,
have a one-point kernel a, and have a dense set of directions determined by
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a segment [a : x], for x ∈ X. Similar questions for the metrics ρH and δ are
considered in [393].

16. Selectors for star bodies

As mentioned in the preceding section, selectors for Kd
0 may be used to define

a new metric for the hyperspace Sd of star bodies in R
d (see [470]). On the

other hand, it is natural to extend any selector s : Kd
0 → R

d to a selector for
Sd, that is, to a function s̄ : Sd → R

d satisfying the condition s̄(A) ∈ ker A
for every A ∈ Sd. Moszyńska (see [390]) defined, for any selector s : Kd → R

d,
the extension s̄ : Sd → R

d as follows: for any A ∈ Sd

s̄(A) := ξkerA(s(convA)),

where ξkerA is the metric projection on ker A (i.e., it is ”the nearest point
map”; compare with Theorem 5.1 in [390]).

Another idea is to extend selectors for Kd
0 over some class of star bodies,

namely, over the class T d ⊂ Sd whose members satisfy the following condition:
there exists a subset S0 of the unit sphere Sd−1 such that

• S0 has spherical measure zero,
• the function kerA � x �→ ρA−x(u) is continuous for u ∈ Sd−1\S0.

For properties of T d see Proposition 2.5 in [390]. Another family of selectors
for T d, called the radial center map, is discussed in the same paper.

17. Star duality, intersection bodies, and related topics

This part of our paper is also related to some topics discussed in Sects. 13
and 14. As the classical Brunn–Minkowski theory (see [453]) is also connected
with projections of convex bodies, the dual Brunn–Minkowski theory (cf. the
early works [336,337]) mainly concerns intersections with subspaces, replacing
convex bodies with starshaped sets, support functions with radial functions,
mixed volumes with dual mixed volumes, and also showing the connections
between projection bodies and intersection bodies. Especially we underline
that the notion of dual mixed volume (see again [336,337] as well as “Appendix
A” in Gardner’s book [204]) presents an important tool for the development of
the dual Brunn–Minkowski theory and the theory of intersection bodies. Thus,
in the dual Brunn–Minkowski theory one usually works with starshaped bodies
in R

d having (interior points and) continuous radial functions with respect to
the origin; these sets are endowed with the Hausdorff topology induced by
the uniform convergence for radial functions. As already mentioned (see Sect.
13), in [211] this theory was successfully extended to a larger class of sets,
but is still based on starshapedness. Since all these, and many more recent,
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developments reflect a deeper type of duality, we put duality and intersection
bodies in the same section. Thus, let us now concentrate on ”star counterparts”
of two notions that are well known for convex bodies: the polar dual, or polar,
of a convex body (or of an arbitrary nonempty set), and the projection body of
a convex body.

First let us consider polar duality, or polarity. For the case of convex bodies
we refer to Sect. 1.6 of [453] and Chapter 13 of [388]. For the general case, if
A ⊂ R

d is a nonempty set, the polar to A is the set A∗ defined by the formula

A∗ := {x ∈ R
d : ∀a ∈ A x ◦ a ≤ 1},

where ◦ is the scalar product in R
d (see [388, Definition 13.2.1]). The function

A �→ A∗ is called polar duality or polarity.
Let us mention basic properties of polarity for convex bodies with 0 in their

interior.
• If A ∈ Kd

0 and 0 ∈ intA, then A∗∗ = A, i.e., polarity is an involution.
• Polarity restricted to convex bodies with 0 in their interior is continuous

with respect to ρH and satisfies the condition

hA =
1

ρA

,

where hA is the support function of the convex body A and ρA is its
radial function.

The “star counterpart” of polarity is the following.
Let Sn

+ be the class of star bodies in R
d with 0 in the kernel, and let

i : R
d\{0} → R

d\{0} be the inversion with respect to the unit sphere Sd−1:

i(x) :=
x

‖x‖2 .

Then, for every A ∈ Sd
+, the star dual of A is defined by the formula

Ao := cl(Rd\i(A))

(compare Definition 3.2 in [389]).
According to Proposition 3.3 in [389], for any star body A with 0 in its

interior

ρAo(u) =
1

ρA(u)
, for every u ∈ Sd−1.

The star duality A �→ Ao is an involution that reverses inclusion (see [388],
15.4.3, or Theorem 3.4 in [389]). Its relations to polar duality are the following:
for any A ∈ Kn with 0 ∈ intA,

• A∗ ⊂ Ao,
• Ao = A∗ if and only if A = αBd for some α > 0 (where Bd is the unit

ball).
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Remark 67. Let us note that in [389] the approach is categorical, while here
(as it was done also in [388]) we restrict our considerations to objects only.

As it was said at the beginning of this section, the second “star counterpart”
that we are going to recall is the notion of projection body of a convex body
(see Chapter 4 of [204], Sects. 5.3 and 7.4 of [453], and Sect. 15.2 of [388]).

For any convex body A in R
d, its projection body ΠA is the convex body

defined by the condition

∀u ∈ Sd−1, h(ΠA, u) = Vd−1(πu⊥(A)),

where Vd−1(πu⊥(A)) denotes the (d − 1)-volume of the orthogonal projection
of A onto a hyperplane with u as normal vector. In 1964, Shephard asked
the following question, usually referred to as the Shephard problem (compare
[337]). Is it true for any two convex bodies A,B in R

d, both symmetric with
respect to 0, that if for every hyperplane H

Vd−1(πH(A)) < Vd−1(πH(B)),

then also Vd(A) < Vd(B)?
In 1967, Petty and Schneider (see, e.g., [454]) independently proved that

the implication is not generally true, but that it is true under the assumption
that B is a projection body.

We are interested in the notion of intersection body of a star body, the ”star
counterpart” of the notion of projection body. It was introduced by Lutwak in
[337] when studying the class Sd

1 of star bodies with 0 in the kernel and the
radial function being continuous.

For any A ∈ Sd
1 , its intersection body, IA, is the star body with 0 in the

kernel and radial function defined by the formula

ρIA(u) := Vd−1(A ∩ u⊥) for every u ∈ Sd−1

(see 15.3.1 in [388]).
In view of 15.3.2 in [388],

A ∈ Sd
1 ⇐⇒ IA ∈ Sd

1 .

In 1956, Busemann and Petty asked the following question, usually referred
to as the Busemann–Petty problem (see [120], where one can also find nine
further related problems, all of them still unsettled).

Is it true for any two convex bodies A and B, both centered at 0, that if
for every hyperplane H � 0

Vd−1(A ∩ H) ≤ Vd−1(B ∩ H),

then also Vd(A) ≤ Vd(B)?
Lutwak proved that the answer to this question is generally negative (see

[337]), but that it is positive under the assumption that A is the intersection
body of a star body (see also [388, Theorem 15.3.5]). More precisely, Lutwak
[337] observed that, in R

d, the Busemann–Petty problem has a positive answer
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iff every centrally symmetric convex body is an intersection body, meaning that
its radial function is the spherical Radon transform of a nonnegative measure
on the unit sphere. The general answers to the Busemann–Petty problem (neg-
ative for all d > 3, and otherwise positive) were first given by different authors
in several steps, with different methods and fascinating ideas (see [203,556],
and the references there). Furthermore, the Busemann–Petty problem could
be reduced to that of the non-existence of certain intersection bodies, see, e.g.,
[202,556]. Koldobsky [304] proved that a symmetric star body is an intersec-
tion body iff its radial function is a positive definite distribution on R

d. Based
on this, the authors of [209] derived a formula connecting the derivatives of
parallel section functions of a symmetric star body S in R

d with the Fourier
transform of powers of the radial function of S. This made it possible to get
a unified analytical approach to the Busemann–Petty problem, also clearly
explaining the reasons for special situations in certain dimensions. Another
unified approach to the (affirmative part of the) Busemann–Petty problem,
namely via spherical harmonics, was given in [305], and meanwhile this prob-
lem is also studied in spherical and hyperbolic spaces (see [264,547]). There are
many further extensions and generalizations of the Busemann–Petty problem
which also go beyond the scope of our survey. However, for tools and methods
which are extremely useful for solving problems of the type discussed here the
reader should consult the monographs [307,310] as well as the exposition [306],
and important further papers cited therein. These publications also show the
power of Fourier transforms and harmonic analysis for studying sections of
star bodies; in [308] related stability problems are presented.

The study of intersection bodies (of convex bodies and starshaped bodies)
is based on radial functions and the notion of starshapedness, and some of
their properties are nicely discussed and presented in Chapter 8 of Gardner’s
monograph [204], see also Chapter 10 of Schneider’s monograph [453]. They
are closely related to Busemann’s theorem (establishing their convexity for
given convex bodies centered at the origin, see Sect. 8.1 from [204]) and the
Busemann–Petty problem (see again Chapter 8 of [204]). Intersection bodies
also play an essential role in Minkowski geometry (i.e., in the geometry of
finite dimensional real Banach spaces): the isoperimetrix of a Minkowski space
is, when the Busemann definition of area is used, the polar of the intersec-
tion body of its unit ball, clearly centered at the origin (and for the Holmes–
Thompson definition of area, “dual” projection bodies play a similar role, since
the isoperimetrix then is the projection body of the polar of the unit ball). A
broad representation of this application is given in Chapter 5 of [492]. Further
geometric properties and applications of intersection bodies, which also help
to understand the “dual” role that they play with respect to projection bodies
(i.e., the class of zonoids centered at the origin), can be found in the follow-
ing papers and the references given therein. Inspired by Koldobsky’s result
that the cross polytope is an intersection body, Zhang [557] showed that no
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origin-symmetric convex polytope in R
d (d > 3) is the intersection body of a

star body. The same author gave interesting charactzerizations of intersection
bodies via dual mixed volumes, see [555]. Interesting relationships between
the notion of star duality and that of intersection body can be found in [389].
In [222] the authors describe intersection bodies via functional analysis. They
characterize a convex cone of a locally convex Hausdorff topological vector
space by a dense subset of the dual space. The class of intersection bodies is
identified with a closed convex cone of the dual space of even signed measures
on the unit sphere. By using the dense set of differences of continuous positive
functions, intersection bodies are then characterized in terms of inequalities
involving dual mixed volumes. And in [223] the following is shown: A star body
having continuous radial function with respect to its center, the origin, is an
intersection body iff it is the limit of radial sums of ellipsoidal bodies in the
topology of uniform convergence of radial functions over the unit sphere; for
this characterization an extended definition of intersection bodies is needed.
In [228] also star bodies in R

d are studied using Radon transforms on Grass-
mann manifolds, cosine transforms on the unit sphere, and convolutions on the
rotation group of R

d. Dual mixed volumes are used to characterize generalized
intersection bodies. Further extensions of intersection bodies concern the con-
cepts of mixed intersection bodies (created by finite families of star bodies, see
[333,560]) and complex intersection bodies (i.e., their analogues constructed
in complex vector spaces, cf. [309]). Finally for this part, we repeat that the
important tool of dual mixed volumes is nicely discussed in “Appendix A” of
Gardner’s book [204].

The notion of intersection bodies was extended in many directions, e.g.,
concerning so-called mixed intersection bodies and (non-symmetric) Lp inter-
section bodies. (It is well known that Lp spaces are function spaces defined
by using a natural generalization of the lp-norm for finite-dimensional vector
spaces; they are important in the local theory of Banach spaces, but also for
theoretical discussions of problems in physics, engineering, statistics and so
on.) E.g., for Lp intersection bodies we refer to [49,248–250,339,547,548]. For
example, in the paper [49] it was proved that the Lp intersection body of a
centered convex body is a convex body, whereas [248,547] deal with the cor-
responding extension of the Busemann–Petty problem. There are many deep
recent results in this direction and also concerning Orlicz-type extensions. The
authors find it impossible to reflect all this stormy development here.

Another notion, strongly related to intersection bodies, is that of the cross-
section body CK of a given convex body K in R

d (see [366] and Sect. 8.3 in
[204]). Namely, the starshaped set CK is the symmetric body whose continuous
radial function in direction u is the maximal volume of a hyperplane section
of K orthogonal to u. (Thus, CK can also be defined as the union of all
intersection bodies of all translates of K.) In R

2, CK is clearly a convex
set, and the same holds in R

3, as shown by Meyer [380]. Brehm [112] found
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couterexamples for any d > 3; thus there are non-convex cross-section bodies
in any dimension larger than 3. Interesting problems related to cross-section
and intersection bodies are collected in [366] and Sect. 8.3 of [204], and further
results in this direction are given in [356–358].

Intersection bodies, projection bodies, and cross-section bodies play an
essential role in geometric tomography (see the monograph [204] and our Sect.
13, where further results, mainly related to the tool of radial functions, are
discussed). This is the field which also the following (types of) results refer
to. In [359], it was shown by Makai, Martini and Ódor that a convex body
K in d-dimensional Euclidean space is centered if all (d − 1)-volume functions
of parallel hyperplane sections have a critical value at the origin. Now let K
be a starshaped body, and let the hyperplanes be replaced by circular hyper-
cones with centers at the origin. In [449] it was shown that K is centered if all
the (d − 1)-volume functions of intersections with K have critical values when
the cone degenerates to a hyperplane. The proof uses Fourier transforms of
distributions, and the paper also gives a new proof of the theorem of Makai,
Martini, and Ódor for star bodies. In their second paper [360] on this topic,
Makai, Martini, and Ódor gave an easier approach to this. The authors of
[396] prove several characterizations of balls by symmmetry properties of their
sections or projections. E.g., they call a star body K in d-dimensional space
completely symmetric if it has its centroid at the origin and if every ellipsoid
whose symmetry group contains that of K must be a ball. If K is a star body
with a continuous radial function in d-space, d > 2, whose central sections
are all completely symmetric, then K is a centered Euclidean ball. The paper
[448] gives an overview on questions dealing with the unique determination
of convex or starshaped bodies with projections or sections having some sym-
metries, such as bodies with congruent projections and sections, translations
only, directly congruent projections, and other groups of symmetries.

The notion of centroid body of a given (convex or) star body was introduced
by Petty (see [414] and also our Sect. 13 for further related tesults) and became
a useful tool regarding affine isoperimetric inequalities and various other prob-
lems in geometric convexity; like projection bodies, also centroid bodies are
zonoids, i.e., limits of vector sums of segments. The name “centroid bodies”
comes from the fact that for the subcase of a given centered convex body K
the boundary points of the corresponding centroid body give the locus of the
centroids of the halves of K obtained by cutting K with hyperplanes passing
through the origin. An early reference is [338] in which (among other things)
a survey on dual mixed volumes of starshaped bodies with positive continu-
ous radial functions and the relations between centroid bodies and projection
bodies was given. In [339], Lp analogues of centroid bodies were defined and
used to extend analogously the related Busemann–Petty centroid inequality
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(which proves that the ratio of the volume of the given body to that of its cen-
troid body is maximal precisely for ellipsoids). Further on, in [342] this notion
was extended to Orlicz centroid bodies of star bodies (see our Sect. 14). The
corresponding analogue of the Busemann–Petty centroid inequality was estab-
lished for convex bodies, and the authors conjectured that this inequality can
be extended to star bodies and that the ellipsoid is again extremal (as proved
for convex bodies) among all star bodies with respect to the origin. In [563]
the Orlicz centroid inequality for convex bodies was indeed extended to star
bodies, and in [539] the authors established equality conditions for the Orlicz
centroid inequality for certain types of star bodies; one equality condition gen-
eralizes Zhu’s equality condition and yields again, as expected, ellipsoids as
extremal bodies. In the papers [249,250], polar Lp centroid bodies were stud-
ied within the framework of valuations, e.g. also regarding their relation to Lp

intersection bodies.
A function Z on a space of convex bodies, or star bodies (or other subsets

of R
d) is a valuation if ZK + ZL = Z(K ∪ L) + Z(K ∩ L) holds, whenever

K,L,K ∪ L and K ∩ L are still from that space. E.g., the paper [334] shows
clearly that there are deep connections between intersection bodies (see above)
and valuations, where intersection bodies of polytopes play an essential role.
In [293] the author found an approach to homogeneous valuations on sets star-
shaped with respect to the origin of R

d, with an Lp-function as radial function.
Particularly, also the rotation invariant ones are investigated. First it is shown
that dual mixed volumes can be defined so that they possess the same basic
properties as usual mixed volumes, and then all continuous star valuations
which are homogeneous with respect to dilatations are classified. These results
yield a characterization theorem for dual mixed volumes of pairs of starshaped
sets and a “dual analogue” of Hadwiger’s theorem classifying homogeneous
valuations which are rotation invariant (see the related references in [293]).
Continuing this, in [294] a classification of rotation invariant valuations on
starshaped sets without the requirement of homogeneity is given. Although it
is not focused on valuations, we mention here the paper [9]. Its authors derived
a dual analogue, namely for two star bodies within the dual Brunn–Minkowski
theory, of Shephard’s classification of quermassintegrals of two convex bodies.
They showed that their characterization of dual quermassintegrals yields new
determinantal inequalities among these dual quermassintegrals, and that it
will be useful for the investigation of structural properties of the set of roots
of dual Steiner polynomials of star bodies. In [542] a complete classification
of all continuous GL(n) contravariant star body valuations on Lp-spaces is
given. These results allow a new characterization of polar symmetric centroid
bodies. The authors of [518] studied radial valuations of starshaped sets with
continuous radial functions, obtaining an integral representation of the radial
continuous valuations. They showed that every such valuation can be written
as a certain integral over the unit (d − 1)-sphere, and based on this they were
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able to characterize, in different ways, all continuous radial valuations which
arise from a measure on the Borel sets of d-dimensional space.

As already mentioned in our discussion of intersection bodies, in [248–250]
generalizations of intersection bodies within the dual Lp Brunn–Minkowski
theory were investigated. The authors established many fundamental results
on Lp intersection bodies, e.g. Busemann–Petty type results, injectivity results
for Lp intersection body operators, results on Lp centroid bodies (related to
intersection bodies), and a deep characterization of Lp intersection bodies via
special nontrivial Lp radial valuations on convex polytopes. Schuster [459]
extended results on projections and intersection bodies to a large class of
valuations by studying the problem whether ΦK ⊆ ΦL implies V (K) ≤ V (L),
where Φ is a homogeneous, continuous operator on convex or star bodies,
being an SO(n) equivariant valuation. The nice survey [335] on classification
results concerning valuations on function spaces (real valued, matrix valued
and convex body valued valuations), both in Lebesgue and Sobolev spaces,
also covers interesting analogous results on star bodies.

18. Extensions and generalizations

The geometry of starshaped sets is developed mainly in Euclidean spaces, but
many results have generalizations in topological vector spaces. Starshaped sets
are also considered in metric spaces (see [408]). A metric space (X, ρ) is said
to be starshaped at a point a ∈ X if for every x ∈ X the points x and a can be
joined by a metric segment, that is, a subset isometric to an interval of length
ρ(a, x).

Another generalization of starshapedness was considered in convexity
spaces (see [114,312,471]). A convexity space is a pair (X, C), where X is a
nonempty set and C is a family closed under arbitrary intersections which
includes X and the empty set. A set A ⊂ X is C-starshaped at a point a ∈ A
whenever, for every x ∈ A,

⋂
{S ∈ C : {a, x} ⊂ S} ⊂ A.

A natural generalization of convex and starshaped sets in terms of visibility
functions can be found in papers by Beer (see [31,32]). Let A be a measurable
set in R

d. The visibility function vA of A assigns 0 to every point of R
d\A,

and to every x ∈ A the Lebesgue outer measure μd of the star st (x : A). Beer
proved

Theorem 68. Let E be a compact set in R
d. If x ∈ E, the set of endpoints of all

maximal segments in st(x : S) with one endpoint being x forms a measurable
set and has measure 0.

Theorem 69. Let E be a compact starshaped set in R
d such that intE �= ∅ and

dim ker E ≥ d − 1. Then the visibility function vE is continuous in intE.
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Let E be a measurable set in R
d. In [32] Beer defined the pseudo-kernel

of E as the set P ker E = {x ∈ E : vE (x) = μd (E)}, and he said that E is
pseudo-starshaped if P ker E �= ∅.

Theorem 70. Let K ⊂ R
d be a compact set such that μd (K) > 0 and

P ker K �= ∅. Then K = S ∪ F , where μd (F ) = 0 and S is a compact star-
shaped set with convex pseudo-kernel P ker K. Moreover, μd [st (x : F )] = 0 for
every x ∈ F .

Forte Cunto [190] characterized the points of discontinuity of the visibility
function in the boundary of a planar Jordan domain, and Piacquadio, Forte
Cunto, and Toranzos extended this characterization to compact subsets of R

d

in their papers [191,415], which also include several interesting examples of
“pathological stars”. They introduced the set of restricted visibility of a point
p in S as the set rv (p : S) = st (p : S) \nova (p : S), that is, the set of all points
of S that see p via S but do not see it clearly. If S ⊂ R

d is a compact set and
x ∈ bdS, they say that st (x : S) is healthy if either μd [rv (x : S)] = 0 or
int [rv (x : S)] �= ∅. Otherwise, st (x : S) is pathological.

Theorem 71. Let S ⊂ R
d be a compact set and let x ∈ S be such that

μd [st (x : S)] = μd [nova (x : S)]. Then the visibility function vS is continu-
ous at x.

Theorem 72. Let S ⊂ R
d be a compact set and x ∈ S. Then the visibility

function vS is continuous at x if and only if μd [rv (x : S)] = 0.

Another generalization, almost starshapedness, was investigated by Breen
[109] and Cel [130]. A set A is almost starshaped at a ∈ A if the set {x ∈
A : [a : x] �⊂ A} is nowhere dense in A. Moreover, Breen (see [109]) defined
staircase starshaped sets for families of boxes in R

d, and she studied their
properties. Cel introduced quasi-starshapedness in [130]: a set S ⊂ R

d (or a
real topological linear space) is quasi-starshaped if there is a point q ∈ clS
such that the subset of points of S visible via S from q is everywhere dense in
S and contains intS. The set of all such points q is called the quasi-kernel of
S, and it is denoted by q kerS. Following Valentine [527], a point s ∈ clS is
said to be a point of weak local convexity of S if there is some neighborhood
N of s such that for each pair of points x, y ∈ S ∩ N , [x : y] ⊂ S. If S fails
to be weakly locally convex at q in clS, then q is called a point of strong local
nonconvexity (slnc point) of S. The set of all slnc points of S is denoted by
slnc S. Also following Valentine, a point s ∈ clS is said to be a point of strong
local convexity of S if S ∩N is convex for some neighborhood N of s. If S fails
to be strongly locally convex at r ∈ clS, then r is called a point of mild local
nonconvexity (mlnc point) of S. The set of all mlnc points of S is denoted by
mlnc S. Finally, for each point z, Âz is the set of all s ∈ clS such that z is
clearly visible from s via S. Cel [130] proved
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Theorem 73. If S ⊂ R
d (or a real topological linear space) is a connected set

such that slnc S �= ∅, then
⋂

z∈slncS
convÂz ⊆ q ker S,

⋂
z∈mlncS

convÂz ⊆ q ker S.

The notion of starshapedness was also developed in fuzzy-set settings. Star-
shaped fuzzy sets were introduced by Brown in [115], and then used by many
authors (see [160,162,419,543]).

19. Applications and further topics

In this section we will survey applications of the notion of starshapedness
in various mathematical disciplines. Here, it is impossible to be complete and
define all the mentioned notions. However, all non-defined notions are certainly
“folklore”, at least for those specialized in the respective fields. Also, we are
additionally selective by concentrating on references which refer mainly to geo-
metric properties of starshaped sets. Due to the broad spectrum of fields from
pure and applied mathematics that are seriously affected by starshapedness,
we restrict ourselves to fields where the notion explicitely occurs.

19.1. Discrete and computational geometry

We will start with applications of, or results on, starshaped sets in the
framework of discrete and computational geometry, almost everywhere in the
Euclidean setting (otherwise we explicitly describe the relevant type of non-
Euclidean geometry).

It is natural that under this headline starshaped polygons and polyhedra,
and also notions from the combinatorial geometry of convex bodies, are dis-
cussed.

Krasnosel’skii’s theorem, presented in our Sect. 6, was clearly inspiring for
many problems in discrete and computational geometry that are based on
notions like visibility or illumination (see, e.g., the problem book [148], in
particular its subsections A5 and E2, and regarding the large variety of dif-
ferent visibility and illumination concepts as well as related notions also the
papers [367,368] might be taken into consideration). One of the most famous
types of problems in this direction is usually summarized under the name art
gallery problems, for which we also refer to our Sect. 14. It was V. L. Klee who
suggested in 1973 (at a conference in Stanford) the systematic study of the
original problem, namely to combine an art gallery (which is in most situa-
tions assumed to be a simple, closed polygon P ) with the minimum number of
guards (all guards being points from P ) who together can observe the whole
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gallery. Important summaries of this type of problems are [381,402,525]. It
is obvious that such problems are closely related to notions like unions of
starshaped sets and kernels. The paper [324] computationally deals with the
kernel of starshaped polygons P with n vertices, i.e., the (non-empty) intersec-
tion of appropriate half-planes determined by prolongations of the edges of P ;
the authors present an optimal O(n)-time algorithm for finding the kernel of
P . Via the notion of spindle starshapedness, where the usual linear visibility
notion is replaced by so-called spindle visibility (replacing segments suitably
by spindles), the authors of [52] established spindle analogues of well-known
theorems by Krasnosel’skii, Carathéodory, and Klee and of more recent results
by other authors. They also gave a spindle version of the art gallery problem,
characterizing planar galleries for which one guard is sufficient. In [458], the
authors called the family of k guards necessary to control a gallery P the
k-kernel of P , and they gave a characterization of usual starshapedness in
terms of 2-kernels. One can also modify the shape of guards, e.g. allowing
them to be line segments; see [56], where the authors presented a linear time
algorithm to find a segment-shaped guard. Similarly, an open or closed edge
of the given polygon can be defined as a guard (cf. [517]), also yielding some
type of segment starshapedness. In [517] the authors simplified the proof of a
result from [406]: every simple non-starshaped polygon admits at most three
closed guard edges; and it admits at most one open guard edge. In addition,
open guard edges are characterized by using a special type of kernel, and also
results on polygons with holes are derived, where at most six guards are possi-
ble. In [27] a fractional d-dimensional Helly-type result was proved, assuming
that many (d + 1)-tuples of a family of convex sets have a starshaped union
and concluding that many of the sets have a common point. Also related art
gallery results on polygons with a bounded number of holes were obtained,
completing previous results on galleries without holes.

Now we come to other types of results from discrete and computational
geometry, starting with triangulations of polygons and polytopes which are
related to starshapedness. In [177] a linear-time algorithm for triangulating a
starshaped polygon was derived. Regarding the analogous question in 3-space
(using then tetrahedra), the authors of [447] verified the NP-completeness
of the triangulation problem for polyhedral sets. They also showed that this
statement remains true even for given starshaped polyhedra. In [167] it was
proved that finding empty triangles (i.e., triples in a given finite point set F
forming vertex sets of triangles with no other point from F in their interiors)
is related to the problem of determining pairs of vertices that see each other
in a starshaped polygon. A linear-time algorithm for the latter problem, being
of independent interest, yields an optimal algorithm for finding all empty tri-
angles. Possible extensions to higher dimensions are also mentioned in [167].
The problem of polygonal separation in the plane is to find a convex polygon
with the minimum number of sides separating two given finite sets S1 and S2
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with k1 and k2 points, respectively. Besides other results, the authors of [173]
found an algorithm which solves this problem subquadratically in k, where
k = k1 + k2. In the preprocessing task, the convex hull of the internal set (S1,
say) and a nested starshaped polygon determined by the outer set S2 play
the key role (the separating polygon is contained in the annulus between both
boundaries). A polygonization of k points in the plane is a connection of the
points yielding finally a simple polygon. Since the number of possible polygo-
nizations of k points is exponential in k, the problem of finding polygonizations
into starshaped polygons with kernels having nonempty interiors was studied
in [159]. It is proved that the number of distinct polygonizations into nonde-
generate starshaped polygons is O(k4), and that one can get them in O(k5)
time. The proof uses kernels of nondegenerate starshaped polygons derived
suitably from the given set. In [244] a weighted Erdős-Mordell inequality for
starshaped n-gons was proved, where the case of equality remained open; a
geometric characterization of the n-gons satisfying the case of equality was
given in [439]. A further notion very important in computational geometry as
well is that of Voronoi diagrams. The study of Voronoi diagrams in spaces with
a metric d∗ is strongly based on the property that Voronoi regions are always
d∗-starshaped (see Chapter 1 of [302] and Sect. 15 of [59]) and therefore con-
nected. Such properties have to be taken into consideration for investigations
of abstract Voronoi diagrams and, on the other hand, for related structures
created by so-called nice metrics; see again [302] and also [14]. In [267] results
of the following type are presented: Given a starshaped polygon P in the plane
and a vertex a of P , a point b is said to be accessible to a if, when a is moved
to b along a linear path while all the other vertices of P are fixed, the poly-
gon remains starshaped and isomorphic to P throughout the entire process
of motion. The author proves that the set of points accessible to a is always
an unbounded, open, starshaped set whose boundary consists of straight line
segments. The authors of [466] developed an algorithm for inscribing convex
polygons (which are extremal regarding certain quantities) suitably into star-
shaped figures, where starshaped polygons are also used in the intermediate
steps. A useful list of related results is also given.

In [136] an efficient algorithm for sampling a given starshaped body K was
derived. The respective complexity grows polynomially in the dimension and
inverse polynomially in the fraction of the volume taken up by the kernel of
K. The approach uses a new isoperimetric inequality, and the authors also
obtained a polynomial algorithm for computing the volume of such a set. (In
contrast it should be noted that linear optimization over starshaped sets is
NP -hard.) Similar results are derived in [266], where it was also shown that
these results cannot be extended to polyhedral spheres in 3-space. In [201]
the question was investigated whether it is possible to recognize starshaped
polygons in the plane when the one-dimensional measures of their sections
parallel to one or more directions are known. One of the main results says
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that polygons starshaped at the origin cannot be determined this way by k
directions, for any k.

Three-dimensional isohedra are polyhedra whose facets are equivalent
under symmetries. It seems that not too much is known about isohedra with
non-convex facets. Grünbaum and Shephard [239] showed that such polyhe-
dra are starshaped of genus 0, and that their facets are starshaped pentagons
with one concave vertex. McMullen [377] investigated regular honeycombs with
starshaped cells or starshaped vertex figures, concentrating on those having five-
fold rotational symmetries. He gave a description of such honeycombs from the
viewpoint of abstract regular polytopes and presented discrete realizations in
higher dimensions, discussing also certain quasiperiodic tilings with them.

It is not surprising that within the context of lattice points and convex
bodies visibility notions also attracted attention; see, e.g., Chapter 13 of [179],
where it is underlined that they are also hidden under the disguise of various
illumination and transversality concepts. It was Hermann Minkowski who ini-
tiated (in about 1910) the geometry of numbers which studies convex bodies
and integer vectors in n-dimensional spaces. This field has close connections
to other fields of mathematics, especially functional analysis and Diophantine
approximation; cf. the basic reference [236]. This book already showed that
starshaped sets play an essential role within the geometry of numbers, see
particularly Chapters 1, 4, and 5 there (e.g., considering notions like reducible
star bodies). The so-called first theorem of Minkowski says that any origin-
symmetric convex set in d-space having volume greater than 2dD(L), where
D(L) is the determinant of a d-dimensional lattice L, contains a non-zero
lattice point. A generalization of this result was given by van der Corput,
assuming positive numbers of pairs of lattice points (instead of the origin
only) contained in the convex set. Rogers [438] conjectured some analogue of
van der Corput’s result for star bodies, and he confirmed this for certain (for
example, all prime) numbers. There are earlier results in this direction. For
a starshaped region K, a lattice is said to be K-admissible if its only point
interior to K is the origin. Let δ(K) be the lower bound for the determinants
of all K-admissible lattices. If the determinant of a lattice equals δ(K), the
lattice is said to be critical. Mordell (see [387]) developed a general method
for studying lattice determinants and critical lattices for starshaped sets with
rectangular symmetry, showing that nonconvex lattice point problems form
a promising area of research in the geometry of numbers. And Bambah [26]
continued with the study of star-regions with hexagonal symmetry and star-
shaped dodecagons in this framework. Mahler (see [346,348]) assumed that
the boundary of a starshaped set K consists of a finite number of analytic
arcs and determined a process whereby δ(K) may be found in a finite number
of steps. He proved that a critical lattice contains at least two independent
boundary points a1, a2 of K, and that there is only a finite number of K-
admissible lattices containing both a1 and a2. In further papers (see, e.g.,
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[347]) he applied his methods also to so-called “infinite starshaped sets”. In
a sequence of related papers, many further results on starshaped sets in lat-
tices were derived by Mahler, see [349–354]. Later Mahler [355] proved the
following nice theorem: For any dimension d and any ε > 0 there is a bounded
starshaped body K such that V (L) < εδ(K) holds for the volume V (L) of any
convex body L contained in K.

A subset of the plane is called a universal cover if it can be moved (not
only translated) to cover any plane set of diameter 1; Lebesgue asked for the
convex universal cover of least area. This question is still not settled (see, e.g.,
D15 and D16 in [148]), and such questions can also be posed for non-convex
figures. In this framework Kovalev [317] proved that every cover of minimum
area has to be starshaped, and he also derived certain conditions on the radial
functions describing the boundaries of such extremal figures.

Makeev [362] showed that for any cyclic quadrilateral and any closed star-
shaped C2 Jordan curve there is a circle intersecting this curve in exactly four
points which form the vertex set of a quadrilateral similar to the given one.

19.2. Inequalities

Various inequalities mainly coming from convex geometry were already dis-
cussed in our Sects. 13 and 17. We continue this now with a broader view. It
is clear that results related to this headline are widespread and partially also
discussed in other parts of this paper (for example, in our Subsection 19.1 on
discrete and computational geometry or in our Sect. 14). Thus, the following
selection completes these other results already given. Even more, the authors
cannot give a complete picture of the field “inequalities and starshapedness”,
since there are simply too many (also recent) results in this direction. Exem-
plary keywords for respective further research are: centroid bodies, dual mixed
volumes, intersection bodies, Orlicz-type extensions, starshaped functions, and
valuations.

Gueron and Shafrir [244] proved a weighted version of the Erdő s-Mordell
inequality for starshaped n-gons, and they asked for a geometric characteriza-
tion of the n-gons reaching equality. In [439] this characterization is given.

The following rather surprising theorem is due to Mahler [355]: For every
ε > 0 there is a d-dimensional bounded starshaped body S whose volume V (S)
satisfies V (S) < εδ(S), where δ(S) denotes the lattice determinant of S (see
Subsection 19.1). In [295] a new geometric tool (by which planar starshaped
sets are dissected into four parts and, by a so-called cyclic rearrangement tech-
nique, suitably glued together around some rhombus, to get a new set of the
same perimeter, but with larger area) is introduced and geometrically analysed.
Applying this, the author could give a new proof of the planar isoperimetric
inequality and also obtained new approaches to Bonnesen-style error estimates
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for the isoperimetric deficit of starshaped figures centered at the origin. Fang
proved in [182] a reverse isoperimetric inequality for planar starshaped curves
in terms of the perimeter and the enclosed area. The Chernoff inequality, also
holding for planar convex curves, estimates their enclosed area in terms of
the width function, with circles as extremal curves. In [554] a so-called k-order
radial function ϕk(θ), “replacing” the width function and depending on k equi-
distributed support function values, is introduced for starshaped planar curves
to establish a geometric inequality involving ϕk(θ) and the area enclosed by
a starshaped curve. Certain bounds are obtained, and it is shown that the
exact lower bound for the area is reached when ϕk(θ) is a constant. We refer
once more to [271]; this paper contains an interesting inequality bounding the
length of a (non-convex) curve of bounded curvature in terms of the enclosed
area. Also related is [405] which contains a new, elegant proof of an inequal-
ity estimating the maximal curvature of a smooth Jordan curve against the
enclosed area (starshapedness plays an interesting role in the argumentation).
Here we also mention the deep paper [30] which refers to generalized distance
functions whose indicatrix (gauge) is starshaped with respect to the origin. In
this framework, the authors derived a very general form of the isodiametric
inequality for measurable sets. Keogh [290] found sharp upper bounds for the
curvature radius and the length of level curves of convex regions if the func-
tion which maps onto the unit circle is normed in 0, and if one considers the
curve corresponding to the circle of a fixed radius r. These bounds are given
in terms of r, and analogous results were derived replacing the convex regions
by starshaped ones.

The paper [340] deals with the Legendre ellipsoid L of a convex body K
in Euclidean d-dimensional space having o as center of mass; this is the ellip-
soid centered at o whose moment of inertia about any axis passing through o
equals the corresponding moment of inertia of K. Relations to isoperimetric-
like inequalities are discussed, and this definition is extended so that K is
allowed to be starshaped. It is shown that L always contains another ellipsoid
L∗, being somehow dual to L, where equality characterizes ellipsoids among
starshaped sets, and that this inclusion is the geometric analogue of the so-
called Cramer–Rao inequality, which is very important in information theory.
The main result of the paper [240] extends the Alexandrov–Fenchel quermass-
integral inequality for a convex domain to starshaped domains satisfying a
smoothness condition. Continuing [240] by using the inverse mean curvature
flow, the authors of [113] extended the Minkowski inequality, which treats
the (inward) mean curvature H of convex closed hypersurfaces, to starshaped
closed hypersurfaces which are mean-convex (i.e., H ≥ 0).

The notion of general mixed chord integrals of star bodies was extended in
[329] to the general Lp-mixed chord integrals of star bodies. Their extremum
values, some type of Aleksandrov–Fenchel inequality, and a cyclic inequality for
general Lp-mixed chord integrals of star bodies were studied. Furthermore, two
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Brunn–Minkowski type inequalities for Lp-radial bodies were derived. Also in
[537] Brunn–Minkowski type inequalities for star bodies were studied. Inspired
by the notion of Lp-mixed geominimal surface area of multiple convex bodies,
in [328] the concept of Lp-dual mixed geominimal surface area for multiple star
bodies was investigated; also here several inequalities related to this concept
were obtained. In [553] the notion of Lp-mixed intersection body (for any
p �= 0) is introduced, and a Minkowski-type and a dual Aleksandrov–Fenchel
inequality for such bodies were deduced.

For suitable sets A ⊂ B in Euclidean d-space, let o be an interior point of
A. The authors of [186] proved that if A and B are compact sets starshaped
with respect to o, where o is their common barycenter, then there is a positive
number k such that for every 0 < λ ≤ k the set λA is convexely majorized by
B (i.e., the inequality vA ≤ vB holds for each real continuous convex function
v defined on the closed convex hull of A∪B). If, furthermore, B is a convex set
with −B = B, then there is a universal positive constant kd (depending only
on the dimension d) such that the following holds: every symmetric convex set
A satisfying A ⊂ kdB so that A and B have the same barycenter is convexly
majorized by B.

19.3. Starshapedness in differential geometry

In this subsection we want to survey selected results from differential geometry
using or directly yielding geometic properties of starshaped sets.

We start with results on types of curvatures and geometric flows which are
usually understood as gradient flows associated with a functional on a mani-
fold which has a geometric interpretation (e.g., associated with some extrinsic
or intrinsic curvature notions). We start with the planar case. In the paper
[271] an extensive collection of differential geometric techniques was used to
investigate plane curves with bounded signed curvature. The main results also
concern bounds for the length of the boundary of a closed planar disk in terms
of its area; in particular, one interesting result on such disks is the necessity
of their being starshaped (with respect to the origin), with boundary between
the unit disk and its homothet of radius three.

In [544] the asymptotic behaviour of starshaped closed curves

(x (ϑ, t) , y (ϑ, t)) ∈ R
2, ϑ ∈ S1, 0 ≤ t < ∞,

in the plane, following the equation V = 1−K, was studied, where K denotes
the curvature and V the outward-normal velocity. E.g., if the curvature is
smaller than 1, then asymptotic shapes (as t is running to infinity) exist and
determine the primary curve (when t = 0) uniquely. Also related, in [520]
the author investigated the evolution of planar closed starshaped curves which
move in the direction of their outer unit normal vectorfield with speed given
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by a suitable function f of their curvature. It turns out that for very general
functions f the curves expand to infinity in infinite time, and combined with
a suitable rescaling they converge to a circle. Somewhat continuing [520], the
authors of [138] showed that for a certain class of closed embedded initial
curves (more general than starshaped ones) the solutions become starshaped,
then (after a finite length of time) convex, and then asymptotically round.
A little survey on this evolution of embedded plane curves by functions of
their curvature, considering expansion flows, is [521]. Vassiliou [533] discussed
the interrelations between the technique of moving frames and a more general
scheme to implement group-theoretical techniques in the framework of local
differential invariants of curves. Based on this, he derived an explicit expression
for the equi-affine curvature of a plane starshaped curve.

Continuing studies of Foland and Marr [189], Beltagy and Shenawy [46]
investigated starshaped sets whose kernels consist of a single point and which
are embedded in complete, simply connected C∞ Riemannian 2-manifolds
without conjugate points.

Recall that a point p is called an equireciprocal point of a planar curve C if
C is starshaped at p and if every chord xy of C passing through p satisfies the
relation ‖p − x‖−1 + ‖p − y‖−1 = α for some constant α. (For example, the
foci of ellipses are such points.) In [181] it was shown that, except for certain
cases, any curve with two such points must have the same constant at each
point. Also, any twice-differentiable curve with two such points must be an
ellipse, but in general there exist non-elliptical convex curves with two such
points.

The Korteweg–de Vries (KdV) equation is a mathematical model of waves
on shallow water surfaces, integrable and invariant under the Mö bius trans-
formation. Well known in PDE and of great interest both in physics and math-
ematics, it is a non-linear partial differential equation whose solutions can be
exactly specified. In [416] a geometric interpretation of the KdV equation as
an evolution equation on the space of closed curves in the centroaffine plane
was provided. With this background, an example of a soliton equation coming
in a natural way from a differential geometric problem was presented. The
importance of starshaped curves in centroaffine geometry was shown, and con-
tinuing these considerations, the authors of [122] showed that projectivization
induces a map between differential invariants of starshaped planar curves and
a bi-Poisson map between Hamiltonian structures. It was also verified that a
Hamiltonian evolution equation for closed starshaped planar curves, discov-
ered in [416], has the Schwarzian KdV equation (involving the Schwarzian
derivative) as its projectivization.

The locus of points from which a strictly convex curve C in the plane is
seen from outside under the same angle α < π is called the α-isoptic of C. The
authors of [139] proved that if C is of class C2 with nonvanishing curvature,
then its α-isoptic is also of class C2 and a starshaped curve. Starshaped curves
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also occur in the study of the group-theoretical structure created by reflections
suitably defined in normed planes and their combinations. Namely, in [369]
cycles in strictly convex normed planes were introduced as the loci of points
that are images of a given point x under the set of all left reflections in lines
through a second point y. It turns out that cycles are starshaped closed Jordan
curves that can be used to characterize smooth normed planes, Radon planes
or the Euclidean subcase; differentiability conditions also play a role there.
In [226], planar closed C1 curves were investigated which are starshaped with
respect to the origin and can be seen as “analogues” of curves of constant
width in the sense that they “intersect the rays from the origin transversally”.

Before switching to higher dimensions, we still want to mention a nice
result on curves in three-dimensional space. Namely, Ghomi [217] proved the
following extension of the classical four vertex theorem: Let there be given
a simple closed C3 immersed curve with nonvanishing curvature in 3-space.
Suppose that this curve is starshaped and locally convex with respect to a
point in the interior of its convex hull. Then its torsion changes sign at least
four times.

Of course, starshapedness also plays a role in higher dimensional, dif-
ferential geometric settings. Again we start with results related to curva-
ture notions. E.g., higher dimensional analogues of the above mentioned
planar results from [138,520] related to geometric flows were derived in
[166,184,215,216,275,452,524]. More precisely, Gerhardt [215] studied closed
starshaped hypersurfaces in Euclidean d-space which expand in the direction
of their exterior unit normals. The speed of the surfaces is given by the inverse
of a certain function of the principal curvatures satisfying some additional
conditions. The resulting flow is in some sense complementary to the inward
flow by the mean curvature (which was investigated in [468], also regarding
the development of certain singularity types) or the Gauss curvature of convex
surfaces and allows the dropping of the convexity assumption; so any star-
shaped initial surface will flow for infinite time and converge to a round sphere
after appropriate rescaling. Urbas [524] investigated smooth, closed starshaped
hypersurfaces expanding analogously in the direction of their normal vector-
field and showed that during the procedure the hypersurfaces remain smooth
and starshaped forever and become asymptotically round. Similar results were
given in [166,184,275,365]. The latter paper deals also with Gerhardt’s investi-
gations from [208]: The author considers classical solutions to the inverse mean
curvature flow in the case where the initial hypersurface is a starshaped surface
with strictly positive mean curvature. In contrast to Gerhardt’s work, he stud-
ies hypersurfaces possessing a boundary which meets the cone perpendicularly.
The cone can be viewed as a supporting hypersurface for the evolving surface,
and is not moving itself. It is proved in [365] that this flow exists forever, and
that the surfaces converge to a piece of the round sphere. As a consequence of
such results, the authors of [184] recovered the existence result for Weingarten
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hypersurfaces (see also [121]). In [216], analogous results on the inverse curva-
ture flow of starshaped hypersurfaces in the hyperbolic d-space with asymp-
totic estimates on the rate of convergence to spheres were established; see
also [452]. In [330] a new modified mean curvature flow of complete embed-
ded starshaped hypersurfaces in hyperbolic d-space with prescribed asymptotic
boundary at infinity was investigated. Under some geometric conditions on the
initial hypersurfaces, the existence, uniqueness and convergence of such a flow
was shown. Extending results from [215,524], Ivochkina et al. [279] studied
flows with non-homogeneous speeds applied to starting hypersurfaces which
are compact and starshaped. The authors proved the long-time existence of
solutions for such flows, and the convergence (of appropriately rescaled hyper-
surfaces) to a sphere was confirmed with some additional assumptions.

The existence of closed starshaped hypersurfaces with prescribed curvature
properties was studied by several authors from differential geometry. In [2]
the following was shown: A hypersurface F in d-dimensional Euclidean space
which is starshaped with respect to a fixed point o and has constant value
rH1, where r = r(p) is the distance between o and p ∈ F , and H1 = H1(p)
is the first mean curvature of F in p, is a hypersphere around o. Using two
suitable consecutive mappings (namely a hyperplane reflection and a homo-
thety), this was elegantly reproved in [491]. Also the following results charac-
terize balls (or spheres) among starshaped sets. Namely, the authors of [373]
obtained isoperimetric estimates relating the Lebesgue measure of a bounded
domain with smooth boundary and the Levi curvatures of the boundary (that
is, elementary symmetric functions of the eigenvalues of the normalized Levi
form). They proved that the only bounded smooth starshaped domains whose
classical mean curvature is bounded from above by a positive constant Levi
curvature are balls. The paper [241] contains existence results on smooth star-
shaped hypersurfaces whose curvature measures are prescribed via the radial
map. In the context of convex geometry, the studies from [241] can be seen
as a counterpart for curvature measures of the Christoffel–Minkowski prob-
lem, concerning area measures. It turns out that in a natural way the topic
that we discuss here is also interesting from the viewpoint of our subsection
on PDEs! For the case of prescribed mean curvature we refer furthermore to
[25,121,254,519], where also the intermediate cases of k-th mean curvatures
were investigated, as well as cases of more general curvatures. Related exten-
sions to the hyperbolic space can be found in [28,282], and the elliptic case
(with mean curvature types) is particularly discussed in [327]. Replacing the
mean curvature by the Gauss curvature, analogous problems are presented in
[156,400], and regarding the Weingarten curvature we refer to [137,184].

Extending Cohn–Vossen’s classical rigidity theorem, the authors of [242]
proved that any two C2 compact starshaped hypersurfaces in a complete,
simply connected space form N (d+1)(K) for curvature K = −1 or 0, with the
normalized scalar curvature strictly larger than K, are congruent. Moreover,
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if the ambient space is the unit (d + 1)-sphere, then any two C2 compact
starshaped hypersurfaces with normalized scalar curvature strictly larger than
1 are congruent if the hypersurfaces are contained within (possibly different)
hemispheres.

Beltagy (see [39,40,42]) studied starshaped sets in complete, simply
connected Riemannian manifolds without conjugate points, also in the d-
dimensional hyperbolic space. Using the Beltrami (or central projection) map
from d-dimensional hyperbolic to d-dimensional Euclidean spaces, he verified
that many geometric properties of starshaped sets in the Euclidean case hold
in the hyperbolic space as well; for the spherical case see [40]. He also derived
results of Krasnosel’skii-type and on the dimension of the kernel of a starshaped
set in the hyperbolic case, and he investigated the reason for the importance
of the non-existence of conjugate points, too.

In [43] local starshapedness plays an important role: An embedding of a
compact, connected, and smooth d-manifold M without boundary in a com-
plete, simply connected, and smooth Riemannian (d+1)-manifold W without
conjugate points bounds a convex subset of W if and only if the inner com-
ponent of the embedding is locally starshaped. Halpern [253] proved the fol-
lowing: Take the subset of the Euclidean (d + 1)-space formed by the union of
all tangent hyperplanes at points of an immersed, compact, closed, connected
and smooth d-manifold M . If this point set is a proper subset of the consid-
ered (d + 1)-subspace, then M is diffeomorphic to a sphere, the image of the
immersion is the boundary of a unique open starshaped set S, and the set of
points not belonging to any of these tangent hyperplanes forms the interior
of the kernel of S. A converse statement was verified, too. Furthermore, the
set of points not on any tangent hyperplane forms the interior of the kernel
of this starshaped set, and a converse statement holds, too. In [41] the results
of Halpern were generalized: Namely, let f : M → W be a smooth immersion
of a compact connected d-dimensional smooth manifold M into a smooth,
complete and simply connected (d + 1)-dimensional Riemannian manifold W
without conjugate points. Beltagy proved that if the subset of W swept out
by the geodesics of W which are tangential to f(M) is not the whole W , then
M is diffeomorphic to a sphere and f is an embedding onto the boundary of a
unique open starshaped subset of W . Also the paper [45] discusses starshaped
sets and locally starshaped sets in Riemannian manifolds without conjugate
points. E.g., it was proved there that if the closure of a connected open set
with a smooth hypersurface as boundary is locally starshaped at each bound-
ary point, then this set is convex. In [326] closed (Weingarten) hypersurfaces
embedded in warped product manifolds, based on compact Einstein manifolds
equipped with the Riemannian metric, were investigated. The authors proved
an analogue of Aleksandrov’s theorem for such hypersurfaces, and among the
occuring geometric conditions starshapedness of the considered hypersurfaces
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plays the key role. Finally we mention here the papers [178,291] where (fur-
ther) properties of starshaped sets embedded into Riemann manifolds were
presented, as well as [113] concerning starshaped sets in a class of asymptoti-
cally hyperbolic manifolds with boundary.

A notion well known in the geometry of symplectic spaces and con-
nected with isomorphisms there is that of Lagrangian subspaces (or shortly
Lagrangians). Using variational methods, Guo and Liu [246] proved that if F
is an arbitrary C2 smooth, compact, symmetric hypersurface starshaped with
respect to the origin of a (2d)-dimensional space, then for every Lagrangian
subspace L the hypersurface F has infinitely many L-Lagrangian orbits on F .
Similarly, in [247] multiplicities of Lagrangian orbits on starshaped hypersur-
faces in the same framework are studied. Investigating the existence of peri-
odic solutions of Hamiltonian systems (i.e., mathematical formalisms devel-
oped by Hamilton to describe the evolution equations of physical systems)
of ordinary differential equations, Rabinowitz proved in [420] properties of
starshaped level sets of Hamiltonian functions in the standard symplectic (2d)-
dimensional Euclidean space, referring to periodic orbits of the occuring vector
fields. Berestycki et al. [51] continued these investigations by studying the exis-
tence of periodic orbits of Hamiltonian systems on a given starshaped energy
hypersurface. Similarly, the paper [218] deals with the case that the starshaped
energy hypersurface is symmetric with respect to the origin, and Viterbo [535]
considered the problem of finding closed orbits on special types of starshaped
hypersurfaces. It turns out that for such generic surfaces, either there are infin-
itely many closed orbits, or they are all hyperbolic (the latter cannot occur for
even d). In [331] the authors got analogous results, and they showed that at
least one hyperbolic closed characteristic exists if the Maslov-type mean index
of every closed characteristic is larger than 2 when d is odd, and larger than 1
when d is even. (Note that the Maslov index is a tool for determining in (2d)-
space the nature of intersections between two evolving Lagrangian subspaces.)
A Maslov-type index was also used in the strongly related paper [274], and the
iteration formula of Viterbo [535] for non-degenerate starshaped Hamiltonian
systems was generalized. In the expository paper [409] on the so-called Wein-
stein conjecture (asserting that the characteristic line bundle of a compact,
contact type hypersurface in a Finsler manifold has a closed integral curve)
the above topics were discussed, too.

19.4. Starshaped sets and PDE

Starshaped sets also play an explicit role in several papers in the field of partial
differential equations (PDE). In the following we cite examples. Additionally,
the reader is referred to our subsection on differential geometry, since many
results there are obtained via methods related to this subsection. In particular,
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the discussion on compact Weingarten hypersurfaces is interesting for this
interplay.

In [285], Kawohl proved that if the geometry of the data in the so-called
“obstacle problem” or the “capacitory potential problem” yields a starshaped
set, then the corresponding level sets are starshaped. The proofs are based
on appropriate maximum principles. Similar results on the level surfaces of
solutions of nonlinear Poisson equations are derived in [332].

Useful for the field of PDE, but also geometrically interesting in itself, a so-
called radial symmetrization for starshaped sets was introduced in [488]. E.g.,
for a planar smooth curve starshaped with respect to the origin, presented
by r = r (ϕ) and bounding the region G, a natural number n ≥ 2 defines a
symmetrization Sn which transforms r to r’, where r’ is the geometric mean
of the n radii r (ϕ + 2kπ/n), k = 0, . . . , n − 1. (This symmetrization decreases
the area of G.) The author also considered three-dimensional analogues for
smooth starshaped surfaces. With applications in function theory in mind,
generalizations of such symmetrizations were presented in [363]. Kawohl [287]
continued these investigations showing that via this procedure functions f are
transformed into new functions f∗ with starshaped level sets, therefore yielding
the notion of starshaped rearrangement. This is applied to certain variational
and free boundary problems, also leading to new results on the geometrical
properties of solutions of these problems. In the nice booklet [286], methods
of rearranging functions as a valuable tool for investigating interesting geo-
metric properties of solutions of PDEs are presented. Studying the shapes,
information on level lines, critical values or certain symmetry properties can
be obtained. The author gave a unified treatment of various methods of rear-
rangements, such as starshaped, Steiner, and Schwarz symmetrization (which
are scattered in the literature), their interrelations and applications.

We now come to some special types of functions. Francini [195] studied
the starshapedness of level sets created by nonlinear parabolic equations, con-
sidering the angle between the normal direction to the level surface and the
radial direction. He verified that a maximum principle holds for this angle. In
[163,164] parabolic problems on a convex or starshaped ring-shaped domain
were studied (ring-shaped means that the boundary is enclosed in a suitable
generalization of an annulus). It was shown that if the initial data have con-
vex or starshaped level sets, then the solutions have analogous properties. An
interesting early survey of results concerning the properties of level sets of
solutions of boundary-value problems for elliptic equations is [288]. Important
techniques for getting related results, such as radial symmetrization and star-
shaped rearrangement, are nicely presented. In [198] special elliptic equations
were investigated, showing that certain solutions in an exterior starshaped
domain have starshaped level sets, and in [197] properties of starshapedness
of level sets of a special rotationally invariant and strict elliptic equation in a
starshaped ring with constant boundary values were studied. Also Salani [451]
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studied how geometric properties of the investigated domain are inherited by
level sets of solutions of elliptic equations. In particular, solutions of elliptic
Dirichlet problems in starshaped rings were shown to have starshaped level
sets, and the results of this paper can be applied to a large class of operators.
We refer also to [196], where related results on the starshapedness of level sets
for solutions of elliptic and parabolic equations were exposed. The authors of
[142] studied geometric properties of level sets of positive solutions of a semi-
linear elliptic equation in a bounded domain in d-dimensional space, satisfying
homogeneous boundary conditions and having a certain symmetry property,
and they proved that the level sets of any positive solution are starshaped
with respect to the origin. The authors of [540] generalized the direct method
of lines for elliptic problems in a starshaped domain C under the assumption
that the boundary of C is a closed Lipschitz curve parametrized angularly, so
that an appropriate transformation of coordinates can be introduced. Then
the elliptic problem can be reduced to a variational-differential problem on
a semi-infinite strip in the new coordinates; this method yields an effective
way to solve a wide range of elliptic problems. In [214] it was verified that for
the Green function g(P ) of a region D in 3-space, starshaped with respect to
the origin as pole, all regions Dk = {P : g(P ) > k} are also starshaped with
respect to the origin. Stoddart [485] continued this with corresponding results
for harmonic functions, replacing the pole at the origin with a starshaped
continuum.

It is well known that the wave equation is an important second-order linear
partial differential equation for the description of waves. There are also results
combining the wave equation explicitly with starshapedness. The authors of
[141] studied the wave equation in a bounded, starshaped domain with a non-
linear dissipative boundary condition. Under various assumptions on nonlin-
earity they proved decay estimates on the energy of the solutions. In [50]
traveling waves for a nonlinear diffusion equation with bistable or multistable
nonlinearity were investigated. The goal was to study how a planar traveling
front interacts with a compact obstacle that is placed “in the middle” of the
space. In particular, starshaped obstacles were taken into consideration. As
a first step, the existence and uniqueness of an entire solution that behaves
like a planar wave front approaching from infinity and eventually reaching the
obstacle, was shown. This causes disturbance on the shape of the front, but the
solution gradually recovers its planar wave profile and continue to propagate
in the same direction, leaving the obstacle behind. Whether the recovery is
uniform in space was shown to depend on the shape of the obstacle. In [426],
the authors verified the almost global existence of solutions to quasilinear wave
equations in the complement of starshaped domains in 3-space which satisfy
a certain boundary condition.
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19.5. Starshapedness in fixed point theory

It is well known that starshaped sets also play a role in fixed point theory. We
want to present some results in this spirit, also selected due to their strong
relation to the geometry of starshaped sets. These results mainly occur in (cer-
tain types of) Banach spaces and, more generally, in topological vector spaces.
We note that in this subsection some results interesting from the viewpoint
of approximation theory are cited; thus it is natural to refer here also to our
subsection on approximation theory.

Dotson [168] showed that if C is a compact starshaped subset of a Banach
space X and T : C → C denotes a nonexpansive mapping (i.e., ‖Tx − Ty‖ ≤
‖x − y‖ for x, y ∈ X), then T has a fixed point in C. A related result on weakly
compact starshaped subsets of Banach spaces was derived, too. Closely related,
certain well-known fixed point theorems for (compact, condensing, nonexpan-
sive) mappings defined on convex sets were extended to starshaped subsets of
certain linear topological Hausdorff spaces in [425]. E.g., a nonexpansive map-
ping defined on a bounded closed starshaped subset C of a Hilbert space that
maps the boundary of C into C has a fixed point. Similar results (also treating
special linear topological Hausdorff spaces) were derived in [423], see also the
announcement [424]. Akkouchi [5] investigated asymptotically nonexpansive
mappings defined on unbounded starshaped sets, confirming the existence of
fixed points and hence generalizing similar results holding for bounded convex
sets; the papers [1,174] contain results in the same direction. Continuing [168],
in [134] the following was proved for a closed, starshaped subset C of a Banach
space and a nonexpansive mapping T : C → C: if there exists a subset of C, an
attractor for compact sets, then T has a fixed point in C. An analogous result
for certain self-maps of bounded closed starshaped subsets of convex metric
spaces can be found in [38]. In [64] it was shown that a convex subset K of a
Banach space X is closed iff every contraction of X leaving K invariant has
a fixed point in K. This yields the result that a normed space is complete iff
each contraction on the space has a fixed point. It was also proved that these
results fail if the convexity property is replaced by starshapedness. The authors
of [395] showed that for closed starshaped subsets of finite dimensional Banach
spaces compactness and the fixed point property for nonexpansive mappings
are equivalent. Leaving the concept of self-mappings, Kuhfittig [321] showed
the following result. Let C be a starshaped closed subset of a Banach space,
and K be a subset of C. If K is a closed [compact and starshaped] subset of
C, and C is also starshaped with respect to K, then the following implication
holds. If T : K → H is contractive [non-expansive], also mapping the relative
boundary of K back into K, then T has a fixed point in K. Among other
related results, Carbone [124] proved that for a nonempty closed starshaped
subset C of a normed linear space X and a nonexpansive map f : C → X
with f(C) compact and f(bdC) ⊂ C, f has a fixed point. In [374], fixed
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point theorems for nonexpansive multivalued mappings are obtained. E.g., let
C be a nonempty, closed and starshaped subset of a Banach space X. If T
maps C into the set of all compact subsets of X and is nonexpansive so that
T (K) is bounded and satisfies a few further elementary conditions, then T
has a fixed point. Yanagi [546] considered weakly compact starshaped subsets
of uniformly convex Banach spaces and nonexpansive fixed-point mappings
therein. The authors of [260] called a subset C of the separable Banach space
X of all real sequences convergent to 0 coordinatewise starshaped (c.s.s.) with
respect to x ∈ C if, for any y ∈ C and z ∈ X, z being coordinatewise between
x and y implies that z ∈ C. They proved that weakly compact c.s.s. subsets
of X have the fixed point property for nonexpansive mappings, and that the
fixed points of such mappings can be constructed in an efficient way. Contin-
uing [260], Dowling and Turett [169] showed that, for closed, bounded c.s.s.
sets, the fixed point property is equivalent to weak compactness. In [422],
several classes of nonexpansive set-valued self-mappings of bounded, closed,
starshaped sets in Banach spaces were considered. Using the Baire category
approach (see our subsection 19.8 below), it was shown that in these classes
most mappings are contractive. In particular, this holds for a certain class of
compact-valued mappings, implying that a generic mapping in this class has a
fixed point. The paper [284] contains similar results on set-valued mappings in
view of Brouwer’s theorem and defined over starshaped sets, and in a related
spirit the Borsuk–Ulam antipodal theorem is also extended to the starshaped-
ness framework. In [243] the existence of fixed points for nonexpansive and
equicontinuous mappings in convex and starshaped metric spaces (including
the case of Banach spaces and their starshaped subsets) was proved, thus also
generalizing various results presented above.

Now we present some results on Hilbert spaces. The author of [219] proved
some fixed point theorems for nonexpansive mappings on starshaped sets in
a Hilbert space. The main result is as follows: Let C be a starshaped, closed
subset of a Hilbert space and T : C → C a nonexpansive mapping such that
some bounded set C0 ⊂ C is mapped into itself; then T has a fixed point in C.
Using the concept of attractive points of a nonlinear mapping, the authors of [3]
obtained a strong convergence theorem for nonexpansive mappings, also con-
cerning starshaped subsets of Hilbert spaces; these results implied a new fixed
point theorem. In [397], attractive points of a class of generalized nonexpansive
mappings on starshaped sets in a real Hilbert space were studied, and strong
convergence theorems of iterative sequences generated by these mappings were
established. Furthermore, the approximation of common attractive points of
generalized nonexpansive mappings was investigated, and a strong convergence
theorem by a new iteration scheme for these mappings was obtained.

Taylor [490] established variants of fixed point theorems for nonexpansive
mappings on starshaped sets holding even in linear topological vector spaces.
Zhang [559] showed that a closed subset C of a topological vector space is a



1062 G. Hansen et al. AEM

starshaped subset with center x0 if and only if {x + λ(y − x) : y ∈ C, λ ≥ 1}
with x ∈ C is a family of starshaped subsets with a common center x0. In
[407] Birkhoff–Kellogg type theorems (which generalize Brouwer’s famous fixed
point theorem) for starshaped subsets of topological vector spaces and com-
pact mappings were studied. A generalization of Ky Fan’s fixed point theorem
(which extends traditional fixed point theorems to set-valued mappings) for
compact starshaped subsets of topological vector spaces was proved in [48].
The authors of [273] derived an interesting related extension of the Markov–
Kakutani fixed-point theorem to compact starshaped sets.

As announced, we finish this subsection by mentioning results close to
approximation theory. Schu investigated in [455] the iterative approximation
of a fixed point of a nonexpansive mapping with starshaped domain in certain
reflexive Banach spaces. More precisely, for a subset C of a Banach space, a
mapping T : C → C is said to be asymptotically nonexpansive if T is Lips-
chitzian and the Lipschitz constants ln of the iterates of T converge to 1 as
n → ∞ (the case of nonexpansive mappings is given by ln = 1). For starshaped
domains C, in [457] some iteration schemes leading to the construction of fixed
points of T were derived. The Browder–Göhde–Kirk theorem says that if T is
a nonexpansive self-mapping of a nonempty, bounded, closed convex subset C
of a uniformly convex Banach space, then T has a fixed point in C (see also
[423]). A new version of this theorem, valid for starshaped subsets of a reflex-
ive space with the Kadec–Klee property, was obtained in [456], together with
some applications and construction principles to get the corresponding fixed
point. In invariant approximation theory, occasionally results from fixed point
theory are used. In this spirit, several theorems on nonexpansive mappings,
particularly also defined on the class of starshaped sets, were proved in [135],
thereby extending known results in this field.

19.6. Starshaped sets in approximation theory

Also in approximation theory starshaped sets play an interesting role. In most
cases where they occur, the corresponding results are related to Banach space
theory, fixed point theory, and convexity.

In particular, methods and results from fixed point theory (see the respec-
tive subsection) are also used in approximation theory, and our first paragraph
here gives examples in this direction. Slightly generalizing [168], Habiniak [251]
proved that the following holds for a closed starshaped subset S of a normed
linear space: if T : S → S is nonexpansive and the closure of T (S) is compact,
then T has a fixed point. This is then suitably applied to the problem of invari-
ant approximation; namely, if T is a nonexpansive operator on a normed linear
space with a fixed point a, leaving a subspace M invariant, and if T |M (the
restriction of the operator to M) is compact, then a has a best approximation
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b in M , which is also a fixed point of T . However, we have to mention that ear-
lier Singh [465] got a slightly more general result on starshaped, compact sets.
Also generalizing results of Dotson [168] and Taylor [490], in [277] a common
fixed point theorem for two self-maps R,S on a set M in a Hausdorff locally
convex space (M having starshapedness properties) was derived, and its appli-
cations to best approximation operators were given. In [398] two self-mappings
R,S on a weakly compact subset M of a Banach space were considered, where
M has starshapedness properties, and R,S satisfy certain affine conditions.
In [11] also pairs of self-maps were studied. Let D be a closed subset of a
normed linear space, let R and S be self-maps of D with R(D) ⊂ S(D), and
x be a fixed point of S. If D is starshaped with respect to x, the closure of
R(S) is compact, S is continuous and linear, S and R are commuting and
R is S-nonexpansive, then R and S have a common fixed point. Based on
this theorem, some known results on fixed points and common fixed points
of best approximations are generalized. Also the following result of Ganguly
[199], using fixed point theorems for best approximation, touches starshaped-
ness explicitly: Let T be a generalized nonexpansive mapping on a normed
linear space X, M a T -invariant subset of X, and x a T -invariant point. If the
set of best M -approximants to x is compact and starshaped, then it contains
a T -invariant point. This generalizes the result obtained in [465] for T being
nonexpansive in the usual sense. The same author (see [200]) generalized [465]
in another direction, namely replacing the usual starshapedness of M with
some modified notion of starshapedness. Here we also refer to [403].

Toranzos [508] proved that, in the sense of Hausdorff metric, compact star-
shaped sets can be uniformly approximated by starshaped polytopes and star-
shaped smooth sets.

Let A be a nonempty closed proper subset of a reflexive Banach space.
A point x0 in the starshaped and bounded set S is called a solution of the
minimization problem (dA, S) if the distance d (x0, A) equals the infimum of
{d (x,A) : x ∈ S}. The problem (dA, S) is said to be well posed if it has a
unique solution and if every minimizing sequence converges to the solution.
The authors of [154] proved that the family of starshaped sets S such that
(dA, S) is well posed forms a dense Gσ-subset of the metric space (under the
Hausdorff distance) of starshaped closed and bounded subsets of the considered
Banach space which are at a positive distance from A. Analogous results for
maximization problems are verified under the additional hypothesis that A is
convex, as well as for approximation by elements of convex sets; when S is
assumed to be convex then reflexivity can be dropped.

In [36] it was shown that for a normed linear space X the following holds:
if μ is a regular (i.e., finite on compact sets, and compact inner regular and
outer regular on Borel sets) Borel measure on X, then the nowhere dense
closed bounded starshaped sets of measure zero are σ-dense in the closed
bounded starshaped sets. The authors of [383] derived approximation results
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in normed spaces generated by certain starshaped cones. They first introduced
these starshaped cones (which have nonempty kernel and are representable as
unions of closed convex pointed cones whose intersection has interior points),
and then they derived best approximation results with respect to closed sets
in such normed spaces.

A famous Weierstrass theorem asserts that every continuous function on a
compact set in d-dimensional space can be uniformly approximated by alge-
braic polynomials. The study of the same question for the important subclass
of homogeneous polynomials containing only monomials of the same degree
yields the conjecture that every continuous function on the boundary of con-
vex centered bodies can be uniformly approximated by pairs of homogeneous
polynomials. In [320] the recent progress on this conjecture is reviewed, and a
new unified treatment of the same problem on starshaped domains is investi-
gated. It is proved that the boundary of every centered non-convex starshaped
domain contains an exceptional zero set so that a continuous function can
be uniformly approximated on the boundary of the domain by a sum of two
homogeneous polynomials if and only if the function vanishes on this zero set.
Hence this approximation problem amounts to the study of these exceptional
zero sets, and intersections of starshaped domains concerning this framework
are studied, too.

More applied in nature, in [158] the approximation of starshaped surfaces
in Euclidean 3-space in the spirit of certain spline functions was studied. Given
a finite number of points in such a starshaped surface M , related minimization
and triangulation procedures were used to get a starshaped surface M∗ suitably
approximating M ; the surface M∗ was constructed by means of a certain
scalar-valued interpolant, which also gives rise to some error estimates. The
authors of [23] studied the “consistent approximation” of a starshaped set S
from a random sample of n points from S, e.g. with respect to the Hausdorff
metric. They used an “estimator” defined as the union of balls centered at the
sample points with a common radius which can be chosen in such a way that
this estimator is also starshaped. These results are also related to statistical
image analysis.

19.7. Applications of starshapedness in optimization

The notion of starshapedness also occurs in many papers discussing optimiza-
tion and control theory, e.g. combined with suggestive examples or as a basic
property of the considered domains or used functions. It is impossible to give a
complete picture where starshapedness explicitely occurs in these disciplines.
Thus, again we only select some results directly related to geometric properties
of starshaped sets. Starshapedness of the considered domains is discussed first,
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followed by a brief discussion of a few results on (approximately) starshaped
functions used in this framework.

Many practical problems can only be modelled as non-convex optimization
problems so that it is natural and interesting to weaken convexity assumptions.
Clearly, starshapedness means that in the definition of convexity one of the
two variable endpoints of an arbitrary contained segment is fixed, and precisely
this weakening is important for the relations between variational inequalities
and optimization theory. E.g., Crespi et al. (see [145,146]) made explicit use of
the concept of starshaped domains to study certain scalar variational inequali-
ties, scalar optimization problems and suitable generalizations, where also the
existence of solutions lying in the kernels of the considered starshaped domains
plays an important role.

A quasiconvex function is a real-valued function defined on an interval or a
convex subset of a real vector space so that the inverse image of any set of the
form (−∞, a) is a convex set. This concept generalizes that of convexity and
arises almost naturally when functions of one variable are involved, but differ-
ences occur when functions of several variables are studied. For this case it was
shown in [147] that the existence of a solution of the investigated variational
inequalities does not necessarily imply the quasiconvexity of the considered
function but that the level sets of the function must be starshaped at a point
which is a solution. Similar assumptions were made in [140]. In [15], quasi-
convex mathematical programming problems having equilibrium constraints
with locally starshaped constraint regions were studied. While usual necessary
conditions of optimality become sufficient when the feasible region is star-
shaped and the ojective function has the pseudoconvexity property (which is
in general stronger than quasiconvexity), the usual necessary condition may
not be sufficient for the weaker quasiconvex case. The authors introduced a
new necessary condition of optimality using the normal cone to the sublevel
set instead of the subdifferential of the objective function, and it turned out
that this is also sufficient in the case of quasiconvexity; local starshapedness
of the constraint set is an important geometric tool in that paper. In [394]
it was shown that locally starshaped domains can play an essential role in
multiobjective programming, since semilocally convex functions have certain
convex-type properties. Vector optimization problems with semilocally con-
vex objective functions defined on locally starshaped sets were studied, the
authors derived respective saddle point and Kuhn–Tucker conditions, and a
related duality theory was developed.

In the paper [10] approximate starshapedness was investigated in connec-
tion with several basic types of subdifferentials. Based on vectorial definitions
of the studied topics, their relations were considered also using results from
[412]. In [10] the authors extended the concepts of approximate starshapedness
and equi-subdifferentiability to the case of vector functions. They established



1066 G. Hansen et al. AEM

relations between approximate efficient solutions of multiobjective optimiza-
tion problems and solutions of associated vector variational inequalities for
approximate starshaped vector functions.

Fang and Huang [183] used starshaped sets to investigate the well-posedness
of vector optimization problems. Also related to vector optimization and using
a generalized domination property, in [272] the lower convergence of minimal
sets in sequences of starshaped sets in related optimization problems was dis-
cussed.

In [212] a class of abstract parabolic variational problems is studied, where
the set of all admissible elements is closed and starshaped with respect to a ball.
Due to this starshapedness type, the corresponding variational formulation is
no longer a variational inequality, and the authors proved the existence of cor-
responding solutions and gave further results. The starshapedness assumption
enables the use of a discontinuity property of the generalized Clarke subdiffer-
ential of the distance function.

All well known extremal principles for conformal mappings of simply con-
nected regions yield mappings onto disks D. Using sub-norms it was shown in
[401] that given an arbitrary starshaped region D as range, a corresponding
extremal principle is valid if one replaces the ordinary modulus with a suit-
able positively homogeneous functional. In [118] this method, to approximate
the conformal mapping of D onto the interior of a starshaped region, was
generalized considering univalent harmonic mappings of D.

As announced, we only briefly mention a few results on starshaped func-
tions. We recall that a function f : [0, 1] → R is said to be starshaped if for
all a, 0 ≤ a ≤ 1, f(ax) ≤ af(x) for 0 ≤ x ≤ 1. Hummel [276] presented a
systematic, fundamental investigation of the definition of a multivalent star-
like function. Six possible definitions were derived, each of which reasonably
leads to a class of such functions. In [411] the author introduced a starshaped
conjugate of a function f in such a way that the biconjugate of f coincides
with the greatest lower semicontinuous starshaped function which minorizes f .
Properties of this interesting duality relation were studied, and in [412] differ-
ent types of subdifferentials of the difference of two approximately starshaped
functions were investigated. Ubhaya [523] investigated a curve fitting problem
involving the minimization of the distance from a funtion to a convex cone
of functions whose domain is a partially ordered set. He applied his results
to the approximation of starshaped functions. The author of [487] considered
starshaped subsets of the complex plane and univalent functions on the unit
disk which are geometrically starlike. The purpose of this paper is to exhibit a
broad collection of such functions, where the geometrically interesting notions
of annular and geometric starlikeness occur.
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19.8. Further topics

In this subsection we want to mention some further isolated topics and results
which refer to or use the concept of starshapedness.

As it was done with convex bodies, it is natural to also consider starshaped
bodies with fractal boundaries as objects, which are interesting from the view-
points of convex geometry and fractal geometry. In [263], the notion of fractal
star body was introduced and studied regarding basic geometric properties.
Also operations within the family of fractal star bodies were investigated, and
it was shown how the fractal property limits the possible values of the topolog-
ical dimension of their kernels. In view of fractal limit sets, the author of [213]
studied an algorithm that modifies the well-known inversion in a circle for sets
that are starshaped. He presented examples including the change of centers of
the inversion circles, the change from inversion circles to squares and also to
sets which are properly starshaped.

A planar set K is called a Kakeya set if a segment of length 1 can be rotated
continuously inside K to return to its original position with its endpoints
reversed. The Kakeya problem asks for the smallest area that Kakeya sets
can have, and Besicovitch has shown that this area can be arbitrarily small
(see the discussion in subsection G6 of [148]). Cunningham [149] continued
Besicovitch’s investigations of the Kakeya problem, and one of his results says
that any Kakeya set that is also starshaped cannot have area less than π/108;
however, it is known that this is not the best value.

Inspired by the concept of random convex sets, for which the recourse to
tools like support functions and Minkowski addition is common, the authors
of [421] propagated the use of radial functions instead, and the study of the
more general concept of random starshaped sets. They introduced the analo-
gous concepts of expected value and variance, various further notions (such
as mean directional length) and suggested also some comparative measures
for centered starshaped sets. With a link to fixed point theorems (see our
respective subsection), the authors of [37] proved some random fixed point
theorems for asymptotically nonexpansive random operators defined on star-
shaped subsets of Banach spaces, hence obtaining a stochastic generalization
of comparable results on convex sets. Also in the fields of probabilistic mod-
elling and stochastic representations, the geometry of starshaped sets can be
explicitly used. In [427], such representations were studied for geometrically
described distributions. Based on known results, the author established a geo-
metric disintegration method for deriving even starshaped distributions, whose
basic properties and applications are discussed, as well as some necessary back-
ground from metric non-Euclidean geometry. Further on, in view of stochastic
representations of correspondingly distributed random vectors, in [428] the
authors investigated starshaped distributions whose shapes are based on topo-
logical boundaries of polyhedral sets.
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Baire category results deal with the typical behavior of convex bodies in
the following sense. We say that most convex bodies have a certain property
if those convex bodies which fail to have that property form a meager or first
category subset of the space of all convex bodies (i.e., a countable union of
nowhere dense sets in this Baire space, see [233]). In many cases, the typical
behavior of convex bodies turns out to be counterintuitive. Also the notions of
starshaped sets and Baire spaces can be successfully combined; see, e.g., [34]
treating kernels and [484] regarding the nearest point mapping. From [550] we
learn that the set of all compact starshaped sets in Euclidean d-space, endowed
with the Hausdorff metric, is a Baire space, that for most compact starshaped
sets their kernels consist of precisely one point x, and that the directions
in which they extend from x are dense in the unit sphere (see also below, the
discussion of [155]). In [237] results from [550] were reproved, and the following
was shown: Typical compact starshaped sets have non-σ-finite 1-dimensional
Hausdorff measure, but they are still of Hausdorff dimension 1. The three
surveys [233,549,552] discuss Baire categories in convexity and geometry, and
they also discuss related results on starshaped sets and compact sets (see, in
particular, Sect. 13 of the Handbook article [233]). In addition, we mention
[422] (see our subsection on fixed point theory) and the papers [152,153] (cited
in [233] as manuscripts). [155] completes the work in the latter ones, and
contains the following: In a real Banach space E endowed with the Hausdorff
metric, let S(E) be the family of all nonempty, compact, starshaped subsets of
E. Let pr(X) be the metric projection onto the set X which associates to each
a ∈ E the set of all points in X closest to a, and let A(X) be the ambiguous
locus of X, i.e., the set of all a ∈ E whose projection prX(a) has positive
diameter. In a complete metric space (that we have here) the complement of
any set of the first Baire category is called a residual subset, and its elements
are then called typical. The authors proved that in a strictly convex separable
Banach space E of dimension at least two, a set A (as the union of all X ∈ S(E)
with ambiguous locus A(X) uncountable everywhere) is a residual subset of
S(E). It was also proved that a typical element of S(E) has a kernel consisting
of a single point and a set of extension directions dense in the unit sphere of
E.

Also in potential theory the concept of starshapedness occurs explicitly.
Novikov [399] called the following problem the “inverse problem of potential
theory”: given a positive mass distribution φ on a bounded region M , try to
determine M if the potential of φ in the neighborhood of infinity is known. In
general, this problem has no unique solution, but if φ has density 1 on M and
M has smooth boundary and is starshaped with respect to the origin, then
M is uniquely determined by the exterior potential of φ. These considerations
were continued in [495], see also Chapter 3 of the monograph [278]. Margulis
[364] proved that for the Newtonian potential of a starshaped domain of con-
stant density ε, there is, for any ε0 < ε, a starshaped domain of density ε0
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creating the same outside Newtonian potential. Results of this type were also
comprehensively discussed in [278].

Bifocal curves in the Euclidean plane are defined by having, with respect
to two focal points, constant sums (ellipses), absolute differences (hyperbolas),
products (Cassini curves) or ratios (Apollonius circles) of distances. These con-
cepts naturally extend to higher dimensions, real Banach spaces and, in the
case of constant sums or products, to finitely many focal points. The authors of
[280] studied such multifocal curves and surfaces in real vector spaces defined
by gauges (i.e., by “generalized norms”, not necessarily satisfying the symme-
try axiom). In the case of multifocal Cassini curves and surfaces starshaped-
ness plays a significant role. E.g., a multifocal Cassini curve is starshaped in
this framework if its radius is sufficiently large, and for sufficiently small radius
it consists of starshaped components around the focal points.

The work [384] interprets symmetric stable laws using also starshaped sets
and recent results from convex geometry to come up with new probabilistic
results for multivariate symmetric stable distributions.

Finally, we mention a few references from infinite dimensional analysis,
where starshaped sets were explicitly taken into consideration (However, we
note that such results have already been given in other parts of our paper,
e.g. in the subsections on fixed point theory and approximation theory.). Star-
shaped bodies are also interesting in analysis because, among other things,
they are related to polynomials and smooth bump functions as well as for
their geometrical properties, also yielding topological observations. E.g., Klee
first gave a topological classification of convex bodies in a Hilbert space, and
this was generalized for every Banach space with the help of Bessaga’s non-
complete norm technique. In [18] the question to what extent known results on
the topological classification of convex bodies can be extended to starshaped
bodies was studied; one of the results follows the mentioned Bessage–Klee
scheme (see [18] for a historical discussion) regarding the topological classifi-
cation of convex bodies, and another one gives a new classification scheme in
terms of the homotopy type of the boundaries of starshaped bodies (holding in
full generality provided the considered Banach space is infinite-dimensional).
Since every convex body is starshaped, one may ask whether the famous James’
theorem (characterizing reflexivity) remains true if the word “convex” in this
theorem is replaced by “starshaped”. The authors of [17] disproved this con-
jecture with a Hilbert-space construction.

It is well-known that in a finite-dimensional Banach space there is no con-
tinuous retraction from the unit ball onto the unit sphere. This is no longer
true in infinite dimensions; for every infinite-dimensional space there exists a
Lipschitz retraction from the unit ball onto the unit sphere. The authors of
[16] showed that this result can be sharpened. They proved that the bound-
ary of a smooth Lipschitz bounded starlike body in an infinite-dimensional
Banach space is smoothly Lipschitz contractible; furthermore, the boundary
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is a smooth Lipschitz retract of the body. In the expository paper [19], the
authors contributed to an intriguing problem: provide a characterization of
those infinite-dimensional Banach spaces which admit diffeomorphism delet-
ing points with a bounded support. Several sufficient conditions for a Banach
space to have diffeomorphism deleting points were provided. All of these con-
ditions are of geometric flavour and involve the existence of certain families of
smooth starshaped bodies. Also the “Four Bodies Lemma” was obtained: given
four smooth and radially bounded starshaped bodies with the same character-
istic cone and such that every body is contained in the interior of the following
one, there is a diffeomorphism carrying the second body onto the third one
and being the identity inside the first one and outside the fourth one.
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[388] Moszyńska, M.: Selected Topics in Convex Geometry. Birkhäuser, Berlin (2006)
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gons. Geombinatorics 25(1), 36–44 (2015)

[440] Rubin, B.: On the determination of star bodies from their half-sections. Mathematika
63(2), 462–468 (2017)

[441] Rubinov, A.M.: Abstract Convexity and Global Optimization. Kluwer Academic Pub-
lishers, Berlin (2000)

[442] Rubinov, A.M.: Radiant sets and their gauges. In: Quasidifferentiability and Related
Topics, pp. 235–261, Nonconvex Optim. Appl., vol. 43. Kluwer Acad. Publ., Dordrecht
(2000)

[443] Rubinov, A.M., Sharikov, E.V.: Star-shaped separability with applications. J. Convex
Anal. 13(3–4), 849–860 (2006)

[444] Rubinov, A.M., Shveidel, A.P.: Separability of star-shaped sets with respect to infinity.
In: Progress in Optimization (Perth, 1998), pp. 45–63, Appl. Optim., vol. 39. Kluwer
Acad. Publ., Dordrecht (2000)

[445] Rubinov, A.M., Yagubov, A.A.: The space of star-shaped sets and its applications
in nonsmooth optimization. In: Quasidifferential Calculus. Math. Programming Stud.
No. 29, pp. 176–202 (1986)

[446] Rubinov, A.M., Yagubov, A.A.: Spaces of sets that are star-shaped in the cone sense
(Russian; English and Azerbaijani summary). Akad. Nauk Azerbăıdzhan. SSR Dokl.
42(3), 6–9 (1986)

[447] Ruppert, J., Seidel, R.: On the difficulty of triangulating three-dimensional nonconvex
polyhedra. Discrete Comput. Geom. 7(3), 227–253 (1992)

[448] Ryabogin, D.: On symmetries of projections and sections of convex bodies. In: Discrete
Geometry and Symmetry, pp. 297–309, Springer Proc. Math. Stat., vol. 234. Springer,
Cham (2018)

[449] Ryabogin, D., Yaskin, V.: Detecting symmetry in star bodies. J. Math. Anal. Appl.
395(2), 509–514 (2012)

[450] Sacksteder, R., Straus, G., Valentine, F.A.: A generalization of a theorem of Tietze
and Nakajima on local convexity. J. Lond. Math. Soc. 36, 52–56 (1961)

[451] Salani, P.: Starshapedness of level sets of solutions to elliptic PDEs. Appl. Anal. 84(12),
1185–1197 (2005)

[452] Scheuer, J.: Non-scale-invariant inverse curvature flows in hyperbolic space. Calc. Var.
Partial Differ. Equ. 53(1–2), 91–123 (2015)

[453] Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory. 2nd. expanded edition.
Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University
Press, Cambridge (2014)

[454] Schneider, R.: Zur einem Problem von Shephard über die Projektionen konvexer
Körper. Math. Z. 101, 71–82 (1967)

[455] Schu, J.: Iterative approximation of fixed points of nonexpansive mappings with star-
shaped domain. Commentat. Math. Univ. Carol. 31(2), 277–282 (1990)

[456] Schu, J.: A fixed point theorem for non-expansive mappings on star-shaped domains.
Z. Anal. Anwend. 10(4), 417–431 (1991)

[457] Schu, J.: Approximation of fixed points of asymptotically nonexpansive mappings.
Proc. Am. Math. Soc. 112(1), 143–151 (1991)

[458] Schuierer, S., Wood, D.: Multiple-guard kernels of simple polygons. J. Geom. 66(1–2),
161–186 (1999)

[459] Schuster, F.E.: Valuations and Busemann–Petty type problems. Adv. Math. 219(1),
344–368 (2008)



1088 G. Hansen et al. AEM

[460] Sengul, U.: About the characterization of convex kernel. Int. J. Pure Appl. Math.
19(2), 269–273 (2005)

[461] Shveidel, A.: Separability of starshaped sets and its application to an optimization
problem. Optimization 40, 207–227 (1997)

[462] Shveidel, A.: Recession cones of star-shaped and co-star-shaped sets. Optimization and
related topics (Ballarat/Melbourne, 1999), pp. 403–414, Appl. Optim., vol. 47. Kluwer
Acad. Publ., Dordrecht (2001)

[463] Shveidel, A.: Star-shapedness and co-star-shapedness of finite unions and intersections
of closed half-spaces. Eur. Math. J. 1(3), 134–147 (2010)

[464] Singer, I.: Abstract Convex Analysis. Wiley, Berlin (1997)
[465] Singh, S.P.: An application of a fixed-point theorem to approximation theory. J.

Approx. Theory 25(1), 89–90 (1979)
[466] Sirakov, N.M., Sirakova, N.N.: Inscribing convex polygons in star-shaped objects. In:

Combinatorial Image Analysis, pp. 198–211, Lecture Notes in Comput. Sci., vol. 10256.
Springer, Cham (2017)

[467] Smith, C.R.: A characterization of star-shaped sets. Am. Math. Monthly 75, 386 (1968)
[468] Smoczyk, K.: Starshaped hypersurfaces and the mean curvature flow. Manuscr. Math.

95(2), 225–236 (1998)
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[532] Van Gompel, G., Defrise, M., Batenburg, K.J.: Reconstruction of a uniform star object

from interior x-ray data: uniqueness, stability and algorithm. Inverse Problems 25(6),
065010, 19 p (2009)

[533] Vassiliou, P.J.: Contact geometry of curves. SIGMA Symmetry Integrability Geom.
Methods Appl., vol. 5, Paper 098, 27 p (2009)
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Institute of Mathematics
Warsaw University
ul. Banacha 2
02-097 Warsaw
Poland

Received: April 24, 2019

Revised: April 1, 2020


	Starshaped sets
	Abstract
	1. Introduction
	2. Basic notation and definitions
	3. Cones
	4. Starshaped sets and visibility
	5. Star generators: representations of the kernel
	6. Krasnosel'skii-type theorems
	7. Asymptotic structure of starshaped sets
	8. Support cones
	9. Separation of starshaped sets
	10. Extremal structure of starshaped sets
	11. Dimension of the kernel of a starshaped set
	12. Admissible kernels of starshaped sets
	13. Radial functions of starshaped sets
	14. Sums, unions, and intersections of starshaped sets
	15. Spaces of starshaped sets
	16. Selectors for star bodies
	17. Star duality, intersection bodies, and related topics
	18. Extensions and generalizations
	19. Applications and further topics
	19.1. Discrete and computational geometry
	19.2. Inequalities
	19.3. Starshapedness in differential geometry
	19.4. Starshaped sets and PDE
	19.5. Starshapedness in fixed point theory
	19.6. Starshaped sets in approximation theory
	19.7. Applications of starshapedness in optimization
	19.8. Further topics

	References




