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Abstract. In this paper we consider power means of positive Hilbert space operators both
in the conventional and in the Kubo–Ando senses. We describe the corresponding isomor-
phisms (bijective transformations respecting those means as binary operations) on positive
definite cones and on positive semidefinite cones in operator algebras. We also investigate
the question when those two sorts of power means can be transformed into each other.
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1. Introduction and statements of the results

Let p be a nonzero real number. The pth power mean Mp(t, s) of the positive
real numbers t, s is defined by

Mp(t, s) =
(

tp + sp

2

) 1
p

(1)

and it is one of the most fundamental kinds of means for numbers. Means of
positive (definite or semidefinite) matrices or Hilbert space operators are also
very important concepts having wide range of applications. Formula (1) above
can easily be extended to that setting at least in the positive definite case. In
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fact, using functional calculus, formally the same definition works fine, we just
write positive definite matrices or operators, or positive definite elements A,B
of a C∗-algebra in the place of the numbers t, s in (1):

(
Ap + Bp

2

) 1
p

.

The so obtained concept that can be called the conventional pth power mean is,
though very natural, not really satisfactory for the purposes of matrix theory
and operator theory. Indeed, the main disadvantage is that it is not monotone
in its variables with respect to the usual, Löwner order, which comes from the
concept of positive semidefiniteness. The ’proper’ definition of the power mean
in the case where p ∈] − 1, 1[, p �= 0 is the following one:

A
1
2

(
I + (A− 1

2 BA− 1
2 )p

2

) 1
p

A
1
2 .

Let us explain this in a bit more details.
Probably the most important notion of means for positive semidefinite ma-

trices or Hilbert operators is due to Kubo and Ando [6]. Very briefly, it can be
summarized as follows. Let H be a complex Hilbert space. Denote by B(H)+

the convex cone of all bounded positive semidefinite linear operators on H.
We say that a binary operation σ on B(H)+ is a Kubo–Ando mean if the
following requirements are fulfilled (from (a) to (d), all operators are supposed
to belong to B(H)+):

(a) IσI = I;
(b) if A ≤ C and B ≤ D, then AσB ≤ CσD;
(c) C(AσB)C ≤ (CAC)σ(CBC);
(d) if An ↓ A and Bn ↓ B strongly, then AnσBn ↓ AσB strongly (the sign ↓

refers to monotone decreasing convergence in the usual (Löwner) order
among self-adjoint operators).

Convex combination among Kubo–Ando means is defined in the straightfor-
ward, natural way. The celebrated result, Theorem 3.2 in [6] says that, for
infinite dimensional H, there is an affine isomorphism from the class of all
Kubo–Ando means σ on B(H)+ onto the class of all operator monotone func-
tions f :]0,∞[→]0,∞[ with the property f(1) = 1 which is given by the formula
f(t)I = IσtI, t > 0. For invertible A,B ∈ B(H)+, we have

AσB = A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 . (2)

Observe that the theorem above implies that Kubo–Ando means do not de-
pend on the underlying Hilbert spaces, they only depend on certain (very
special) real functions. By property (d) we obtain that formula (2) extends
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to any invertible A ∈ B(H)+ and arbitrary B ∈ B(H)+. The most distin-
guished Kubo–Ando means are naturally the arithmetic mean with represent-
ing function t �→ (1 + t)/2, the harmonic mean with representing function
t �→ (2t)/(1 + t) and the geometric mean with representing function t �→ √

t,
t > 0. For invertible A,B ∈ B(H)+, those means of A,B are in turn the
following operators

A + B

2
, 2(A−1 + B−1)−1, A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 .

Below, whenever we write σ, f , we always mean that σ is a Kubo–Ando mean
and f is its representing operator monotone function. We know from the deep
theory of operator monotone functions that each such f has a holomorphic
extension to the complex upper half plane. The transpose σ′ of the Kubo–Ando
mean σ is the mean satisfying Aσ′B = BσA, A,B ∈ B(H)+. Its representing
function is t �→ tf(1/t), t > 0. The Kubo–Ando mean σ is called symmetric
if σ′ = σ. The adjoint σ∗ of σ is the Kubo–Ando mean satisfying Aσ∗B =
(A−1σB−1)−1 for all invertible A,B ∈ B(H)+. Its representing function is
t �→ 1/f(1/t), t > 0. Clearly, the arithmetic, harmonic and geometric means
are symmetric Kubo–Ando means and the former two are the adjoints of each
other.

In what follows, we introduce some notation. If A is a C∗-algebra (in this
paper all C∗-algebras are assumed to be unital), then A + stands for the set
of all positive semidefinite elements of A , i.e. elements which are self-adjoint
and have nonnegative spectrum. It is called the positive semidefinite cone of
A . The subset A ++ of A + containing the positive definite elements, i.e. the
invertible elements in A +, is called the positive definite cone of A .

As already referred to above, for any nonzero p, we define the conventional
pth power mean mp on A ++ by the formula

AmpB =
(

Ap + Bp

2

) 1
p

, A,B ∈ A ++.

The Kubo–Ando pth power mean mp corresponds to the operator monotone
function

t �→
(

1 + tp

2

) 1
p

, t > 0.

In fact, it is known that for the operator monotonicity of this function we need
to assume that p ∈] − 1, 1[, see Theorem 4 in [3]. So, for such p, we define

AmpB = A
1
2

(
I + (A− 1

2 BA− 1
2 )p

2

) 1
p

A
1
2 , A,B ∈ A ++. (3)

It can be easily seen that for commuting A,B ∈ A ++ we have

AmpB = AmpB. (4)
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In this paper we discuss maps respecting the operation of power means.
Similar studies were made for the arithmetic and harmonic means in [10] and
for the geometric mean in [9] on the positive semidefinite cone B(H)+. Related
results concerning the positive definite cones in C∗-algebras were presented in
[15]. Propositions 1 and 2 in [15] describe all bijective maps between posi-
tive definite cones in C∗-algebras which preserve either the arithmetic or the
harmonic mean, while Theorem 4 in [15] gives the precise structure of continu-
ous bijective maps between the positive definite cones in von Neumann factors
which preserve the geometric mean. The results which we present here are sim-
ilar to those in the sense that also here it turns out that the transformations
under considerations are closely related to the so-called Jordan *-isomorphisms
between the underlying algebras.

Real functions respecting means of real numbers were considered in a num-
ber of papers under the name ’mean affine functions’. We mention only a few
of them: [2,8,18]. The concept appears also in the fundamental book [1] on
functional equations, see page 251. The problems we consider here are clearly
related to those investigations but our setting here is much more complicated.

In our first three results we deal with power mean respecting maps in
the context of C∗-algebras. As for the conventional power mean, we have the
following description of the corresponding maps.

Theorem 1. Let p be a nonzero real number, A ,B be C∗-algebras and let φ :
A ++ → B++ be a bijective map. Then φ satisfies

φ(AmpB) = φ(A)mpφ(B), A,B ∈ A ++

if and only if there are a Jordan *-isomorphism J : A → B and an element
D ∈ B++ such that

φ(A) = (DJ(A)pD)
1
p , A ∈ A ++.

The concept of Jordan *-isomorphisms (or, in other words, C∗-isomorphisms)
that appears here is of fundamental importance in the theory of operator al-
gebras for many reasons. In a certain sense they are the most important sorts
of isomorphisms between those structures. The bijective map J : A → B
between ∗-algebras A and B is called a Jordan *-isomorphism if it is linear,
preserves the Jordan product, i.e.,

J(AB + BA) = J(A)J(B) + J(B)J(A), A,B ∈ A ,

and preserves also the *-operation, i.e.,

J(A∗) = J(A)∗, A ∈ A .

The point of the theorem above is that, as it shows, if a bijective map between
the positive definite cones of C∗-algebras preserves a conventional power mean,
then it is necessarily closely related to a bijective linear transformation between
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the underlying algebras which is a kind of multiplicative (with respect to the
Jordan product).

In the next result we obtain a description of the Kubo–Ando power mean
preserving bijections of positive definite cones. However, here we need to as-
sume the continuity of the transformations.

Theorem 2. Let p ∈ [−1, 1] be a nonzero real number, A ,B be C∗-algebras
and let φ : A ++ → B++ be a continuous bijective map. Then φ satisfies

φ(AmpB) = φ(A)mpφ(B), A,B ∈ A ++

if and only if there are a Jordan *-isomorphism J : A → B and an element
D ∈ B++ such that

φ(A) = DJ(A)D, A ∈ A ++.

It is interesting to observe that, for p �= ±1, the groups of (continuous)
automorphisms of the operations mp and mp are different, which implies that
the operations themselves are also quite different in general. But on the positive
definite cones in commutative C∗-algebras, the conventional and Kubo–Ando
power means obviously coincide. We will prove that the converse is also true.
In fact, we will show the much stronger result that if one positive definite cone
equipped with the conventional power mean is isomorphic (via a continuous
bijection) to another positive definite cone equipped with the Kubo–Ando
power mean, then the underlying algebras are necessarily commutative. The
precise statement reads as follows.

Theorem 3. Let p ∈] − 1, 1[ be a nonzero real number and let A ,B be C∗-
algebras. Assume that φ : A ++ → B++ is a continuous bijective map such
that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ A ++.

Then the algebras A ,B are necessarily commutative.

We now turn to the case of positive semidefinite cones. In the remaining
results, let H be a complex Hilbert space. Since mp is a Kubo–Ando mean,
AmpB is defined for any pairs of elements of B(H)+. As for the conventional
power mean mp, it is no problem to define it on B(H)+ when p is positive.
But how to define it for negative p? We can handle the case −1 ≤ p < 0 as
follows. Observe that with q = −p, for positive invertible A,B ∈ B(H)+ we
have

AmpB =
(

A−q + B−q

2

)− 1
q

= (Aqm−1B
q)

1
q .

If A,B ∈ B(H)+ are arbitrary and An, Bn ∈ B(H)+ are invertible, they form
norm bounded sequences for which An ↓ A, Bn ↓ B in the strong operator
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topology, then we have the same type of convergence for the qth powers. In-
deed, this follows from the operator monotonicity of the function t �→ tq and
from the fact that any continuous bounded real function is strongly continu-
ous (see 4.3.2. Theorem in [17]). By the property (d) of Kubo–Ando means,
we deduce that Aq

nm−1B
q
n ↓ Aqm−1B

q strongly and then that (Aq
nm−1B

q
n)

1
q

converges to (Aqm−1B
q)

1
q strongly (however, monotonicity is no longer guar-

anteed since the exponent 1/q is greater than or equal to 1, and the power
function with exponent greater than 1 is well-known to be not operator mono-
tone). Therefore, for −1 ≤ p < 0, it is natural to define

AmpB = (Aqm−1B
q)

1
q , A,B ∈ B(H)+. (5)

We can now formulate our result concerning maps on the positive semidef-
inite cone B(H)+ which preserve the conventional power mean. We highlight
the fact that neither in relation with mp, nor in relation with mp do we assume
the continuity of the transformations under consideration. This is a serious dif-
ference between the cases of the positive definite and semidefinite cones (see
the former two results).

Theorem 4. Let p ∈ [−1, 1] be a nonzero real number, φ : B(H)+ → B(H)+

be a bijective map such that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ B(H)+. (6)

Then there is an invertible bounded either linear or conjugate linear operator
T : H → H such that φ is of the form

φ(A) = (TA|p|T ∗)
1
|p| , A ∈ B(H)+. (7)

Conversely, every map φ : B(H)+ → B(H)+ of the form (7) satisfies (6).

The next result concerns the Kubo–Ando power mean.

Theorem 5. Let p ∈ [−1, 1] be a nonzero real number, φ : B(H)+ → B(H)+

be a bijective map such that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ B(H)+. (8)

Then there is an invertible bounded either linear or conjugate linear operator
T : H → H such that φ is of the form

φ(A) = TAT ∗, A ∈ B(H)+. (9)

Conversely, every map φ : B(H)+ → B(H)+ of the form (9) satisfies (8).

Finally, concerning the existence of a map transforming the conventional
power mean to the Kubo–Ando power mean, we have the following statement.

Theorem 6. Let p ∈]−1, 1[ be a nonzero real number and H be a Hilbert space
of dimension at least 2. Then there is no bijective map φ : B(H)+ → B(H)+

such that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ B(H)+. (10)
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2. Proofs

In this section we present the proofs of our results. We begin with verifying the
statements concerning power mean preservers on the positive definite cones of
C∗-algebras. But first let us summarize some of the basic properties of Jordan
*-isomorphisms between C∗-algebras that we will need in what follows.

Let A ,B be C∗-algebras and J : A → B be a Jordan *-isomorphism. It
is apparent that J is a linear order isomorphism between the self-adjoint parts
of A and B. Moreover, J is an isometry

‖J(X)‖ = ‖X‖, X ∈ A ,

see, e.g., [7]. Next, J satisfies

J(XY X) = J(X)J(Y )J(X), X, Y ∈ A ,

and hence

J(Xn) = J(X)n, X ∈ A (11)

holds for every nonnegative integer n, see 6.3.2 Lemma in [19]. In particular,
J is unital meaning that J sends the identity to the identity. By Proposition
1.3 in [20], J preserves invertibility, namely we have

J(X−1) = J(X)−1

for every invertible element X ∈ A . It follows that J preserves the spectrum
and, using continuous function calculus, from (11) we deduce that

J(f(X)) = f(J(X))

holds for any self-adjoint element X ∈ A and continuous real function f on
the spectrum of X. It then follows that J maps A ++ onto B++ and J is an
isomorphism between A ++ and B++ with respect to any Kubo–Ando means.

After this, we start with the easy proof of our first result.

Proof of Theorem 1. Assume first that p = 1. In that case the result is exactly
Proposition 1 in [15]. If p �= 1, then consider the map ψ : A ++ → B++

defined by ψ(A) = φ(A
1
p )p, A ∈ A ++. It is easy to see that ψ is a bijective

map between the positive definite cones A ++ and B++ which preserves the
arithmetic mean. By the first part of the proof we obtain the desired conclusion
(in fact, we also need to use the fact that any Jordan *-isomorphism respects
any real powers of positive definite elements, see the last one among the above
listed properties of Jordan *-isomorphisms). �

The proof of the analogous result concerning the Kubo–Ando power mean
is much more complicated. In fact, before presenting it we need some more
preparations. Firstly, although we have already used this concept implicitly
above, recall the definition of the usual order among self-adjoint elements A,B
in a C∗-algebra. We write A ≤ B if B − A is positive semidefinite. The strict
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order on the positive definite cone A ++ of the C∗-algebra A is defined as
follows: for A,B ∈ A ++ we write A < B if B− 1

2 AB− 1
2 has spectrum contained

in the open interval ]0, 1[.
Secondly, we need to recall the notion of the Thompson metric dT which is

defined on the positive definite cone A ++ of the C∗-algebra A as follows:

dT (A,B) = log max{M(A/B),M(B/A)}, A,B ∈ A ++, (12)

where M(X/Y ) = inf{t > 0 : X ≤ tY } for any X,Y ∈ A ++. It is easy to see
(cf. [11]) that dT can also be rewritten as

dT (A,B) =
∥∥∥log

(
A− 1

2 BA− 1
2

)∥∥∥ , A,B ∈ A ++.

The structure of surjective Thompson isometries between positive definite
cones of C∗-algebras is known, it was described in our paper [5]. Theorem 9 in
[5] says that for given C∗-algebras A ,B and surjective map φ : A ++ → B++

we have that φ is a surjective Thompson isometry (i.e., a surjective isometry
with respect to the metric dT ) if and only if there are a central projection P
in B and a Jordan *-isomorphism J : A → B such that φ is of the form

φ(A) = φ(I)1/2
(
PJ(A) + (I − P )J(A−1)

)
φ(I)1/2, A ∈ A ++. (13)

Here and in what follows, by a projection we mean a self-adjoint idempotent
element which is called central if it commutes with any other element of the
algebra.

Finally, we need a property called transfer property of Kubo–Ando means,
which is related to the inequality (c) in the introduction. Namely, it is known
that for an arbitrary Hilbert space H and for any Kubo–Ando mean σ, we
have

T (AσB)T ∗ = (TAT ∗)σ(TBT ∗), A,B ∈ B(H)+ (14)

for every invertible bounded either linear or conjugate linear operator T on H.
After this preparation, we can present the proof of our second theorem.

Proof of Theorem 2. Assume that φ : A ++ → B++ is a continuous bijective
map which satisfies

φ(AmpB) = φ(A)mpφ(B), A,B ∈ A ++.

We can and do assume that p is positive. Indeed, it is easy to see that Am−pB =
(A−1mpB

−1)−1 holds for any A,B ∈ A ++ and then one can verify that the
continuous bijective map ψ : A ++ → B++ defined by ψ(A) = φ(A−1)−1,
A ∈ A ++ satisfies

ψ(Am−pB) = ψ(A)m−pψ(B), A,B ∈ A ++.

We show that for any sequence (Bn) in A ++ such that Bn → 0 in norm, we
have that φ(Bn) → 0 in norm. Assume that Bn → 0 in norm. Then, by the
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formula (3), for any A ∈ A ++ we have AmpBn → A/2
1
p , and hence we obtain

that

φ(A)mpφ(Bn) = φ(AmpBn) → φ(A/2
1
p ).

It follows that (φ(Bn)) is a sequence in B++ with the property that for every
X ∈ B++, the sequence (Xmpφ(Bn)) is norm convergent in B. Choosing
X = I, it follows again from (3) that (φ(Bn)) is norm convergent, let its limit
be C ∈ B+. We have that

φ(A)mpC = φ(A/2
1
p ).

Since, by the monotonicity of Kubo–Ando means (see (b) in the introduction),
XmpC ≥ 0mpC = C/2

1
p for every X ∈ B++, we deduce that

φ(A/2
1
p ) = φ(A)mpC ≥ C/2

1
p , A ∈ A ++

meaning that C is majorized by all elements of B++. This implies that C = 0,
hence we infer that φ(Bn) → 0 in norm. From

φ(A/2
1
p ) = φ(A)mpC = φ(A)mp0 = φ(A)/2

1
p , A ∈ A ++

we obtain that φ respects the multiplication of elements by the constant
(1/2)

1
p .

Assume that, for some given positive numbers α, β, the equalities φ(α
1
p A) =

α
1
p φ(A) and φ(β

1
p A) = β

1
p φ(A) hold for all A ∈ A ++. Then, since for com-

muting positive definite elements the conventional and the Kubo–Ando power
means coincide (see (4)), we easily compute

φ((α + β)
1
p A)/2

1
p

= φ(((α + β)
1
p A)/2

1
p ) = φ((α

1
p A)mp(β

1
p A)) = φ((α

1
p A)mp(β

1
p A))

= φ(α
1
p A)mpφ(β

1
p A) = (α

1
p φ(A))mp(β

1
p φ(A)) = (α

1
p φ(A))mp(β

1
p φ(A))

= (α + β)
1
p φ(A)/2

1
p .

This gives us that

φ((α + β)
1
p A) = (α + β)

1
p φ(A)

holds for all A ∈ A ++. From this observation we can easily deduce that
φ(r

1
p A) = r

1
p φ(A) holds for any positive rational number r and element A ∈

A ++. By the continuity of φ, this implies that φ is positive homogeneous.
We next prove that φ : A ++ → B++ is a strict order isomorphism meaning

that for any A,B ∈ A ++ we have

A < B ⇐⇒ φ(A) < φ(B).

In order to show this, observe that for any given A,B ∈ A ++ there exists an
X ∈ A ++ such that AmpX = B/2

1
p if and only if A < B. Indeed, using the

transfer property and aplying trivial algebraic manipulations, AmpX = B/2
1
p
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is equivalent to I + (A− 1
2 XA− 1

2 )p = (A− 1
2 BA− 1

2 )p which has a solution
X ∈ A ++ if and only if I < (A− 1

2 BA− 1
2 )p. This latter inequality is equivalent

to A < B. To see this, one may need to refer to the well-known fact that the
spectrum of A

1
2 B−1A

1
2 equals that of B− 1

2 AB− 1
2 (in fact, those two elements

are unitarily equivalent as one can easily show by using the polar decompo-
sition of B− 1

2 A
1
2 ). Using the above characterization of strict order, it follows

that φ is a strict order isomorphism.
Next, it is clear that

inf{t > 0 : A ≤ tB} = inf{t > 0 : A < tB}
holds for any A,B ∈ A ++. It then follows from the positive homogeneity
of φ and from the property that φ is a strict order isomorphism that φ is
a positive homogeneous Thompson isometry from A ++ onto B++. By the
structure (13) of surjective Thompson isometries, we obtain that φ is of the
form φ(A) = DJ(A)D, A ∈ A ++ with some Jordan *-isomorphism J : A →
B and element D ∈ B++. (Indeed, the part (I − P )J(A−1) in (13) must be
missing due to the fact that the inverse operation is not homogeneous.) This
gives us the sufficiency part of the theorem.

As for the converse statement, we argue as follows. By the above listed
properties of Jordan *-isomorphisms, every such transformation is a continuous
bijective map between positive definite cones which preserves all Kubo–Ando
means and, by the transfer property, the same is true for any map B �→ TBT ∗,
B ∈ B++ with T ∈ B invertible. The composition of two mean preserving
maps is again mean preserving and hence we obtain the desired converse state-
ment. �

For the proof of Theorem 3, recall that for any A,B ∈ A ++ we have A < B
if and only if the spectrum of B− 1

2 AB− 1
2 is contained in the open unit interval

]0, 1[. One can see that A < B implies that TAT ∗ < TBT ∗ for any invertible
T ∈ A . Indeed, this follows from the fact that (TBT ∗)− 1

2 (TAT ∗)(TBT ∗)− 1
2

is unitarily similar to B− 1
2 AB− 1

2 (see the argument given in the first half of
page 323 in [14]).

Proof of Theorem 3. Let p ∈] − 1, 1[ and assume that the continuous bijective
map φ : A ++ → B++ satisfies

φ(AmpB) = φ(A)mpφ(B), A,B ∈ A ++.

In the first few steps of the proof we can closely follow the argument given
in the proof of Theorem 2. Indeed, we may assume just like there that p is
positive. Next we can show in a very similar way that for any sequence (Bn)
in A ++ which converges to 0 in norm, we have φ(Bn) → 0 in norm and also
that φ(A/2

1
p ) = φ(A)/2

1
p holds for all A ∈ A ++. After this, just as in the

mentioned proof, we can verify that φ is positive homogeneous.
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In the last part we observe that the equality AmpX = B/2
1
p has a solution

X in A ++ if and only if Ap < Bp while, as we have seen in the proof of
Theorem 2, φ(A)mpφ(X) = φ(B)/2

1
p has a solution if and only if φ(A) < φ(B).

For the bijective transformation ψ : A ++ → B++ defined by ψ(A) = φ(A
1
p ),

A ∈ A ++ we have

A < tB ⇐⇒ ψ(A) < t
1
p ψ(B)

for any A,B ∈ A ++ and positive real number t. From this we obtain for the
Thompson distances that

dT (ψ(A), ψ(B)) =
1
p
dT (A,B), A,B ∈ A ++,

see the definition of Thompson metric given in (12). This means that ψ is a
dilation (or, in other words, homothety) between the positive definite cones
A ++ and B++. We proved in Theorem 18 in [16] that the existence of a non-
isometric dilation between the positive definite cones of C∗-algebras implies
that the underlying algebras are necessarily commutative. This completes the
proof of the statement. �

We now turn to the proofs of our results concerning maps on the positive
semidefinite cone of a full operator algebra over a Hilbert space.

Proof of Theorem 4. Let φ be as in the statement of the theorem. For positive
p, we clearly have

AmpB = (Apm1B
p)

1
p , A,B ∈ B(H)+.

It follows that the bijective map ψ : B(H)+ → B(H)+ defined by ψ(A) =
φ(A

1
p )p, A ∈ B(H)+ satisfies

ψ(Am1B) = ψ(A)m1ψ(B), A,B ∈ B(H)+.

Similarly, for negative p, by (5) it follows that the bijective map ψ : B(H)+ →
B(H)+ defined by ψ(A) = φ(A

1
|p| )|p|, A ∈ B(H)+ satisfies

ψ(Am−1B) = ψ(A)m−1ψ(B), A,B ∈ B(H)+.

The structures of those maps are known. By the Theorem and Proposition in
[10], we have in both cases that there is an invertible bounded either linear or
conjugate linear operator T : H → H such that ψ(A) = TAT ∗, A ∈ B(H)+.
This completes the proof of the necessity part of the statement. The sufficiency
follows immediately from the transfer property of the Kubo–Ando means m1

and m−1. �

To prove Theorem 5, we need some auxiliary results that we present below.

Lemma 7. Assume that 0 < p ≤ 1.
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(i) If A,B ∈ B(H)+ are commuting, then

AmpB =
(

Ap + Bp

2

) 1
p

.

(ii) For an arbitrary A ∈ B(H)+, we have that A = 0 if and only if for any
X,Y ∈ B(H)+, the equality A = XmpY implies X = Y = A.

(iii) For any A ∈ B(H)+, denote

I(A) = {(. . . ((AmpX1)mpX2) . . .)mpXn : n ∈ N,X1, . . . , Xn ∈ B(H)+}.

The operator B ∈ B(H)+ is invertible if and only if I(B) is the mini-
mum of the set {I(A) : A ∈ B(H)+} partially ordered by the relation of
inclusion.

Proof. The statement (i) is obvious for invertible A,B ∈ B(H)+. For general
A,B ∈ B(H)+, consider A + εI,B + εI for ε > 0, let ε tend to 0 monotone
decreasingly, and use the continuity property of Kubo–Ando means (see (d)
in the introduction).

As for (ii), assume first that A = 0 and A = XmpY holds for X,Y ∈
B(H)+. Then from

X/2
1
p = Xmp0 ≤ XmpY = 0

we obtain that X = 0, and in the same way we deduce that Y = 0 also holds.
Assume now that A �= 0. Considering the spectral measure corresponding to
A, there is a positive real number s such that with the spectral measure P of
the set [s,∞[ we have P �= 0 and sP ≤ A. Choosing any positive number t < s,
we have that tP ≤ A, tP �= A. Let X = tP and Y = (2Ap − Xp)

1
p which is a

positive operator that commutes with X. It follows that A = XmpY , X �= A.
This proves (ii).

To verify (iii), first assume that B ∈ B(H)+ is invertible. Since BmpX ≥
Bmp0 = B/2

1
p , it follows that the elements of I(B) are all invertible. On the

other hand, let C ∈ B(H)+ be invertible. Then taking the mp mean of B with
0-s sufficiently many times, we obtain an element B′ of I(B) for which B′ ≤ C.
We assert that then there exists X ∈ B(H)+ such that B′mpX = C/2

1
p . In

fact, by the transfer property, the solvability of this latter equation is equivalent
to that of

(C− 1
2 B′C− 1

2 )mp(C− 1
2 XC− 1

2 ) = I/2
1
p .

With B′′ = C− 1
2 B′C− 1

2 , this is further equivalent to

B′′mpY = I/2
1
p

for some Y ∈ B(H)+. Since B′′ ≤ I, choosing Y = (I − B′′p)
1
p , we have a

solution Y of the equality B′′mpY = I/2
1
p . Therefore, we obtain that there
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does exist X ∈ B(H)+ such that B′mpX = C/2
1
p . This shows that I(B) =

B(H)++ for any invertible B ∈ B(H)+.
Let now B ∈ B(H)+ be noninvertible. Then for large enough t > 0, the

element Bmp(tI − Bp)
1
p is a positive scalar multiple of the identity meaning

that I(B) contains one and then all invertible elements of B(H)+ (see the
argument in the previous paragraph). Since B is noninvertible, we obtain that
I(B) contains B(H)++ as a proper subset. Therefore, I(B) is not minimum,
a contradiction. The statement in (iii) now follows. �

Assume next that −1 ≤ p < 0. Then, denoting q = −p, the generating
function of the symmetric Kubo–Ando mean mp is the function

f(t) =
(

1 + tp

2

) 1
p

=
(

2tq

1 + tq

) 1
q

, t > 0.

Since this f has limit 0 at 0, several important observations from the paper
[13] can be applied. For the next lemma whose statements follow from those
observation in [13], we need to recall the following quantity which was originally
introduced in [4] under the name ’strength along a ray’.

Let A ∈ B(H)+, consider a unit vector ϕ in H and denote by Pϕ the
rank-one projection onto the subspace generated by ϕ (recall that a rank-one
operator is a bounded linear operator whose range is one-dimensional). The
quantity

λ(A,Pϕ) = sup{λ ≥ 0 : λPϕ ≤ A}
is called the strength of A along the ray represented by ϕ. For curiosity, we
mention that there is a nice and very useful formula for this quantity proved
in [4]:

λ(A,Pϕ) =
{‖A−1/2ϕ‖−2, if ϕ ∈ rng(A1/2);

0, else.

(The symbol rng denotes the range of operators, and A−1/2 stands for the
inverse of A1/2 on its range.)

After this, our next lemma reads as follows.

Lemma 8. Assume −1 ≤ p < 0.

(i) For A ∈ B(H)+, we have A = 0 if and only if AmpX = A holds for all
X ∈ B(H)+.

(ii) If A ∈ B(H)+, we have that A is invertible if and only if I(A) = B(H)+.
(iii) The operator A ∈ B(H)+ is a projection if and only if ImpA = A.
(iv) For any A,B ∈ B(H)+, we have AmpB = 0 if and only if rng A

1
2 ∩

rng B
1
2 = {0}.
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(v) If A ∈ B(H)+ is arbitrary and P ∈ B(H)+ is a rank-one projection,
then

AmpP =
(

2λ(A,P )q

1 + λ(A,P )q

) 1
q

P.

Proof. To see (i), observe that 0mpX = Xmp0 = 0 holds for all X ∈ B(H)+

(this follows from the property limt→0 f(t) = 0 mentioned three paragraphs
before the formulation of the lemma). Conversely, if AmpX = A for all X ∈
B(H)+, then choosing X = 0, we have A = Amp0 = 0. The statements in
(ii)–(v) are particular cases of the statements in Lemmas 2.5, 2.2, 2.7, 2.6 in
[13], respectively. �

We are now in a position to prove Theorem 5.

Proof of Theorem 5. To begin with, first observe that the converse statement
in the theorem, i.e., the fact that any map of the form A �→ TAT ∗ on B(H)+

(where T is an invertible bounded either linear or conjugate linear operator
on H) satisfies (8), follows from the transfer property of Kubo–Ando means,
see (14).

Let now φ : B(H)+ → B(H)+ be a bijective map such that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ B(H)+.

First suppose that the number p is positive. By (ii) in Lemma 7, we obtain
that φ(0) = 0. It follows that

φ(A/2
1
p ) = φ(Amp0) = φ(A)mp0 = φ(A)/2

1
p , A ∈ B(H)+.

By (iii) in Lemma 7, φ maps B(H)++ onto itself. We assert that φ restricted
to B(H)++ is an order automorphism of B(H)++. This will follow from the
following observation: for any A ∈ B(H)+ and B ∈ B(H)++ we have A ≤ B if
and only if there is an X ∈ B(H)+ such that AmpX = B/2

1
p . The sufficiency

part of this characterization is apparent since

A/2
1
p = Amp0 ≤ AmpX = B/2

1
p .

The converse implication, i.e., the necessity part can be proved as in the first
part of the proof of (iii) in Lemma 7. Therefore, we obtain that for any A ∈
B(H)+ and B ∈ B(H)++, the inequality A ≤ B holds if and only if φ(A) ≤
φ(B).

The structure of order automorphisms of B(H)++ (without assuming any
sort of homogeneity) is known. By Theorem 1 in [12] we have that there is an
invertible bounded either linear or conjugate linear operator T : H → H such
that φ(B) = TBT ∗ holds for all B ∈ B(H)++. Since we have already proved
that for any A ∈ B(H)+ and B ∈ B(H)++, the inequality A ≤ B is equivalent
to φ(A) ≤ φ(B), it is just routine to verify that

φ(A) = TAT ∗
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holds for all A ∈ B(H)+. Indeed, for any A ∈ B(H)+ and B ∈ B(H)++

we have A ≤ B if and only if T−1φ(A)T ∗−1 ≤ B which easily implies that
T−1φ(A)T ∗−1 = A.

Assume now that p < 0. By (i) in Lemma 8, it follows that φ(0) = 0.
Applying (ii) of the same lemma, we obtain that φ maps B(H)++ onto itself.
Therefore, φ(I) is invertible. Considering the map φ(I)− 1

2 φ(.)φ(I)− 1
2 , we can

and do assume that φ sends I to I. Then, by (iii) in Lemma 8, φ preserves the
projections in both directions: P ∈ B(H)+ is a projection if and only if φ(P )
is a projection.

We next see that for any A,B ∈ B(H)+ we have rng A
1
2 ≤ rng B

1
2 if and

only if rng φ(A)
1
2 ≤ rng φ(B)

1
2 . This can easily be deduced from the following

observation: rng A
1
2 ≤ rng B

1
2 if and only if BmpX = 0 implies AmpX = 0 for

any X ∈ B(H)+, see (iv) in Lemma 8.
It follows that on the set of all projections on H, the map φ preserves the

range inclusion in both directions implying that it is an order automorphism.
Consequently, φ (and also φ−1) sends rank-one projections to rank-one pro-
jections and then we can infer that it sends rank-one elements in B(H)+ to
rank-one elements (again by the range inclusion preserving property). Refer-
ring to the fact that the positive semidefinite rank-one operators are exactly
the nonnegative scalar multiples of rank-one projections, we also easily obtain
that for a given rank-one projection P , there is a bijective function g of the
nonnegative reals such that

φ(tP ) = g(t)φ(P ), t ≥ 0.

In what follows we prove that g is necessarily the identity. For any positive real
numbers t, s, we use the transfer property and (v) in Lemma 8 to compute

(tP )mp(sP ) = s

((
t

s

)
PmpP

)
= s

(
2
(

t
s

)q

1 +
(

t
s

)q

) 1
q

P, (15)

where q = −p. We infer

g

⎛
⎝s

(
2
(

t
s

)q

1 +
(

t
s

)q

) 1
q

⎞
⎠ φ(P ) = φ((tP )mp(sP )) = φ(tP )mpφ(sP )

= (g(t)φ(P ))mp(g(s)φ(P )) = g(s)

⎛
⎝ 2

(
g(t)
g(s)

)q

1 +
(

g(t)
g(s)

)q

⎞
⎠

1
q

φ(P ).

We therefore obtain the equality

g

⎛
⎝s

(
2
(

t
s

)q

1 +
(

t
s

)q

) 1
q

⎞
⎠ = g(s)

⎛
⎝ 2

(
g(t)
g(s)

)q

1 +
(

g(t)
g(s)

)q

⎞
⎠

1
q

.
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Denoting h(t) = g(t
1
q )q, t ≥ 0, this apparently implies

h

(
2tqsq

tq + sq

)
=

2h(tq)h(sq)
h(tq) + h(sq)

and then that

h

(
2ts

t + s

)
=

2h(t)h(s)
h(t) + h(s)

.

Denoting k(t) = 1/h(1/t), t > 0, we have

k

(
t + s

2

)
=

k(t) + k(s)
2

(16)

for any positive real numbers t, s. Since k is a bijection of the positive half-line
(which follows from the same property of g), we deduce that k is a constant
multiple of the identity (cf. Theorem 1). By g(1) = 1 we thus obtain that k is
the identity and this implies that g is also the identity, which was our claim.

We can now verify that φ is an order automorphism of B(H)+. Indeed,
from [4] we know that for any A,B ∈ B(H)+, the inequality A ≤ B holds if
and only if λ(A,P ) ≤ λ(B,P ) holds for all rank-one projections P ∈ B(H)+.
The equation φ(AmpP ) = φ(A)mpφ(P ) implies the identity

(
2λ(A,P )q

1 + λ(A,P )q

) 1
q

=
(

2λ(φ(A), φ(P ))q

1 + λ(φ(A), φ(P ))q

) 1
q

from which we easily obtain that λ(A,P ) ≤ λ(B,P ) if and only if λ(φ(A), φ(P )) ≤
λ(φ(B), φ(P )). We thus infer that φ is an order isomorphism of B(H)+. The
structure of those maps was determined in [12]. It follows from the results
there, that we have an invertible bounded either linear or conjugate linear
operator T on H such that φ(A) = TAT ∗, A ∈ B(H)+. This completes the
proof of our theorem. �

Finally, we present the proof of the last result of the paper.

Proof of Theorem 6. Contrary to the assertion, assume that φ : B(H)+ →
B(H)+ is a bijective map such that

φ(AmpB) = φ(A)mpφ(B), A,B ∈ B(H)+. (17)

Assume first that p is positive. It is easy to see that the characterization of 0
given in (ii) in Lemma 7 as well as the characterization of invertibility given in
(iii) are valid also for the conventional power mean mp. It follows that φ(0) = 0
implying that φ satisfies φ(A/2

1
p ) = φ(A)/2

1
p for all A ∈ B(H)+, and also that

φ maps B(H)++ onto itself.
As we have seen in the proof of Theorem 5, for any A,B ∈ B(H)++, the

solvability of the equation AmpX = B/2
1
p for X ∈ B(H)+ is equivalent to

the inequality A ≤ B while the solvability of the equation AmpX = B/2
1
p is
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clearly equivalent to Ap ≤ Bp. It follows that the map A �→ φ(A
1
p ) is an order

automorphism of B(H)++. As above, we conclude that there is an invertible
bounded linear or conjugate linear operator T on H such that φ(A) = TApT ∗,
A ∈ B(H)++. Using (17), we easily obtain that

T
Ap + Bp

2
T ∗ = (TApT ∗)mp(TBpT ∗) = T (ApmpB

p)T ∗, A,B ∈ B(H)++,

and then that
A + B

2
= AmpB, A,B ∈ B(H)++.

This immediately implies that p = 1, a contradiction.
Assume now that p is negative. Recall the definition of the conventional

power mean mp given in (5). It is very easy to see that the characterizations of
0, invertible elements and projections given in (i), (ii) and (iii) in Lemma 8 are
valid also for mp, but (iv) and (v) change as follows. For any A,B ∈ B(H)+,
we have AmpB = 0 if and only if rng A

q
2 ∩ rng B

q
2 = {0}, and for an arbitrary

A ∈ B(H)+ and rank-one projection P ∈ B(H)+, we have

AmpP =
(

2λ(Aq, P )
1 + λ(Aq, P )

) 1
q

P.

Here, q = −p. After this, following the second part of the proof of Theorem 5,
we infer that φ(I) is invertible and hence the map φ(I)− 1

2 φ(.)φ(I)− 1
2 also

satisfies (17), moreover it sends I to I. Therefore, we can clearly assume that
the original transformation φ already has this additional property. It then
follows that φ sends projections to projections and we can continue following
the argument in the proof of Theorem 5 till the point that for any rank-one
projection P on H, there is a bijective function g of the nonnegative reals such
that

φ(tP ) = g(t)φ(P ), t ≥ 0

holds. Observe that for commuting A,B ∈ B(H)+, we have AmpB = AmpB.
In fact, for invertible A,B this is easy to check and then we can apply the
continuity property of Kubo–Ando means (see the explanation in the intro-
duction of mp for negative p presented before the formulation of Theorem 4).
Therefore, the same computation as from (15) to (16) applies and we obtain
that g is the identity.

If A ∈ B(H)+ is arbitrary and P ∈ B(H)+ is any rank-one projection,
then from φ(AmpP ) = φ(A)mpφ(P ) we deduce that

(
2λ(Aq, P )

1 + λ(Aq, P )

) 1
q

φ(P ) =
(

2λ(φ(A), φ(P ))q

1 + λ(φ(A), φ(P ))q

) 1
q

φ(P ).

This implies that we have λ(Aq, P ) ≤ λ(Bq, P ) if and only if λ(φ(A), φ(P )) ≤
λ(φ(B), φ(P )). For any A,B ∈ B(H)+, we infer that Aq ≤ Bq if and only if
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φ(A) ≤ φ(B). This means that the map A �→ φ(A
1
q ) is an order isomorphism

of B(H)+. As before, this implies that there is an invertible bounded either
linear or conjugate linear operator T on H such that

φ(A) = TAqT ∗, A ∈ B(H)+.

From (17) we obtain that

T (AmpB)qT ∗ = (TAqT ∗)mp(TBqT ∗)

or equivalently that

(AmpB)q = AqmpB
q

holds for all A,B ∈ B(H)+. It implies that

Aqm−1B
q = AqmpB

q, A,B ∈ B(H)+

and hence we can conclude that p = −1, a contradiction again. This finishes
the proof of the theorem. �

We close the paper with the following open problems. It would be inter-
esting to clarify if the continuity assumptions in Theorems 2 and 3 can be
dropped. Furthermore, it seems a really nontrivial problem to investigate how
the statements in Theorems 4–6 survive in general C∗-algebras. Finally, we find
it also interesting for p �= ±1 to consider the problem if there is any nontriv-
ial homomorphism from B(H)+ equipped with the operation mp into B(H)+

equipped with mp (Theorem 6 asserts that there is no such isomorphism).
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Aradi vértanúk tere 1.
Szeged 6720
Hungary

e-mail: molnarl@math.u-szeged.hu
URL: http://www.math.u-szeged.hu/∼molnarl

and



722 L. Molnár AEM

Institute of Mathematics
Budapest University of Technology and Economics
1521 Budapest P.O. Box 91
Hungary

Received: May 13, 2019

Revised: September 13, 2019


	Maps on positive cones in operator algebras preserving power means
	Abstract
	1. Introduction and statements of the results
	2. Proofs
	Acknowledgements
	References




