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On the Kesava Menon norm of semimultiplicative functions

Pentti Haukkanen

Abstract. The Kesava Menon norm of an arithmetical function f is defined by N(f)(n) =
(f ∗ λf)(n2), where ∗ denotes the Dirichlet convolution and λ denotes Liouville’s function.
The mth power Kesava Menon norm of f is defined inductively by N0(f) = f , Nm(f) =
N

(
Nm−1(f)

)
, m = 1, 2, . . . In this paper we prove that the mth power Kesava Menon norm

of a semimultiplicative function is semimultiplicative and that the mth power Kesava Menon
norm distributes over the Dirichlet convolution of semimultiplicative functions. In addition
we show that the mth power Kesava Menon norm of a rational arithmetical function of
degree (r, s) is a rational arithmetical function of the same degree.
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1. Introduction

Let f be an arithmetical function (that is, a real- or complex-valued function
on the set of positive integers). In 1963, Kesava Menon [4, Section 3] defined
the norm of f as the arithmetical function N(f) given by

N(f)(n) = (f ∗ f)(n2),

where ∗ is the Dirichlet convolution (see (1)) and f is the conjugate of f . The
conjugate is defined as

f = λf,

where λ is Liouville’s function (see (3)). The norm N(f) is referred to as the
Kesava Menon norm in the literature [6, Section 5]. Redmond and Sivara-
makrishnan [9, Section 4] defined the mth power Kesava Menon norm of f
inductively by
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N0(f) = f

Nm(f) = N
(
Nm−1(f)

)
for m = 1, 2, . . .

In this paper we investigate the conjugate, the Kesava Menon norm and
the mth power Kesava Menon norm of semimultiplicative functions. Semimul-
tiplicative functions form a superclass of the class of the usual multiplicative
functions. Quasimultiplicative functions lie between multiplicative and semi-
multiplicative functions. Rational arithmetical functions form the subgroup of
the group of multiplicative functions under the Dirichlet convolution generated
by completely multiplicative functions. An arithmetical function f is said to
be a rational arithmetical function of degree (r, s) if it is the Dirichlet convo-
lution of r completely multiplicative functions and the inverse of s completely
multiplicative functions. For details of these various types of multiplicativity,
see Sect. 2.

This paper is organized as follows. In Sect. 2 we review the known proper-
ties of arithmetical functions needed in this paper. In Sect. 3 we present new
results. In Sect. 3 we first note that the conjugate of a semimultiplicative func-
tion is semimultiplicative and that the conjugate distributes over the Dirichlet
convolution of any two arithmetical functions. We continue by applying these
results to show that the mth power Kesava Menon norm of a semimultiplica-
tive function is semimultiplicative, that is, the mth power Kesava Menon norm
preserves semimultiplicativity. As special cases we obtain the same properties
for quasimultiplicative and multiplicative functions. Therefore our result gen-
eralizes the result of Sivaramakrishnan [11, Section 2], namely that the usual
Kesava Menon norm of a multiplicative function is multiplicative. In Sect. 3
we also prove that the mth power Kesava Menon norm distributes over the
Dirichlet convolution of semimultiplicative functions, extending the result of
Laohakosol and Pabhapote [6, Section 5], who proved that the mth power Ke-
sava Menon norm distributes over the Dirichlet convolution of rational arith-
metical functions. We apply our distributivity property to show that the mth
power Kesava Menon norm preserves the Dirichlet inverse of a quasimultiplica-
tive function.

In Sect. 4 of this paper we utilize the properties presented in Sect. 3 to prove
that the mth power Kesava Menon norm of a rational arithmetical function of
degree (r, s) is a rational arithmetical function of the same degree. Laohakosol
and Pabhapote [6, Section 5] proved the same result in a different way. We also
present the analogous results for the conjugate of semimultiplicative functions
and rational arithmetical functions of degree (r, s).
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2. Preliminaries on arithmetical functions

The Dirichlet convolution of arithmetical functions f and g is defined as

(f ∗ g)(n) =
∑

d|n
f(d)g(n/d). (1)

We may also interpret that an arithmetical function f is defined on the set
of positive real numbers so that f(x) = 0 if x is not a positive integer. This
makes it possible to present the Dirichlet convolution in the form

(f ∗ g)(n) =
∞∑

k=1

f(k)g(n/k).

This expression is useful in some calculations presented in this paper. The
function δ, defined as δ(1) = 1 and δ(n) = 0 otherwise, serves as the identity
under the Dirichlet convolution. The Dirichlet inverse of f exists if and only
if f(1) �= 0, and it is denoted by f−1.

An arithmetical function f is said to be multiplicative if f(1) = 1 and
f(mn) = f(m)f(n) for all coprime positive integers m,n. An arithmetical
function f is said to be semimultiplicative [8] if there exists a nonzero constant
cf , a positive integer af and a multiplicative function fM such that

f(n) = cffM (n/af ).

Semimultiplicative functions can also be characterized as the arithmetical func-
tions f (not identically zero) satisfying the functional equation

f(m)f(n) = f((m,n))f([m,n])

for all positive integers m and n, where (m,n) and [m,n] are the gcd and lcm of
m and n. Semimultiplicative functions are the same as Selberg multiplicative
functions (see [2, Section 2.1] and [10]). We do not present the details here.

Quasimultiplicative functions (see [2, Section 2.1] and [12, Section XI.2]) are
the arithmetical functions f such that f(1) �= 0 and f(1)f(mn) = f(m)f(n)
for all coprime positive integers m,n. Lahiri [5] refers to these functions as
hypo-multiplicative functions. Quasimultiplicative functions are, in fact, the
semimultiplicative functions f with af = 1 (i.e. with f(1) �= 0), cf = f(1)
and fM (n) = f(n)/f(1). Note that f is multiplicative if and only if f is
semimultiplicative with af = cf = 1 and fM = f .

The Dirichlet convolution of multiplicative functions is multiplicative. The
same applies to quasimultiplicative and semimultiplicative functions. To be
more precise [8, Section 5], if f and g are semimultiplicative, then f ∗ g is
semimultiplicative with

cf∗g = cfcg, af∗g = afag, (f ∗ g)M = fM ∗ gM . (2)
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A multiplicative function f is said to be completely multiplicative if
f(mn) = f(m)f(n) for all positive integers m,n. Liouville’s function λ is
an example of a completely multiplicative function. It is defined as

λ(n) = (−1)Ω(n), (3)

where Ω(n) represents the total number of prime factors of n, each counted
according to multiplicity [1, Section 2.12].

A multiplicative function f is said to be a rational arithmetical function of
degree (r, s) if

f = g1 ∗ · · · ∗ gr ∗ (h1 ∗ · · · ∗ hs)−1

for some completely multiplicative functions g1, . . . , gr, h1, . . . , hs (see [6] and
[13, Section III]). A rational arithmetical function of degree (2, 0) is referred
to as a specially multiplicative function [9]. If f = g1 ∗ g2 is a specially mul-
tiplicative function, we denote fA = g1g2. The function fA is termed as the
associated completely multiplicative function. For example, the divisor func-
tions σa and Ramanujan’s τ -function are specially multiplicative functions.
Euler’s totient function φ is a rational arithmetical function of degree (1, 1).

For general accounts on arithmetical functions, we refer to [1,7,12].

3. The mth power Kesava Menon norm of semimultiplicative
functions

In this section we first note in Theorems 3.1 and 3.2 that the conjugate of a
semimultiplicative function is semimultiplicative and that the conjugate dis-
tributes over the Dirichlet convolution of any two arithmetical functions. We
then apply these theorems to prove Theorems 3.3, 3.4 and 3.5, which state
that the mth power Kesava Menon norm of a semimultiplicative function is
semimultiplicative and that the mth power Kesava Menon norm distributes
over the Dirichlet convolution of semimultiplicative functions.

Theorem 3.1. If f is semimultiplicative, then f is semimultiplicative with cf =

λ(af )cf , af = af and
(
f
)

M
= (fM ) = λfM .

Theorem 3.2. For all arithmetical functions f and g,

f ∗ g = f ∗ g.

Theorems 3.1 and 3.2 follow directly from the definitions of conjugate and
semimultiplicative function and from complete multiplicativity of λ.

In order to prove that the mth power Kesava Menon norm preserves semi-
multiplicativity, we first present this result in the case m = 1, since this case
is needed in various stages of the proof of the general case.
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Theorem 3.3. If f is semimultiplicative, then N(f) is semimultiplicative with

cN(f) = cfcf = λ(af )
(
cf

)2

aN(f) = af
(
N(f)

)
M

= N(fM ).

Proof. By the definitions of the Kesava Menon norm and the Dirichlet convo-
lution,

N(f)(n) = (f ∗ f)(n2) =
∞∑

k=1

f(k)f(n2/k).

Applying the definition of a semimultiplicative function and Theorem 3.1, we
obtain

N(f)(n) =
∞∑

k=1

cffM (k/af )λ(af )cf (λfM )
(
n2/(kaf )

)

= λ(af )(cf )2
∞∑

k=1

fM (k)(λfM )
((

n2/(af )2
)
/k

)

= λ(af )(cf )2(fM ∗ (λfM ))((n/af )2).

By the definitions of the conjugate and the Kesava Menon norm, we see that

N(f)(n) = λ(af )(cf )2N(fM )(n/af ).

By Theorem 3.1, λ(af )(cf )2 = cfcf (�= 0). Since the Kesava Menon norm of
a multiplicative function is multiplicative, N(fM ) is multiplicative. We thus
obtain the result. �
Theorem 3.4. If f is semimultiplicative, then Nm(f) (where m ≥ 0) is semi-
multiplicative with

cNm(f) = cf (cf )2
m−1 =

(
λ(af )

)2m−1(
cf

)2m

aNm(f) = af
(
Nm(f)

)
M

= Nm(fM ).

Proof. We proceed by induction on m. For m = 0 the theorem holds, since
N0(f) = f . The case m = 1 is presented in Theorem 3.3.

Suppose that the theorem is true for m = k. Thus Nk(f) is semimultiplica-
tive, and then applying Theorem 3.3 we see that N(Nk(f)) is semimultiplica-
tive, that is, the function Nk+1(f) is semimultiplicative.

Further, from Theorem 3.3, we have

cNk+1(f) = cN(Nk(f)) = λ(aNk(f))
(
cNk(f)

)2
.

By the induction hypothesis,

cNk+1(f) = λ(af )
((

λ(af )
)2k−1(

cf
)2k)2

=
(
λ(af )

)2k+1−1(
cf

)2k+1

.



76 P. Haukkanen AEM

By Theorem 3.3 and the induction hypothesis,

aNk+1(f) = a
N

(
Nk(f)

) = aNk(f) = af

and
(
Nk+1(f)

)

M
=

(
N

(
Nk(f)

))

M
= N

((
Nk(f)

)
M

)

= N
(
Nk(fM )

)
= Nk+1(fM ).

This completes the proof. �

Corollary 3.1. If f is quasimultiplicative, then Nm(f) (where m ≥ 0) is quasi-
multiplicative with Nm(f)(1) = f(1)2

m

.

Proof. If f is quasimultiplicative, then af = 1, and thus

aNm(f) = af = 1.

This shows that Nm(f) is quasimultiplicative. Since λ(af ) = λ(1) = 1,

Nm(f)(1) = cNm(f) =
(
λ(af )

)2m−1(
cf

)2m

=
(
cf

)2m

= f(1)2
m

.

This completes the proof. �

Corollary 3.2. If f is multiplicative, then Nm(f) (where m ≥ 0) is multiplica-
tive.

Corollary 3.2 follows directly from Corollary 3.1, since each multiplicative
function f is quasimultiplicative with f(1) = 1.

Theorem 3.5. If f and g are semimultiplicative, then

Nm(f ∗ g) = Nm(f) ∗ Nm(g), m ≥ 0.

Proof. Suppose first that f and g are multiplicative. Then, by the definition
of the Kesava Menon norm, for all prime powers pe,

N(f ∗ g)(pe) =
(
(f ∗ g) ∗ (f ∗ g)

)
(p2e).

By Theorem 3.2, we obtain

N(f ∗ g)(pe) =
(
(f ∗ f) ∗ (g ∗ g)

)
(p2e) =

2e∑

i=0

(f ∗ f)(pi)(g ∗ g)(p2e−i).

But (f ∗ f)(pi) = 0 if i is odd; hence we have

N(f ∗ g)(pe) =
e∑

i=0

(f ∗ f)(p2i)(g ∗ g)(p2(e−i))

=
e∑

i=0

N(f)(pi)N(g)(pe−i) =
(
N(f) ∗ N(g)

)
(pe).
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Since f and g are multiplicative, N(f ∗g) and N(f)∗N(g) are also multiplica-
tive. A multiplicative function is totally determined by its values at prime
powers. Therefore

N(f ∗ g) = N(f) ∗ N(g).

Now, applying induction on m gives

Nm(f ∗ g) = Nm(f) ∗ Nm(g).

Consider now the general case that f and g are semimultiplicative. Then, by
Theorem 3.4 and Eq. (2), Nm(f∗g) and Nm(f)∗Nm(g) are semimultiplicative.
In addition, using Theorem 3.4 we have

cNm(f∗g) =
(
λ(af∗g)

)2m−1(cf∗g)2
m

.

On the basis of (2),

cNm(f∗g) =
(
λ(afag)

)2m−1(cfcg)2
m

.

Since λ is completely multiplicative, λ(afag) = λ(af )λ(ag). Therefore

cNm(f∗g) =
(
λ(af )

)2m−1(cf )2
m(

λ(ag)
)2m−1(cg)2

m

.

Using Theorem 3.4 and Eq. (2) we get

cNm(f∗g) = cNm(f)cNm(g) = c(
Nm(f)∗Nm(g)

). (4)

Further, applying Theorem 3.4 and Eq. (2) we get

aNm(f∗g) = af∗g = afag

= aNm(f) aNm(g)

= a(
Nm(f)∗Nm(g)

). (5)

Next, applying Theorem 3.4 and Eq. (2), we get
(
Nm(f ∗ g)

)
M

= Nm
(
(f ∗ g)M

)
= Nm(fM ∗ gM ).

On the basis of the first part of this proof on multiplicative functions,
(
Nm(f ∗ g)

)
M

=
(
Nm(fM )

) ∗ (
Nm(gM )

)
.

By Theorem 3.4 and Eq. (2),
(
Nm(f ∗ g)

)
M

=
(
Nm(f)

)
M

∗ (
Nm(g)

)
M

=
(
Nm(f) ∗ Nm(g)

)
M

. (6)

Finally, combining (4), (5) and (6) gives

Nm(f ∗ g) = Nm(f) ∗ Nm(g).

This completes the proof. �

Corollary 3.3. If f and g are quasimultiplicative, then

Nm(f ∗ g) = Nm(f) ∗ Nm(g), m ≥ 0.
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Corollary 3.4. If f and g are multiplicative, then

Nm(f ∗ g) = Nm(f) ∗ Nm(g), m ≥ 0.

Corollaries 3.3 and 3.4 follow directly from Theorem 3.5, since each quasi-
multiplicative function is semimultiplicative and each multiplicative function
is quasimultiplicative.

Theorem 3.6. If f is quasimultiplicative, then

Nm(f−1) =
(
Nm(f)

)−1
, m ≥ 0.

Proof. By Theorem 3.5,

Nm(f) ∗ Nm(f−1) = Nm(f ∗ f−1) = Nm(δ).

Now,

N(δ) = δ ∗ δ = δ ∗ δ = δ.

Applying induction, we obtain

Nm(δ) = δ.

This completes the proof. �
Corollary 3.5. If f is multiplicative, then

Nm(f−1) =
(
Nm(f)

)−1
.

Corollary 3.5 follows directly from Theorem 3.6, since each multiplicative
function is quasimultiplicative.

Theorem 3.7. For all arithmetical functions with f(1) �= 0,

(f−1) = (f)−1.

Proof. We have

f ∗ (f−1) = λf ∗ λf−1 = λ(f ∗ f−1) = λδ = δ.

�

4. The mth power Kesava Menon norm of rational arithmetical
functions

Laohakosol and Pabhapote [6] proved that the mth power Kesava Menon norm
of a rational arithmetical function of degree (r, s) is also a rational arithmeti-
cal function of degree (r, s). In this paper we present a short proof (applying
Corollaries 3.4 and 3.5; see the proof of Theorem 4.1). Redmond and Sivara-
makrishnan [9] proved this result for rational arithmetical functions of degree
(2, 0), that is, for specially multiplicative functions. We note in Corollary 4.2
a similar result for the conjugate of a rational arithmetical function of degree
(r, s).
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Theorem 4.1. Suppose that f is a rational arithmetical function of degree (r, s)
given as

f = g1 ∗ · · · ∗ gr ∗ (h1 ∗ · · · ∗ hs)−1,

where g1, . . . , gr, h1, . . . , hs are completely multiplicative functions. Then
Nm(f) is a rational arithmetical function of degree (r, s) such that

Nm(f) = (g1)2
m ∗ · · · ∗ (gr)2

m ∗
(
(h1)2

m ∗ · · · ∗ (hs)2
m

)−1

, m ≥ 0.

Proof. For a completely multiplicative function g we have

N(g)(pe) =
(
g ∗ (λg)

)
(p2e) =

(
g(u ∗ λ)

)
(p2e)

for all prime powers pe, where u(n) = 1 for all positive integers n. Here

(u ∗ λ)(p2e) =
2e∑

i=0

(−1)2e−i =
2e∑

i=0

(−1)i = 1.

Therefore

N(g)(pe) = g(p2e) = g2(pe).

Since N(g) and g2 are multiplicative functions, this implies

N(g) = g2.

Applying induction on m gives

Nm(g) = g2m

.

Now, by Corollaries 3.4 and 3.5, we obtain Theorem 4.1. �

Corollary 4.1. Suppose that f is a specially multiplicative function. Then
Nm(f) is specially multiplicative with

(
Nm(f)

)
A

=
(
fA

)2m

. Further,
(
Nm(f)

)
A

= Nm(fA).

Proof. Let f = g1∗g2, where g1 and g2 are completely multiplicative functions.
Then fA = g1g2. On the other hand, by Theorem 4.1, Nm(f) = g2m

1 ∗ g2m

2 ,
and thus

(
Nm(f)

)
A

= g2m

1 g2m

2 = (g1g2)2
m

= (fA)2
m

.

Further, since fA is completely multiplicative, by Theorem 4.1, we obtain

Nm(fA) = (fA)2
m

.

This completes the proof. �
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Example 4.1. The divisor function σa and Jordan’s totient function Ja are
defined by

σa = Ida ∗ u

Ja = Ida ∗ u−1 = Ida ∗ μ,

where Ida(n) = na is the power function and μ is the Möbius function. Thus
we have

Nm(σa) =
(
Ida

)2m

∗ u2m

= Id2ma ∗ u = σ2ma

Nm(Ja) =
(
Ida

)2m

∗ (
u2m)−1 = Id2ma ∗ u−1 = Id2ma ∗ μ = J2ma.

In particular, J1 is the well-known Euler’s totient function φ, and thus

Nm(φ) = J2m .

Theorem 4.2. Let f be an arithmetical function given as

f = g1 ∗ · · · ∗ gr ∗ h−1
1 ∗ · · · ∗ h−1

s ,

where h1, h2, . . . , hs are arithmetical functions such that h1(1), . . . , hs(1) �= 0.
Then the conjugate of f is given as

f = g1 ∗ · · · ∗ gr ∗
(
h1

)−1

∗ · · · ∗
(
hs

)−1

.

Proof. The conjugate of f is

f = λ
(
g1 ∗ · · · ∗ gr ∗ (h1 ∗ · · · ∗ hs)−1

)
= λ(g1 ∗ · · · ∗ gr ∗ h−1

1 ∗ · · · ∗ h−1
s ).

The usual product of a completely multiplicative function distributes over the
Dirichlet product. Thus, since λ is completely multiplicative,

f = (λg1) ∗ · · · ∗ (λgr) ∗ (λh−1
1 ) ∗ · · · ∗ (λh−1

s ).

By the definition of the conjugate,

f = g1 ∗ · · · ∗ gr ∗ h−1
1 ∗ · · · ∗ h−1

s .

Now, applying Theorem 3.7, we obtain Theorem 4.2. �

Corollary 4.2. If f is a rational arithmetical function of degree (r, s), then its
conjugate is also a rational arithmetical function of degree (r, s) (given as in
Theorem 4.2).

Proof. The conjugate of a completely multiplicative function is completely
multiplicative. Therefore this corollary follows from Theorem 4.2. �
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