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Remarks on (F, t)-convex functions

Miros�law Adamek

Abstract. In this work we discuss counterparts of some classical results connected with con-
vex functions for a new class of functions, namely for (F, t)-convex functions. We obtain
Bernstein–Doetsch, Ostrowski and Sirpiński type theorems for them. A version of a Kuhn
type result is also presented.
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1. Introduction

Let D be a convex subset of a real vector space X and F : X → R be a fixed
function. A function f : D → R is called F -convex if

f (tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) − t(1 − t)F (x − y), (1)

for all x, y ∈ D and t ∈ (0, 1). A function f : D → R is called F -midconvex if
in the above inequality the parameter t is fixed and equals 1/2, that is

f

(
x + y

2

)
≤ f(x) + f(y)

2
− 1

4
F (x − y), (2)

for all x, y ∈ D. Observe that for the zero function F they become standard
convex and midconvex (or Jensen convex) functions, respectively (see, for in-
stance, [4,6,14]). Moreover, if X is a real normed space, then substituting the
function F with the function c ‖·‖2, where c is a fixed positive real number, we
get strongly convex functions with modulus c and strongly midconvex func-
tions with modulus c, respectively (see e.g. [4,14]). Strongly convex functions
were introduced by Polyak [13] who used them for proving the convergence
of a gradient type algorithm for minimizing a function. They play an impor-
tant role in optimization theory and mathematical economics. For instance, a
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rich collection of properties and applications of strongly convex functions can
be found in [5,8–13,15]. The concept of F -convex and F -midconvex functions
appears in [1], where the author generalizes the results presented in [11]. As
in the case of strong convexity (see [2]), condition (2) is much weaker than
condition (1). However, as it is presented in [2], if X is a real normed space
and F (x) = c ‖x‖2 (with a fixed positive real number c), then condition (2) be-
comes (1) if the function f satisfies some additional assumptions. In particular,
the authors obtain Berstein–Doetsch and Sierpiński type results.

The aim of this work is to present counterparts of Berstein–Doetsch and
Sierpiński type results for F -convexity. It could be interesting and helpful
for possible applications that under weak regularity assumptions the class of
functions satisfying (2) is the same as that satisfying (1).

2. Main result

We start with the following definition unifying the cases of convexity mentioned
earlier.

Definition. Let D be a convex subset of a real vector space X, F : X → R be
a given function and t be a fixed number in (0, 1). A function f : D → R we
will call (F, t)-convex if

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f(y) − t(1 − t)F (x − y),

for all x, y ∈ D.

Of course, in this notation a function is convex, midconvex, strongly convex
with modulus c, strongly midconvex with modulus c, F -convex, F -midconvex
iff it is (0, t)-convex for all t ∈ (0, 1), (0, 1

2 )-convex, (c ‖·‖2 , t)-convex for all
t ∈ (0, 1), (c ‖·‖2 , 1

2 )-convex, (F, t)-convex for all t ∈ (0, 1) and (F, 1
2 )-convex,

respectively. Also if F is a nonegative even function and homogenous of degree
2 for some t ∈ (0, 1), then (F, t)-convexity gives the functions considered in
[7].

As we know, if a function is (0, 1
2 )-convex, then, in particular, it is (0, t)-

convex with all dyadic parameters t ∈ (0, 1) (see [6,14]). It appears that for
F -convexity it is generally not true. Let’s look at the following example.

Example 1. Let F : R → R be a constant function equal to −4 and f : R → R

be a function defined by the formula

f(x) =

{
0 for x dyadic
2 otherwise

.

We can verify that f is (F, 1
2 )-convex. Moreover, for a fixed t ∈ (0, 1) \{

1
2

}
we

can choose a dyadic number x and a non-dyadic number y such that tx+(1−t)y
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and (1 − t)x + ty are non-dyadic numbers (we have this possibility because
the set of dyadic numbers is countable and the set of non-dyadic numbers
is uncountable). From this we conclude that f is not (F, t)-convex for each
t ∈ (0, 1) \ {

1
2

}
.

In many areas of optimization theory and mathematical economics we use
continuous and also convex (strongly convex) functions. Thus the above ex-
ample may be less interesting because f is discontinuous and F is negative,
but a similar result with a continuous function f and a nonegative function
F , which is zero only in zero, is presented in the next example.

Example 2. Define functions f, f∗ : [−2, 2] → R by the formulas

f(x) = x2 and f∗(x) =

{
x

3
2 for x ∈ [0, 1]

x2 otherwise

and a function F ∗ : [−4, 4] → R as follows

F ∗(x) = 4 inf
u,v∈[−2,2],u−v=x

{
f∗(u) + f∗(v)

2
− f∗

(
u + v

2

)}
.

Note that the function f∗ is (F ∗, 1
2 )-convex, F ∗ > 0 except for zero and f

satisfies the equation

f (tx + (1 − t)y) = tf(x) + (1 − t)f(y) − t(1 − t)F (x − y),

for all x, y ∈ [−2, 2] and t ∈ (0, 1) with F (x) = x2.
Moreover, observe that for t ∈ (12 ,

3
4 ) we have

f∗ (t2 + (1 − t)(−2)) > f (t2 + (1 − t)(−2)) = tf(2) + (1 − t)f(−2)

− t(1 − t)F (4) = tf∗(2) + (1 − t)f∗(−2) − t(1 − t)F ∗(4).

This means, in particular, that for the dyadic number 5
8 the function f∗ is not

(F ∗, 5
8 )-convex.

The following theorem provides the answer to when (F, 1
2 )-convexity implies

(F, t)-convexity for all dyadic numbers t ∈ (0, 1).

Theorem 1. Let D be a convex subset of a real vector space X and F : X → R

be a given function such that F (tx) ≥ t2F (x) for all dyadic numbers t ∈ (0, 1)
and x ∈ X. If a function f : D → R is (F, 1

2 )-convex, then it is (F, t)-convex
for all dyadic numbers t ∈ (0, 1).

Proof. We have to show that inequality (1) is true for all x, y ∈ D and t of the
form t = k

2n , where k, n ∈ N and k < 2n. It will be shown by induction on n.
Fix x, y ∈ D. For n = 1 it is obviously true from the definition. Assume that
f is

(
F, k

2n

)
-convex for some n ∈ N and k < 2n. Take k < 2n+1, then k < 2n
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or k > 2n or k = 2n. Suppose that k < 2n. Therefore, by (F, 1
2 )-convexity, the

induction assumption and the identity

k

2n+1
x+

(
1 − k

2n+1

)
y =

1

2

(
k

2n
x+

(
1 − k

2n

)
y

)
+

1

2
y

we get

f

(
k

2n+1
x+

(
1 − k

2n+1

)
y

)
= f

(
1

2

(
k

2n
x+

(
1 − k

2n

)
y

)
+

1

2
y

)
− 1

4
F (x − y)

≤ 1

2
f

(
k

2n
x+

(
1 − k

2n

)
y

)
+

1

2
f(y) − 1

4
F

(
k

2n
x+

(
1 − k

2n

)
y − y

)

≤ 1

2

[
k

2n
f(x) +

(
1 − k

2n

)
f(y) − k

2n

(
1 − k

2n

)
F (x − y)

]

+
1

2
f(y) − 1

4
F

(
k

2n
(x − y)

)

≤ k

2n+1
f(x) +

(
1 − k

2n+1

)
f(y) − k

2n+1

(
1 − k

2n

)
F (x − y) − 1

4

k2

22n
F (x − y)

=
k

2n+1
f(x) +

(
1 − k

2n+1

)
f(y) −

(
k

2n

(
1 − k

2n

)
+

1
4
k2

22n

)
F (x − y)

=
k

2n+1
f(x) +

(
1 − k

2n+1

)
f(y) − k

2n+1

(
1 − k

2n
+

1
4

k

2n−1

)
F (x − y)

=
k

2n+1
f(x) +

(
1 − k

2n+1

)
f(y) − k

2n+1

(
1 − k

2n+1

)
F (x − y).

If k > 2n then the proof is similar but we use the identity

k

2n+1
x +

(
1 − k

2n+1

)
y =

1
2
x +

1
2

(
k − 2n

2n
x +

2n+1 − k

2n
y

)
.

For k = 2n it is obvious, which ends the proof. �

As a consequence of Theorem 1 and the density of the set of dyadic numbers
in the real line we obtain the following corollary.

Corollary 1. Let D be a convex subset of a real vector space X and F : X → R

be a given function such that F (tx) ≥ t2F (x) for all dyadic numbers t ∈ (0, 1)
and x ∈ X. If a function f : D → R is (F, 1

2 )-convex and continuous on each
segment contained in D, then it is (F, t)-convex for all numbers t ∈ (0, 1) (or
shortly F -convex).

Remark. The assumption Let “F : X → R be a given function such that
F (tx) ≥ t2F (x) for all dyadic numbers t ∈ (0, 1) and x ∈ X” could be replaced
by Let “F : X → R be a given function such that F (nx) = n2F (x) for all
n ∈ N and x ∈ X”.
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Recall that a function Q : X → R is said to be quadratic if it satisfies the
following functional equation

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y),

for all x, y ∈ X. Also, in particular, it satisfies the equation Q(12x) = 1
4Q(x).

Using these facts we have the next example.

Example 3. Let a : X → R be an additive function and F := −a2. The function
f := −a2 is a quadratic function, bounded from above and (F, 1

2 )-convex (as
a matter of fact, f is (F, 1

2 )-affine, i.e. instead of inequality (2) we have an
equality).

The classical Berstein–Doetsch result says that a midconvex function, de-
fined on an open and convex subset of Rn, locally bounded from above at a
point must be convex and continuous. Observe that Examples 1 and 2 show
that if we assume nothing about the function F , then we do not have a coun-
terpart of this classical result and Example 3 leads to the same conclusion,
even when we adopt the assumption from Theorem 1. A counterpart of a
Berstein–Doetsch result in the case of F -convexity has the following form.

Theorem 2. Let D be an open, convex subset of a topological real vector space
X and F : X → R be a given nonnegative function such that F (tx) ≥ t2F (x)
for all dyadic numbers t ∈ (0, 1) and x ∈ X. If a function f : D → R is F -
midconvex and locally bounded from above at a point of D, then it is continuous
and F -convex.

Proof. A function f , being F -midconvex with a nonnegative function F , is also
midconvex. Thus using the classical Berstein–Doetsch result, we conclude that
f is continuous. Finally, from Corollary 1 the function f has to be continuous
and F -convex. The proof is finished. �

Arguing as before, but using Sirpiński’s result instead of Berstein–Doetsch’s
result, we get the following theorem.

Theorem 3. Let D be an open, convex subset of R
n and F : R

n → R be a
given nonnegative function such that F (tx) ≥ t2F (x) for all dyadic numbers
t ∈ (0, 1) and x ∈ R

n. If a function f : D → R is F -midconvex and Lebesgue
measurable, then it is continuous and F -convex.

The next result is a Kuhn type theorem for F -convexity.

Theorem 4. Let D be a convex subset of a real vector space X and F : X → R

be a given function such that F
(
1
2x

) ≥ 1
4F (x). If a function f : D → R is

(F, t)-convex with some t ∈ (0, 1), then it is
(
F, 1

2

)
-convex.

Proof. Fix x, y ∈ D and put z := x+y
2 , u := tx + (1 − t)z, v := tz + (1 − t)y.

Using Daróczy–Páles’s identity (see [3]) we conclude that

z = (1 − t)u + tv.



856 M. Adamek AEM

Taking the t-convexity of f into consideration we have

f(z) ≤ (1 − t)f(u) + tf(v) − t(1 − t)F (u − v)

= (1 − t)f (tx + (1 − t)z) + tf (tz + (1 − t)y) − t(1 − t)F (u − v)

≤ (1 − t) (tf(x) + (1 − t)f(z) − t(1 − t)F (x − z))

+ t (tf(z) + (1 − t)f(y) − t(1 − t)F (z − y)) − t(1 − t)F (u − v).

Thus

2f(z) ≤ f(x) + f(y) − [(1 − t)F (x − z) + tF (z − y) + F (u − v)] .

Notice that x − z = z − y = u − v = x−y
2 , then in view of the assumption

F
(
1
2x

) ≥ 1
4F (x) we can write the last inequality in the following form

2f(z) ≤ f(x) + f(y) − 1
2
F (x − y).

Dividing the last inequality by 2 we get the thesis. The proof is complete. �

Using this theorem, and next Theorem 2 and Theorem 3 respectively, we
get the following corollaries.

Corollary 2. Let D be an open, convex subset of a topological real vector space
X and F : X → R be a given nonnegative function such that F (tx) ≥ t2F (x)
for all dyadic numbers t ∈ (0, 1) and x ∈ X. If a function f : D → R is
(F, t)-convex with some t ∈ (0, 1), and locally bounded from above at a point
of D, then it is continuous and F -convex.

Corollary 3. Let D be an open, convex subset of Rn and F : Rn → R be a
given nonnegative function such that F (tx) ≥ t2F (x) for all dyadic numbers
t ∈ (0, 1) and x ∈ R

n. If a function f : D → R is (F, t)-convex with some
t ∈ (0, 1), and Lebesgue measurable, then it is continuous and F -convex.
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