Simultaneous difference equations on a restricted domain

Witold Jarczyk and PaweŁ Pasteczka

Dedicated to Professor Karol Baron on the occasion of his 70th birthday.

$$
\begin{aligned}
& \text { Abstract. Given a set } T \subset(0,+\infty) \text {, a function } c: T \rightarrow \mathbb{R} \text { and a real number } p \text { we study } \\
& \text { continuous solutions } \varphi \text { of the simultaneous equations } \\
& \qquad \varphi(t x)=\varphi(x)+c(t) x^{p}, \quad t \in T .
\end{aligned}
$$

Here φ is defined on an interval $I \subset(0,+\infty)$, so the equations are postulated on a restricted domain: for any fixed $t \in T$ we assume that $x \in I$ is such that $t x \in I$. In the case when T is large in a sense, we determine the form of φ on a non-trivial subinterval of I. The research is a continuation of that of "non-restricted", where $I=(0,+\infty)$, made in Jarczyk (Ann Univ Sci Budapest Sect Comp 40:353-362, 2013).

Mathematics Subject Classification. Primary 39A13, 39B72; Secondary 39B12, 39B22.

Keywords. Simultaneous equations, Difference equations, Equations on restricted domains, Form of continuous solutions.

Introduction

Let $T \subset(0,+\infty)$ be any non-empty set. Given a function $c: T \rightarrow \mathbb{R}$ and a number $p \in \mathbb{R}$ consider the simultaneous difference equations

$$
\begin{equation*}
\varphi(t x)=\varphi(x)+c(t) x^{p}, \quad t \in T . \tag{1}
\end{equation*}
$$

Systems of such equations appear naturally while studying weak generalized stabilities of random variables in [1]. Namely, the main problem of that paper has been reduced to determining Lebesgue (or Baire) measurable solutions $f:(0,+\infty) \rightarrow(0,+\infty)$ of the functional equation

$$
\begin{aligned}
& (f(t(x+y))-f(t x))(f(x+y)-f(y)) \\
& \quad=(f(t(x+y))-f(t y))(f(x+y)-f(x)) .
\end{aligned}
$$

Solving this equation one can show that either $\log f$ satisfies the system of equations

$$
\varphi(n x)=\varphi(x)+c(n), \quad n \in \mathbb{N}
$$

where $c(n)=\log \frac{f(n)}{f(1)}$, or f is a solution of the system

$$
\varphi(n x)=\varphi(x)+c(n) x^{p}, \quad n \in \mathbb{N}
$$

with a $p \in \mathbb{R}$ and some sequence c.
In [2, Theorem 2.2] the first present author, assuming that the multiplicative group $\langle T\rangle$ generated by T is dense in $(0,+\infty)$, found, among others, all the continuous solutions $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ of Eq. (1). Of course, at this point also the form of possible functions c were determined.

Here we study a more general situation of Eq. (1) on a restricted domain where we assume that their solution φ is defined on a given interval $I \subset$ $(0,+\infty)$ only. Clearly, this requires that given a $t \in T$ we have $t x \in I$ whenever $x \in I$.

In what follows I is a fixed non-empty interval contained in $(0,+\infty)$. Observe that if $t \in T$ and we can find an $x \in I$ such that $t x \in I$, then $x \in I \cap t^{-1} I$ and, consequently, $I \cap t^{-1} I \neq \emptyset$. Otherwise, if $I \cap t^{-1} I=\emptyset$, then there is no point to considering the individual equation

$$
\begin{equation*}
\varphi(t x)=\varphi(x)+c(t) x^{p} \tag{2}
\end{equation*}
$$

Consequently, without loss of generality, we may (and should!) assume the condition

$$
\begin{equation*}
t \in T \text { implies } I_{t} \neq \emptyset, \quad t \in(0,+\infty) \tag{3}
\end{equation*}
$$

where $I_{t}:=I \cap t^{-1} I$, ignoring those $t \in T$ for which $I_{t}=\emptyset$. In other words, for any $\varphi: I \rightarrow \mathbb{R}$ the phrase " φ is a solution of Eq. (1)" means " φ satisfies equalities (2) for all $t \in T$ and $x \in I_{t}$ ".

1. Continuous solutions of (1)

Assume condition (3). Then, since

$$
I_{1 / t}=I \cap t I=t\left(t^{-1} I \cap I\right)=t I_{t}
$$

also $I_{1 / t} \neq \emptyset$ for all $t \in T$, that is $I_{t} \neq \emptyset$ for all $t \in T^{-1}$, where $T^{-1}:=$ $\left\{t^{-1}: t \in T\right\}$. Putting

$$
T^{*}:=T \cup T^{-1} \cup\{1\}
$$

we have

$$
I_{t} \neq \emptyset, \quad t \in T^{*}
$$

If $\inf I=\sup I$ then I is a singleton which implies $T=\{1\}$. In that case the problem of solutions $\varphi: I \rightarrow \mathbb{R}$ of (1) has a trivial answer: φ is arbitrary (and c is the zero function). So further we may assume that $\inf I<\sup I$.

Take any numbers $\gamma_{-} \in(0,1)$ and $\gamma_{+} \in(1,+\infty)$. For each $n \in \mathbb{N}$ we define
$T_{\gamma_{-}, \gamma_{+}, n}:=\left\{t \in(0,+\infty):\right.$ there exist $t_{1}, \ldots, t_{n} \in T^{*}$ such that

$$
\left.t=t_{1} \cdot \ldots \cdot t_{n} \text { and } \gamma_{-} \leq t_{1} \cdot \ldots \cdot t_{k} \leq \gamma_{+} \text {for all } k=1, \ldots, n\right\}
$$

Moreover, put

$$
T_{\gamma_{-}, \gamma_{+}}:=\bigcup_{n=1}^{\infty} T_{\gamma_{-}, \gamma_{+}, n}
$$

Proposition 1. Let $c: T \rightarrow \mathbb{R}$ and fix $\gamma_{-} \in(0,1)$ and $\gamma_{+} \in(1,+\infty)$ such that $\inf I / \gamma_{-}<\sup I / \gamma_{+}$. Then, for every $n \in \mathbb{N}$,
(i) $T_{\gamma_{-}, \gamma_{+}, n} \subset T_{\gamma_{-}, \gamma_{+}, n+1}$;
(ii) there exists a unique function $c_{n}: T_{\gamma_{-}, \gamma_{+}, n} \rightarrow \mathbb{R}$ such that for every solution $\varphi: I \rightarrow \mathbb{R}$ of $E q$. (1) the equality

$$
\varphi(t x)=\varphi(x)+c_{n}(t) x^{p}
$$

holds for all $t \in T_{\gamma_{-}, \gamma_{+}, n}$ and $x \in(\inf I / \gamma-, \sup I / \gamma+)$.
Proof. To get (i) it is enough to observe that

$$
T_{\gamma_{-}, \gamma_{+}, n}=T_{\gamma_{-}, \gamma_{+}, n} \cdot 1 \subset T_{\gamma_{-}, \gamma_{+}, n+1}
$$

for all $n \in \mathbb{N}$.
Now we uniquely extend c to the set T^{*} in such a way that equality (2) holds for all $t \in T^{*}$ and $x \in I_{t}$. If $1 \in T$ then (2) forces that $c(1)=0$. If $1 \notin T$ then define $c(1):=0$. Moreover, put

$$
c(t):=-t^{p} c\left(t^{-1}\right)
$$

for all $t \in T^{-1}$. (One can check that for $t \in T \cap T^{-1}$ the above equality follows immediately from (1).) Now, if $t \in T^{-1}$ and $x \in I_{t}$ then $t^{-1} \in T$ and $t x \in I_{1 / t}$, hence

$$
\varphi\left(t^{-1} t x\right)=\varphi(t x)+c\left(t^{-1}\right)(t x)^{p}
$$

that is

$$
\varphi(t x)=\varphi(x)-t^{p} c\left(t^{-1}\right) x^{p}=\varphi(x)+c(t) x^{p}
$$

which is (2).
The sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ will be defined inductively. Notice that $T_{\gamma_{-}, \gamma_{+}, 1}=$ $T^{*} \cap\left[\gamma_{-}, \gamma_{+}\right]$and define

$$
c_{1}:=c_{T^{*} \cap\left[\gamma_{-}, \gamma_{+}\right]} .
$$

For every $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$we have $x \in I$ because of the inequalities $\gamma_{-}<1<\gamma_{+}$. If, in addition, $t \in T_{\gamma_{-}, \gamma_{+}, 1}$ then $\gamma_{-} \leq t \leq \gamma_{+}$, so $\inf I<\gamma_{-} x \leq$
$t x \leq \gamma_{+} x<\sup I$, and thus $x \in I \cap t^{-1} I=I_{t}$. Consequently, it follows from (2) that

$$
\varphi(t x)=\varphi(x)+c(t) x^{p}=\varphi(x)+c_{1}(t) x^{p}
$$

Now fix an integer $n \geq 2$ and assume that we have defined a unique c_{n-1} : $T_{\gamma_{-}, \gamma_{+}, n-1} \rightarrow \mathbb{R}$ such that for every solution $\varphi: I \rightarrow \mathbb{R}$ of Eq. (1) we have

$$
\varphi(t x)=\varphi(x)+c_{n-1}(t) x^{p}
$$

for all $t \in T_{\gamma_{-}, \gamma_{+}, n-1}$ and $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$. Fix any $t \in T_{\gamma_{-}, \gamma_{+}, n}$ and $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$. Choose $t_{1}, \ldots, t_{n} \in T^{*}$ such that $t=t_{1} \cdot \ldots \cdot t_{n}$ and $\gamma_{-} \leq t_{1} \cdot \ldots \cdot t_{k} \leq \gamma_{+}$for all $k \in\{1, \ldots, n\}$. Then

$$
\inf I<\gamma_{-} x \leq t_{1} \cdot \ldots \cdot t_{k} x \leq \gamma_{+} x<\sup I
$$

and thus $t_{1} \cdot \ldots \cdot t_{k} x \in I$ whenever $k \in\{1, \ldots, n\}$. Observe that $t_{n} \in T^{*}$ and $t_{1} \cdot \ldots \cdot t_{n-1} \in T_{\gamma_{-}, \gamma_{+}, n-1}$, and thus

$$
\begin{aligned}
\varphi(t x) & =\varphi\left(t_{1} \cdot \ldots \cdot t_{n} x\right)=\varphi\left(t_{n} t_{1} \cdot \ldots \cdot t_{n-1} x\right) \\
& =\varphi\left(t_{1} \cdot \ldots \cdot t_{n-1} x\right)+c\left(t_{n}\right)\left(t_{1} \cdot \ldots \cdot t_{n-1} x\right)^{p} \\
& =\varphi(x)+c_{n-1}\left(t_{1} \cdot \ldots \cdot t_{n-1}\right) x^{p}+c\left(t_{n}\right)\left(t_{1} \cdot \ldots \cdot t_{n-1}\right)^{p} x^{p} \\
& =\varphi(x)+\left[c_{n-1}\left(t_{1} \ldots \ldots \cdot t_{n-1}\right)+c\left(t_{n}\right)\left(t_{1} \cdot \ldots \cdot t_{n-1}\right)^{p}\right] x^{p}
\end{aligned}
$$

If, in addition, $t=s_{1} \cdot \ldots \cdot s_{n}$ with some $s_{1}, \ldots, s_{n} \in T^{*}$ satisfying $\gamma_{-} \leq$ $s_{1} \cdot \ldots \cdot s_{k} \leq \gamma_{+}$for all $k \in\{1, \ldots, n\}$, then an analogous argument gives

$$
\begin{aligned}
\varphi(t x) & =\varphi\left(s_{1} \cdot \ldots \cdot s_{n} x\right) \\
& =\varphi(x)+\left[c_{n-1}\left(s_{1} \cdot \ldots \cdot s_{n-1}\right)+c\left(s_{n}\right)\left(s_{1} \cdot \ldots \cdot s_{n-1}\right)^{p}\right] x^{p} .
\end{aligned}
$$

Therefore, the value

$$
c_{n}(t):=c_{n-1}\left(t_{1} \cdot \ldots \cdot t_{n-1}\right)+c\left(t_{n}\right)\left(t_{1} \cdot \ldots \cdot t_{n-1}\right)^{p}
$$

does not depend on the representation $t=t_{1} \cdot \ldots \cdot t_{n}$ with $t_{1}, \ldots, t_{n} \in T^{*}$ such that $\gamma_{-} \leq t_{1} \cdot \ldots \cdot t_{k} \leq \gamma_{+}$whenever $k \in\{1, \ldots, n\}$ and defines a function c_{n} on $\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$satisfying the equality

$$
\varphi(t x)=\varphi(x)+c_{n}(t) x^{p}
$$

for all $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$. The uniqueness of c_{n} follows from its definition and the uniqueness of the functions c_{n-1} and c.

As an almost immediate consequence of Proposition 1 we obtain the following result,

Corollary. Let $c: T \rightarrow \mathbb{R}$ and fix $\gamma_{-} \in(0,1)$ and $\gamma_{+} \in(1,+\infty)$ such that $\inf I / \gamma_{-}<\sup I / \gamma_{+}$. Then there exists a unique function $c_{\gamma_{-}, \gamma_{+}}: T_{\gamma_{-}, \gamma_{+}} \rightarrow \mathbb{R}$ such that for every solution $\varphi: I \rightarrow \mathbb{R}$ of $E q$. (1) the equality

$$
\varphi(t x)=\varphi(x)+c_{\gamma_{-}, \gamma_{+}}(t) x^{p}
$$

holds for all $t \in T_{\gamma_{-}, \gamma_{+}}$and $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$.

Proof. It is enough to observe that the properties of the sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$, established in Proposition 1, imply the equalities

$$
\left.c_{n+1}\right|_{T_{\gamma_{-}, \gamma_{+}, n}}=c_{n}
$$

for all $n \in \mathbb{N}$ and to define the function $c_{\gamma_{-}, \gamma_{+}}$on $T_{\gamma_{-}, \gamma_{+}}$by

$$
c_{\gamma_{-}, \gamma_{+}}(t)=c_{n}(t)
$$

if $t \in T_{c_{\gamma_{-}, \gamma_{+}, n}}$ for an $n \in \mathbb{N}$.
Now we are in a position to formulate and prove the main result.
Theorem. Let $c: T \rightarrow \mathbb{R}$ and let $\varphi: I \rightarrow \mathbb{R}$ be a continuous solution of Eq. (1). Assume that $\gamma_{-} \in(0,1)$ and $\gamma_{+} \in(1,+\infty)$ are such that $\inf I / \gamma_{-}<\sup I / \gamma_{+}$ and $T_{\gamma_{-}, \gamma_{+}}$is a dense subset of the interval $\left(\gamma_{-}, \gamma_{+}\right)$.
(i) If $p \neq 0$ then there exist $a, b \in \mathbb{R}$ such that

$$
\varphi(x)=a x^{p}+b, \quad x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)
$$

(ii) If $p=0$ then there exist $a, b \in \mathbb{R}$ such that

$$
\varphi(x)=a \log x+b, \quad x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)
$$

Proof. Since φ is continuous it follows from the Corollary that for every $x \in$ $\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$the function

$$
\left(\gamma_{-}, \gamma_{+}\right) \ni t \longmapsto \frac{\varphi(t x)-\varphi(x)}{x^{p}}
$$

is a continuous extension of $c_{\gamma_{-}, \gamma_{+}}$. As the domain $T_{\gamma_{-}, \gamma_{+}}$of $c_{\gamma_{-}, \gamma_{+}}$is a dense subset of $\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$such an extension is unique. This means that the function $c_{\infty}:\left(\gamma_{-}, \gamma_{+}\right) \rightarrow \mathbb{R}$, given by

$$
c_{\infty}(t)=\frac{\varphi(t x)-\varphi(x)}{x^{p}}
$$

does not depend on x. In other words, $\left.c_{\infty}\right|_{T_{\gamma_{-}, \gamma_{+}}}=c_{\gamma_{-}, \gamma_{+}}$and

$$
\begin{equation*}
\varphi(t x)=\varphi(x)+c_{\infty}(t) x^{p}, \quad t \in\left(\gamma_{-}, \gamma_{+}\right), x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right) \tag{4}
\end{equation*}
$$

Fix any $\vartheta \in(1,+\infty)$ such that $\left(\vartheta^{-1}, \vartheta\right) \subset\left(\gamma_{-}, \gamma_{+}\right)$and $\vartheta \inf I / \gamma_{-}<$ $\vartheta^{-1} \sup I / \gamma_{+}$. Take any $s, t \in\left(\vartheta^{-1}, \vartheta\right)$ and $x \in\left(\vartheta \inf I / \gamma_{-}, \vartheta^{-1} \sup I / \gamma_{+}\right)$. Then $s x, t x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$.

To prove (i) assume that $p \neq 0$. Then, by (4),

$$
\varphi(s t x)=\varphi(t x)+c_{\infty}(s)(t x)^{p}=\varphi(x)+\left(c_{\infty}(t)+c_{\infty}(s) t^{p}\right) x^{p}
$$

and

$$
\varphi(t s x)=\varphi(s x)+c_{\infty}(t)(s x)^{p}=\varphi(x)+\left(c_{\infty}(s)+c_{\infty}(t) s^{p}\right) x^{p}
$$

hence

$$
c_{\infty}(t)+c_{\infty}(s) t^{p}=c_{\infty}(s)+c_{\infty}(t) s^{p}
$$

that is

$$
c_{\infty}(s)\left(t^{p}-1\right)=c_{\infty}(t)\left(s^{p}-1\right) .
$$

Therefore, there exists an $a \in \mathbb{R}$ such that

$$
c_{\infty}(t)=a\left(t^{p}-1\right), \quad t \in\left(\vartheta^{-1}, \vartheta\right) .
$$

Taking any $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$and $t \in\left(\vartheta^{-1}, \vartheta\right)$, and using (4) we get

$$
\frac{\varphi(t x)-\varphi(x)}{t x-x}=\frac{c_{\infty}(t) x^{p}}{(t-1) x}=a \frac{t^{p}-1}{t-1} x^{p-1} \underset{t \rightarrow 1}{\longrightarrow} a p x^{p-1}
$$

Thus φ is differentiable at x and $\varphi^{\prime}(x)=a p x^{p-1}$; consequently,

$$
\varphi(x)=a x^{p}+b, \quad x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)
$$

with some $b \in \mathbb{R}$.
Similarly we prove (ii). Assume that $p=0$. Then (4) implies

$$
\varphi(s t x)=\varphi(t x)+c_{\infty}(s)=\varphi(x)+c_{\infty}(t)+c_{\infty}(s)
$$

and

$$
\varphi(s t x)=\varphi(x)+c_{\infty}(s t)
$$

This means that

$$
c_{\infty}(s t)=c_{\infty}(s)+c_{\infty}(t), \quad s, t \in\left(\vartheta^{-1}, \vartheta\right)
$$

and thus (see [3]) there exists an $a \in \mathbb{R}$ such that

$$
c_{\infty}(t)=a \log t, \quad t \in\left(\vartheta^{-1}, \vartheta\right)
$$

Now, if $x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)$and $t \in\left(\vartheta^{-1}, \vartheta\right)$ then, by (4),

$$
\frac{\varphi(t x)-\varphi(x)}{t x-x}=\frac{c_{\infty}(t)}{(t-1) x}=a \frac{\log t}{t-1} \frac{1}{x} \underset{t \rightarrow 1}{\longrightarrow} a \frac{1}{x}
$$

Therefore

$$
\varphi(x)=a \log x+b, \quad x \in\left(\inf I / \gamma_{-}, \sup I / \gamma_{+}\right)
$$

for some $b \in \mathbb{R}$.

2. Density of $\boldsymbol{T}_{\gamma_{-}, \gamma_{+}}$in $\left(\gamma_{-}, \gamma_{+}\right)$

The following question, about the possible realization of the assumptions of the Theorem, arises naturally: are there simple non-trivial examples of sets $T \subset(0,+\infty)$ and numbers $\gamma_{-} \in(0,1), \gamma_{+} \in(1,+\infty)$ such that $T_{\gamma_{-}, \gamma_{+}}$is a dense subset of the interval $\left(\gamma_{-}, \gamma_{+}\right)$?

At first it is quite easy to prove that if $T \subset(0,+\infty)$ is any set having 1 as an accumulation point, then we are done (see [4, Lemma 5.1] for details). A somewhat opposite situation is when T contains two elements only. The
proposition below provides a pretty large class of examples giving a positive answer to the question in that case.

Proposition 2. Let $0<\gamma_{-} \leq a<1<b \leq \gamma_{+}$with $\log a / \log b \notin \mathbb{Q}$ and let $T=\{a, b\}$. Then $T_{\gamma_{-}, \gamma_{+}}$is a dense subset of the interval $\left(\gamma_{-}, \gamma_{+}\right)$.
Proof. Due to the logarithmic incommensurability of a, b the set

$$
C:=\left\{a^{l} b^{m}: l \in \mathbb{Z}, m \in \mathbb{N}_{0}\right\} \cap\left[\gamma_{-}, \gamma_{+}\right]
$$

is dense in $\left[\gamma_{-}, \gamma_{+}\right]$, and thus to prove the proposition it is enough to show that $C \subset T_{\gamma_{-}, \gamma_{+}}$. Clearly $C=\bigcup_{m=0}^{\infty} C_{m}$ where

$$
C_{m}:=\left\{a^{l} b^{m}: l \in \mathbb{Z}\right\} \cap\left[\gamma_{-}, \gamma_{+}\right], \quad m \in \mathbb{N}_{0} .
$$

Since $\gamma_{-} \leq a<1 \leq \gamma_{+}$, it follows that all the sets C_{m} are non-empty. If $t \in C_{m} \cap T_{\gamma_{-}, \gamma_{+}}$for some $m \in \mathbb{N}_{0}$, then, as $a, a^{-1} \in T^{*}$ and each element of C_{m} can be obtained as a product of t by a non-negative power of a or a^{-1}, we see that $C_{m} \subset T_{\gamma_{-}, \gamma_{+}}$. Therefore

$$
\text { either } C_{m} \cap T_{\gamma_{-}, \gamma_{+}}=\emptyset, \quad \text { or } C_{m} \subset T_{\gamma_{-}, \gamma_{+}}, \quad m \in \mathbb{N}_{0}
$$

Using induction we prove that $C_{m} \subset T_{\gamma_{-}, \gamma_{+}}$for all $n \in \mathbb{N}_{0}$. Clearly $1 \in$ $C_{0} \cap T_{\gamma_{-}, \gamma_{+}}$. Assume that $C_{m} \subset T_{\gamma_{-}, \gamma_{+}}$for some $m \in \mathbb{N}_{0}$ and let $c_{m}=\inf C_{m}$. Since $a \in(0,1)$ we see that $a c_{m} \notin C_{m}$, hence $a c_{m}<\gamma_{-} \leq a$ and, consequently, $c_{m}<1$. Thus

$$
b c_{m} \in\left(c_{m}, b\right) \subset\left[\gamma_{-}, \gamma_{+}\right] .
$$

This implies two facts. First of all, as $c_{m} \in C_{m}$, we get $b c_{m} \in C_{m+1}$. Secondly, since $b \in T^{*}$ and $c_{m} \in T_{\gamma_{-}, \gamma_{+}}$, by the induction hypothesis, we have $b c_{m} \in$ $T_{\gamma_{-}, \gamma_{+}}$. This shows the relation $C_{m+1} \cap T_{\gamma_{-}, \gamma_{+}} \neq \emptyset$, and thus $C_{m+1} \subset T_{\gamma_{-}, \gamma_{+}}$. This completes the proof.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Járai, A., Jarczyk, W., Matkowski, J., Misiewicz., J.: On the functional equation stemming from probability theory (manuscript)
[2] Jarczyk, W.: Uniqueness of solutions of simultaneous difference equations. Ann. Univ. Sci. Budapest. Sect. Comp. 40, 353-362 (2013)
[3] Kuczma, M.: In: Gilányi, A. (ed.) An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, 2nd edn. Birkhäuser, Basel (2009)
[4] Pasteczka, P.: Scales of quasi-arithmetic means determined by an invariance property. J. Differ. Equ. Appl. 21, 742-755 (2015)

Witold Jarczyk
Institute of Mathematics and Informatics
The John Paul II Catholic University of Lublin
Konstantynów 1h
20-708 Lublin
Poland
e-mail: wjarczyk@kul.lublin.pl
and
Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Szafrana 4a
65-516 Zielona Góra
Poland
Paweł Pasteczka
Institute of Mathematics
Pedagogical University of Cracow
Podchorążych str. 2
30-084 Kraków
Poland
e-mail: pawel.pasteczka@up.krakow.pl
Received: April 1, 2018
Revised: August 29, 2018

