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Abstract. Given a set T C (0,+00), a function ¢: T — R and a real number p we study
continuous solutions ¢ of the simultaneous equations

p(tx) = p(z) + c(t)zP, teT.

Here ¢ is defined on an interval I C (0, +00), so the equations are postulated on a restricted
domain: for any fixed t € T" we assume that z € I is such that tx € I. In the case when T is
large in a sense, we determine the form of ¢ on a non-trivial subinterval of I. The research is
a continuation of that of “non-restricted”, where I = (0, 4o00), made in Jarczyk (Ann Univ
Sci Budapest Sect Comp 40:353-362, 2013).
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Introduction

Let T C (0,400) be any non-empty set. Given a function ¢: T' — R and a
number p € R consider the simultaneous difference equations

o(tz) = o(x) + c(t)2?, tel. (1)

Systems of such equations appear naturally while studying weak generalized
stabilities of random variables in [1]. Namely, the main problem of that paper
has been reduced to determining Lebesgue (or Baire) measurable solutions
f:(0,400) — (0,+00) of the functional equation

(f Uz +y)) = f{tx)) (f(z +y) = f(y))
= (f(t(z+y)) = f(ty)) (f(z +y) — f(2)).
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Solving this equation one can show that either log f satisfies the system of
equations

p(nx) = p(z) + c(n), n €N,
where ¢(n) = log %, or f is a solution of the system
p(nz) = p(x) +c(n)z”,  neN,

with a p € R and some sequence c.

In [2, Theorem 2.2] the first present author, assuming that the multiplica-
tive group <T'> generated by T is dense in (0, 4+00), found, among others, all
the continuous solutions ¢: (0,+00) — R of Eq. (1). Of course, at this point
also the form of possible functions ¢ were determined.

Here we study a more general situation of Eq. (1) on a restricted domain
where we assume that their solution ¢ is defined on a given interval I C
(0, +00) only. Clearly, this requires that given a t € T we have tx € I whenever
rzel.

In what follows I is a fixed non-empty interval contained in (0, 400).
Observe that if ¢ € T and we can find an = € [ such that tx € I, then
x € INt~'T and, consequently, I Nt~ 11 # (). Otherwise, if I N¢t~'1 = (), then
there is no point to considering the individual equation

p(tz) = p(z) + c(t)a”. (2)

Consequently, without loss of generality, we may (and should!) assume the
condition

t € T implies I; # 0, t € (0,+00), (3)

where I; := I Nt~ ignoring those t € T for which I; = ). In other words,
for any ¢: I — R the phrase "¢ is a solution of Eq. (1)” means "¢ satisfies
equalities (2) for all t € T and x € I,”.

1. Continuous solutions of (1)

Assume condition (3). Then, since
Ly =Intl=t(t"'INI)=tl,

also Iy, # 0 for all t € T, that is I, # 0 for all t € T, where T7! :=
{t7': t € T'}. Putting

T :=TUuT'u{1}
we have

I, # 0, teT .
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If inf I = sup I then I is a singleton which implies T'= {1}. In that case the
problem of solutions ¢: I — R of (1) has a trivial answer: ¢ is arbitrary (and
¢ is the zero function). So further we may assume that inf I < sup I.

Take any numbers v_ € (0,1) and v € (1,+00). For each n € N we define

Ty ~ymi={t € (0,+00) : there exist t1,...,t, € T" such that
t=t; ... -tpand y_ <ty ... - tp <~y forallk=1,... ,n}.

Moreover, put

o0
Ty = U Ty vy
n=1

Proposition 1. Let c: T — R and fir v— € (0,1) and v4 € (1,+00) such that
inf I'/y_ < supl/vyy. Then, for everyn € N,

(i) Tvﬂw,n C T’Y—N+,n+1;
(ii) there exists a unique function c, : T5_ ., n — R such that for every
solution p: I — R of Eq. (1) the equality
p(tr) = p(x) + cn(t)z”
holds for allt € T,_ . » and x € (inf I/y—, supI/y+).
Proof. To get (i) it is enough to observe that

Ty yim =Ty i 1 CT yyna
for all n € N.

Now we uniquely extend ¢ to the set T in such a way that equality (2)
holds for all ¢ € T* and = € I;. If 1 € T then (2) forces that ¢(1) =0.If 1 ¢ T
then define ¢(1) := 0. Moreover, put

ct) = —tPe (t7)

for all t € T~1. (One can check that for t € TNT~! the above equality follows
immediately from (1).) Now, ift € T~! and # € I; then t~! € T and tz € Ly,
hence
¢ (ttz) = p(tz) +c (t71) (ta)?,
that is
o (te) = p(z) — tPe (1) 2P = p(x) + c(t)z”,

which is (2).

The sequence (cy),, oy Will be defined inductively. Notice that T, ,, 1 =
T* N [y—,v+] and define

€1 3= lrenpy_ sl

For every x € (inf I/y_,sup I/v+) we have z € I because of the inequalities
v- <1 <~vq. If, in addition, t € T),_ -, 1 then v_ <t <7y, s0infl <vy_x <
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tr < yix <supl, and thus x € I Nt~11 = I;. Consequently, it follows from
(2) that

o (tx) = p(x) + c(t)a? = p(x) + 1 (t)2?.

Now fix an integer n > 2 and assume that we have defined a unique ¢,_1:
T, n—1 — R such that for every solution ¢: I — R of Eq. (1) we have

¢ (tr) = p(z) + cpa (t)2”
forallt € T, ., n—1and x € (infI/y_,supl/vy). Fix any t € T,_,, , and

—V+

x € (inf I'/vy_,supI/vy). Choose ty,...,t, € T* such that t =t -... -1, and
v <ty-...oty <y forall ke {l,...,n}. Then
infl <vy_ax<ty-...-tpx <yyx <supl,
and thus 1 - ... - tpz € I whenever k € {1,...,n}. Observe that ¢, € T* and
t1-...-th1 €Ty, n1,and thus
ptr) =@ty ... thx) =@ (tpty - ... th—12)
=ty o tpax)+e(tn) (... thgz)?
=p@)ten1(ti o tn)aP +c(ty) bty ty_1)’ a?
=p(@)+[en1(tr- oo tno1) +Fe(tn) (b tn1)’] 2P,
If, in addition, t = s1 - ... s, with some s1,...,s, € T* satisfying v7_ <
S1 .. 8k < g forall k€ {1,...,n}, then an analogous argument gives
o(tr) =@ (81 ...  $px)
=)+ [cn1(s1- .. 8p_1) +c(8n) (810 5p_1)"] 2.
Therefore, the value
cn(t) i =cn1(ty oo tp 1) +e(ty) (bt 1)’
does not depend on the representation ¢t =t1-...-t, with t1,...,t, € T such
that y_ <tj ... -t <4 whenever k € {1,...,n} and defines a function ¢,

on (inf I /y_,sup I/v;) satisfying the equality

p(tz) = p(x) + ca(t)2?
for all x € (inf I /v_,sup I /7). The uniqueness of ¢, follows from its definition
and the uniqueness of the functions ¢,,_1 and c. O

As an almost immediate consequence of Proposition 1 we obtain the fol-
lowing result,

Corollary. Let c: T — R and fix v— € (0,1) and v+ € (1,+00) such that
inf I/y_ <supI/vy. Then there exists a unique function cy_ . : T, ~, — R
such that for every solution p: I — R of Eq. (1) the equality

P(tx) = () + cy_ 5 (t)2”
holds for allt € T,_ -, and x € (infI/y_,supl/v).
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Proof. Tt is enough to observe that the properties of the sequence (¢y)

established in Proposition 1, imply the equalities me
Cntilr, . =Cn

for all n € N and to define the function ¢,_,, on T,_ ., by
Cy_ s (t) = cn(t)

ifteTe, . ,foranneN. O

Now we are in a position to formulate and prove the main result.

Theorem. Let c: T — R and let : I — R be a continuous solution of Eq. (1).
Assume that v_ € (0,1) and v4+ € (1,+00) are such that inf I /v_ < supI/v4
and T,_ .. is a dense subset of the interval (y—, 7).

(i) If p # 0 then there exist a,b € R such that
o(z) =az” +b,  x€ (infl/y_,supl/v4).
(ii) If p =0 then there exist a,b € R such that
o(x) = alogz + b, x € (inf I/y_,supI/v4).

Proof. Since ¢ is continuous it follows from the Corollary that for every = €
(inf I /y_,sup I/v4) the function
p(tr) — o(x)
xP
is a continuous extension of ¢, _ ,, . As the domain T,_ ~, of cy_ 4, is a dense
subset of (inf I/vy_,supI/v4) such an extension is unique. This means that
the function c¢s: (v—,7v4+) — R, given by
p(tx) — p(x)
xp

(Y=74) 2t

Coo(t) =

i

does not depend on w. In other words, coo|r, | =c,y_ ,, and

s
o(tr) = p(x) + co(t)a”, t € (y-,v4), v € (InfI/y_,supl/vy). (4)
Fix any ¢ € (1,400) such that (¢7',9) C (7-,74) and JinfI/y- <
U~ 'supI/v;. Take any s,t € (971,9) and x € (JinfI/y_, 9" supl/vy).
Then sz, tx € (inf I /y_,supI/v+).
To prove (i) assume that p # 0. Then, by (4),
p(str) = @(tx) + coo(s)(t2)” = () + (Coo(t) + coo(s)t7) 2P
and
p(tsz) = p(sw) + coo(t) (s7)” = () + (Coo(s) + Coo(t)s) a?,
hence

Coo (1) F Coo (8P = oo (8) + oo (t) P,
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that is
Coo(8) (1P — 1) = coo(t) (s? — 1)
Therefore, there exists an a € R such that
Colt) =a(t? = 1), te (W 0).
Taking any x € (inf I/y_,supI/v4) and ¢t € (971,9), and using (4) we get

_ P P _
plte) —pla) _emlla? _ 0
te —x (t—1x t—1 t—1

Thus ¢ is differentiable at z and ¢'(z) = apzP~!; consequently,
¢(x) =az? +b,  x € (infl/y_,supl/v4),

with some b € R.
Similarly we prove (ii). Assume that p = 0. Then (4) implies

p(str) = p(tr) + coo(s) = @(x) + Coo(t) + Coo(s)

and
p(str) = () + coo(st).
This means that
Coo (81) = oo (8) + Coo(1), s, t € (19*1,19) ,
and thus (see [3]) there exists an a € R such that
coo(t) = alogt,  te (971,9).

Now, if z € (inf I /y_,supI/v4) and t € (971, 9) then, by (4),

e = =t
Therefore
o(x) =alogz + b, x € (infI/y_,supl/v4),
for some b € R. O

2. Density of T, _ ., in (v—,v4)

The following question, about the possible realization of the assumptions of
the Theorem, arises naturally: are there simple non-trivial examples of sets
T C (0,400) and numbers v_ € (0,1),v4 € (1,+00) such that T, is a
dense subset of the interval (y_,~4)?

At first it is quite easy to prove that if T C (0,+00) is any set having 1
as an accumulation point, then we are done (see [4, Lemma 5.1] for details).
A somewhat opposite situation is when 7' contains two elements only. The
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proposition below provides a pretty large class of examples giving a positive
answer to the question in that case.

Proposition 2. Let 0 < v_ < a <1 < b < vy with loga/logh ¢ Q and let
T = {a,b}. Then T,_ . is a dense subset of the interval (y—,v4).

Proof. Due to the logarithmic incommensurability of a, b the set
C:={ab™:1€Z,meNo}n[y_,74]

is dense in [y_,v4], and thus to prove the proposition it is enough to show
that C C T,_ ,, . Clearly C = J,._, C,, where

Cp:i={a'b™: 1€ZN[y_,74], meN,.

Since 7- < a < 1 < vy, it follows that all the sets C,, are non-empty. If
teCnNnT,_,, forsomem € Ny, then, as a,a”! € T* and each element of
C,, can be obtained as a product of ¢ by a non-negative power of a or a~!, we

see that Cy,, C T,_ .. Therefore
either C,, NT,_,, =0, orCy, CT,

Using induction we prove that C,, C T,_,, for all n € Ny. Clearly 1 €
CoNT,_ ., . Assume that Cy,, C T,_ . for some m € Ny and let ¢, = inf C,,.
Since a € (0,1) we see that ac,, ¢ C,, hence ac,, < y— < a and, consequently,
Cm < 1. Thus

VN m € Ny.

bem € (emsb) C [v—,74]-
This implies two facts. First of all, as ¢, € C),, we get bcy, € Cp,41. Secondly,
since b € T* and ¢, € Ty_ ,,, by the induction hypothesis, we have bc,, €
T,_ ~.. This shows the relation Cp,1 NT,_ ., # 0, and thus C,,41 C Ty -
This completes the proof.
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