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Abstract. Given a set T ⊂ (0, +∞), a function c : T → R and a real number p we study
continuous solutions ϕ of the simultaneous equations

ϕ(tx) = ϕ(x) + c(t)xp, t ∈ T.

Here ϕ is defined on an interval I ⊂ (0, +∞), so the equations are postulated on a restricted
domain: for any fixed t ∈ T we assume that x ∈ I is such that tx ∈ I. In the case when T is
large in a sense, we determine the form of ϕ on a non-trivial subinterval of I. The research is
a continuation of that of “non-restricted”, where I = (0, +∞), made in Jarczyk (Ann Univ
Sci Budapest Sect Comp 40:353–362, 2013).
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Introduction

Let T ⊂ (0,+∞) be any non-empty set. Given a function c : T → R and a
number p ∈ R consider the simultaneous difference equations

ϕ(tx) = ϕ(x) + c(t)xp, t ∈ T. (1)

Systems of such equations appear naturally while studying weak generalized
stabilities of random variables in [1]. Namely, the main problem of that paper
has been reduced to determining Lebesgue (or Baire) measurable solutions
f : (0,+∞) → (0,+∞) of the functional equation

(f (t(x + y)) − f(tx)) (f(x + y) − f(y))
= (f(t(x + y)) − f(ty)) (f(x + y) − f(x)) .
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Solving this equation one can show that either log f satisfies the system of
equations

ϕ(nx) = ϕ(x) + c(n), n ∈ N,

where c(n) = log f(n)
f(1) , or f is a solution of the system

ϕ(nx) = ϕ(x) + c(n)xp, n ∈ N,

with a p ∈ R and some sequence c.
In [2, Theorem 2.2] the first present author, assuming that the multiplica-

tive group <T> generated by T is dense in (0,+∞), found, among others, all
the continuous solutions ϕ : (0,+∞) → R of Eq. (1). Of course, at this point
also the form of possible functions c were determined.

Here we study a more general situation of Eq. (1) on a restricted domain
where we assume that their solution ϕ is defined on a given interval I ⊂
(0,+∞) only. Clearly, this requires that given a t ∈ T we have tx ∈ I whenever
x ∈ I.

In what follows I is a fixed non-empty interval contained in (0,+∞).
Observe that if t ∈ T and we can find an x ∈ I such that tx ∈ I, then
x ∈ I ∩ t−1I and, consequently, I ∩ t−1I �= ∅. Otherwise, if I ∩ t−1I = ∅, then
there is no point to considering the individual equation

ϕ(tx) = ϕ(x) + c(t)xp. (2)

Consequently, without loss of generality, we may (and should!) assume the
condition

t ∈ T implies It �= ∅, t ∈ (0,+∞), (3)

where It := I ∩ t−1I, ignoring those t ∈ T for which It = ∅. In other words,
for any ϕ : I → R the phrase ”ϕ is a solution of Eq. (1)” means ”ϕ satisfies
equalities (2) for all t ∈ T and x ∈ It”.

1. Continuous solutions of (1)

Assume condition (3). Then, since

I1/t = I ∩ tI = t
(
t−1I ∩ I

)
= tIt,

also I1/t �= ∅ for all t ∈ T , that is It �= ∅ for all t ∈ T−1, where T−1 :={
t−1 : t ∈ T

}
. Putting

T ∗ := T ∪ T−1 ∪ {1}
we have

It �= ∅, t ∈ T ∗.
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If inf I = sup I then I is a singleton which implies T = {1}. In that case the
problem of solutions ϕ : I → R of (1) has a trivial answer: ϕ is arbitrary (and
c is the zero function). So further we may assume that inf I < sup I.

Take any numbers γ− ∈ (0, 1) and γ+ ∈ (1,+∞). For each n ∈ N we define

Tγ−,γ+,n := {t ∈ (0,+∞) : there exist t1, . . . , tn ∈ T ∗ such that

t = t1 · . . . · tn and γ− ≤ t1 · . . . · tk ≤ γ+ for all k = 1, . . . , n} .

Moreover, put

Tγ−,γ+ :=
∞⋃

n=1

Tγ−,γ+,n.

Proposition 1. Let c : T → R and fix γ− ∈ (0, 1) and γ+ ∈ (1,+∞) such that
inf I/γ− < sup I/γ+. Then, for every n ∈ N,

(i) Tγ−,γ+,n ⊂ Tγ−,γ+,n+1;
(ii) there exists a unique function cn : Tγ−,γ+,n → R such that for every

solution ϕ : I → R of Eq. (1) the equality

ϕ(tx) = ϕ(x) + cn(t)xp

holds for all t ∈ Tγ−,γ+,n and x ∈ (inf I/γ−, sup I/γ+).

Proof. To get (i) it is enough to observe that

Tγ−,γ+,n = Tγ−,γ+,n · 1 ⊂ Tγ−,γ+,n+1

for all n ∈ N.
Now we uniquely extend c to the set T ∗ in such a way that equality (2)

holds for all t ∈ T ∗ and x ∈ It. If 1 ∈ T then (2) forces that c(1) = 0. If 1 /∈ T
then define c(1) := 0. Moreover, put

c(t) := −tpc
(
t−1

)

for all t ∈ T−1. (One can check that for t ∈ T ∩T−1 the above equality follows
immediately from (1).) Now, if t ∈ T−1 and x ∈ It then t−1 ∈ T and tx ∈ I1/t,
hence

ϕ
(
t−1tx

)
= ϕ(tx) + c

(
t−1

)
(tx)p,

that is

ϕ (tx) = ϕ(x) − tpc
(
t−1

)
xp = ϕ(x) + c(t)xp,

which is (2).
The sequence (cn)n∈N

will be defined inductively. Notice that Tγ−,γ+,1 =
T ∗ ∩ [γ−, γ+] and define

c1 := c|T ∗∩[γ−,γ+].

For every x ∈ (inf I/γ−, sup I/γ+) we have x ∈ I because of the inequalities
γ− < 1 < γ+. If, in addition, t ∈ Tγ−,γ+,1 then γ− ≤ t ≤ γ+, so inf I < γ−x ≤



242 W. Jarczyk, P. Pasteczka AEM

tx ≤ γ+x < sup I, and thus x ∈ I ∩ t−1I = It. Consequently, it follows from
(2) that

ϕ (tx) = ϕ(x) + c(t)xp = ϕ(x) + c1(t)xp.

Now fix an integer n ≥ 2 and assume that we have defined a unique cn−1 :
Tγ−,γ+,n−1 → R such that for every solution ϕ : I → R of Eq. (1) we have

ϕ (tx) = ϕ(x) + cn−1(t)xp

for all t ∈ Tγ−,γ+,n−1 and x ∈ (inf I/γ−, sup I/γ+). Fix any t ∈ Tγ−,γ+,n and
x ∈ (inf I/γ−, sup I/γ+). Choose t1, . . . , tn ∈ T ∗ such that t = t1 · . . . · tn and
γ− ≤ t1 · . . . · tk ≤ γ+ for all k ∈ {1, . . . , n}. Then

inf I < γ−x ≤ t1 · . . . · tkx ≤ γ+x < sup I,

and thus t1 · . . . · tkx ∈ I whenever k ∈ {1, . . . , n}. Observe that tn ∈ T ∗ and
t1 · . . . · tn−1 ∈ Tγ−,γ+,n−1, and thus

ϕ(tx) = ϕ (t1 · . . . · tnx) = ϕ (tnt1 · . . . · tn−1x)
= ϕ (t1 · . . . · tn−1x) + c (tn) (t1 · . . . · tn−1x)p

= ϕ(x) + cn−1 (t1 · . . . · tn−1) xp + c (tn) (t1 · . . . · tn−1)
p
xp

= ϕ(x) + [cn−1 (t1 · . . . · tn−1) + c (tn) (t1 · . . . · tn−1)
p] xp.

If, in addition, t = s1 · . . . · sn with some s1, . . . , sn ∈ T ∗ satisfying γ− ≤
s1 · . . . · sk ≤ γ+ for all k ∈ {1, . . . , n}, then an analogous argument gives

ϕ(tx) = ϕ (s1 · . . . · snx)
= ϕ(x) + [cn−1 (s1 · . . . · sn−1) + c (sn) (s1 · . . . · sn−1)

p] xp.

Therefore, the value

cn(t) := cn−1 (t1 · . . . · tn−1) + c (tn) (t1 · . . . · tn−1)
p

does not depend on the representation t = t1 · . . . · tn with t1, . . . , tn ∈ T ∗ such
that γ− ≤ t1 · . . . · tk ≤ γ+ whenever k ∈ {1, . . . , n} and defines a function cn

on (inf I/γ−, sup I/γ+) satisfying the equality

ϕ(tx) = ϕ(x) + cn(t)xp

for all x ∈ (inf I/γ−, sup I/γ+). The uniqueness of cn follows from its definition
and the uniqueness of the functions cn−1 and c. �

As an almost immediate consequence of Proposition 1 we obtain the fol-
lowing result,

Corollary. Let c : T → R and fix γ− ∈ (0, 1) and γ+ ∈ (1,+∞) such that
inf I/γ− < sup I/γ+. Then there exists a unique function cγ−,γ+ : Tγ−,γ+ → R

such that for every solution ϕ : I → R of Eq. (1) the equality

ϕ(tx) = ϕ(x) + cγ−,γ+(t)xp

holds for all t ∈ Tγ−,γ+ and x ∈ (inf I/γ−, sup I/γ+).
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Proof. It is enough to observe that the properties of the sequence (cn)n∈N
,

established in Proposition 1, imply the equalities

cn+1|Tγ−,γ+,n
= cn

for all n ∈ N and to define the function cγ−,γ+ on Tγ−,γ+ by

cγ−,γ+(t) = cn(t)

if t ∈ Tcγ−,γ+,n
for an n ∈ N. �

Now we are in a position to formulate and prove the main result.

Theorem. Let c : T → R and let ϕ : I → R be a continuous solution of Eq. (1).
Assume that γ− ∈ (0, 1) and γ+ ∈ (1,+∞) are such that inf I/γ− < sup I/γ+
and Tγ−,γ+ is a dense subset of the interval (γ−, γ+).

(i) If p �= 0 then there exist a, b ∈ R such that

ϕ(x) = axp + b, x ∈ (inf I/γ−, sup I/γ+) .

(ii) If p = 0 then there exist a, b ∈ R such that

ϕ(x) = a log x + b, x ∈ (inf I/γ−, sup I/γ+) .

Proof. Since ϕ is continuous it follows from the Corollary that for every x ∈
(inf I/γ−, sup I/γ+) the function

(γ−, γ+) � t −→ ϕ(tx) − ϕ(x)
xp

is a continuous extension of cγ−,γ+ . As the domain Tγ−,γ+ of cγ−,γ+ is a dense
subset of (inf I/γ−, sup I/γ+) such an extension is unique. This means that
the function c∞ : (γ−, γ+) → R, given by

c∞(t) =
ϕ(tx) − ϕ(x)

xp
,

does not depend on x. In other words, c∞|Tγ−,γ+
= cγ−,γ+ and

ϕ(tx) = ϕ(x) + c∞(t)xp, t ∈ (γ−, γ+) , x ∈ (inf I/γ−, sup I/γ+) . (4)

Fix any ϑ ∈ (1,+∞) such that
(
ϑ−1, ϑ

) ⊂ (γ−, γ+) and ϑ inf I/γ− <

ϑ−1 sup I/γ+. Take any s, t ∈ (
ϑ−1, ϑ

)
and x ∈ (

ϑ inf I/γ−, ϑ−1 sup I/γ+
)
.

Then sx, tx ∈ (inf I/γ−, sup I/γ+).
To prove (i) assume that p �= 0. Then, by (4),

ϕ(stx) = ϕ(tx) + c∞(s)(tx)p = ϕ(x) + (c∞(t) + c∞(s)tp) xp

and

ϕ(tsx) = ϕ(sx) + c∞(t)(sx)p = ϕ(x) + (c∞(s) + c∞(t)sp) xp,

hence

c∞(t) + c∞(s)tp = c∞(s) + c∞(t)sp,
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that is

c∞(s) (tp − 1) = c∞(t) (sp − 1) .

Therefore, there exists an a ∈ R such that

c∞(t) = a (tp − 1) , t ∈ (
ϑ−1, ϑ

)
.

Taking any x ∈ (inf I/γ−, sup I/γ+) and t ∈ (
ϑ−1, ϑ

)
, and using (4) we get

ϕ(tx) − ϕ(x)
tx − x

=
c∞(t)xp

(t − 1)x
= a

tp − 1
t − 1

xp−1 −→
t→1

apxp−1.

Thus ϕ is differentiable at x and ϕ′(x) = apxp−1; consequently,

ϕ(x) = axp + b, x ∈ (inf I/γ−, sup I/γ+) ,

with some b ∈ R.
Similarly we prove (ii). Assume that p = 0. Then (4) implies

ϕ(stx) = ϕ(tx) + c∞(s) = ϕ(x) + c∞(t) + c∞(s)

and

ϕ(stx) = ϕ(x) + c∞(st).

This means that

c∞(st) = c∞(s) + c∞(t), s, t ∈ (
ϑ−1, ϑ

)
,

and thus (see [3]) there exists an a ∈ R such that

c∞(t) = a log t, t ∈ (
ϑ−1, ϑ

)
.

Now, if x ∈ (inf I/γ−, sup I/γ+) and t ∈ (
ϑ−1, ϑ

)
then, by (4),

ϕ(tx) − ϕ(x)
tx − x

=
c∞(t)

(t − 1)x
= a

log t

t − 1
1
x

−→
t→1

a
1
x

.

Therefore

ϕ(x) = a log x + b, x ∈ (inf I/γ−, sup I/γ+) ,

for some b ∈ R. �

2. Density of Tγ−,γ+
in (γ−, γ+)

The following question, about the possible realization of the assumptions of
the Theorem, arises naturally: are there simple non-trivial examples of sets
T ⊂ (0,+∞) and numbers γ− ∈ (0, 1), γ+ ∈ (1,+∞) such that Tγ−,γ+ is a
dense subset of the interval (γ−, γ+)?

At first it is quite easy to prove that if T ⊂ (0,+∞) is any set having 1
as an accumulation point, then we are done (see [4, Lemma 5.1] for details).
A somewhat opposite situation is when T contains two elements only. The
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proposition below provides a pretty large class of examples giving a positive
answer to the question in that case.

Proposition 2. Let 0 < γ− ≤ a < 1 < b ≤ γ+ with log a/ log b /∈ Q and let
T = {a, b}. Then Tγ−,γ+ is a dense subset of the interval (γ−, γ+).

Proof. Due to the logarithmic incommensurability of a, b the set

C := {albm : l ∈ Z,m ∈ N0} ∩ [γ−, γ+]

is dense in [γ−, γ+], and thus to prove the proposition it is enough to show
that C ⊂ Tγ−,γ+ . Clearly C =

⋃∞
m=0 Cm where

Cm := {albm : l ∈ Z} ∩ [γ−, γ+] , m ∈ N0.

Since γ− ≤ a < 1 ≤ γ+, it follows that all the sets Cm are non-empty. If
t ∈ Cm ∩ Tγ−,γ+ for some m ∈ N0, then, as a, a−1 ∈ T ∗ and each element of
Cm can be obtained as a product of t by a non-negative power of a or a−1, we
see that Cm ⊂ Tγ−,γ+ . Therefore

either Cm ∩ Tγ−,γ+ = ∅, or Cm ⊂ Tγ−,γ+ , m ∈ N0.

Using induction we prove that Cm ⊂ Tγ−,γ+ for all n ∈ N0. Clearly 1 ∈
C0 ∩Tγ−,γ+ . Assume that Cm ⊂ Tγ−,γ+ for some m ∈ N0 and let cm = inf Cm.
Since a ∈ (0, 1) we see that acm /∈ Cm, hence acm < γ− ≤ a and, consequently,
cm < 1. Thus

bcm ∈ (cm, b) ⊂ [γ−, γ+] .

This implies two facts. First of all, as cm ∈ Cm, we get bcm ∈ Cm+1. Secondly,
since b ∈ T ∗ and cm ∈ Tγ−,γ+ , by the induction hypothesis, we have bcm ∈
Tγ−,γ+ . This shows the relation Cm+1 ∩ Tγ−,γ+ �= ∅, and thus Cm+1 ⊂ Tγ−,γ+ .
This completes the proof. �
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