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On a functional equation characterizing linear similarities
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Abstract. The aim of this paper is to give an answer to a question posed by Alsina, Sikorska
and Toméas. Namely, we show that, under suitable assumptions, a function f: X —Y from
a normed space X into a normed space Y, satisfying the functional equation

has to be a linear similarity (scalar multiple of a linear isometry).
Mathematics Subject Classification. Primary 39B52, 46C50; Secondary 46B20, 39B55.

Keywords. Functional equation, Normed spaces, Norm derivatives, Smoothness, Orthogonal-

ity in normed spaces, Height function.

1. Introduction

Let (X, |I|) be a real normed space. We define norm derivatives p/y : XxX —R
by o\ (z,y) = |lz| -lim; o+ w The convexity of the norm yields
that p/, and p’ are well-defined. Now we define p, -orthogonality: x 1, y <
p(x,y) = 0. The following properties can be found, e.g., in [1,2].

(ndl) Vo yex VYaer pi(z, 0z +y) = allz|® + b (2,y);

(nd2) Vayex Vazo pilow,y) = apy(z,y) = pi(z, ay);

(nd3) Vayex Va<o plhlaz,y) = apf(z,y) = pl(z, ay);

(ndd) Yoyex  lph(@ )l < ol lyll, pl(z,x) = [lzl?, o’ (z,y) < o (2, y);
(0d5) Voyoex  ph(@,y+2) <pl(e,y) + ol (z,2).

A normed space X is said to be smooth if for every x € X \ {0} there is a unique
supporting functional at x, i.e., a unique functional z* € X* such that ||z*||=1
and z*(x)=||z||. Moreover, we may state this definition in an equivalent form,
namely: X is smooth & p/, =p' & Veex p/ (,-) is linear. If X is smooth,
then the following condition holds (see [1]):
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(nd6) for any two-dimensional subspace P of X and for every x € P, X €
(0, 4+00), there exists a y € P such that x 1, y and z+y L, Az—y.

In a real inner product space (X, (-|-)), given the triangle determined by two

linearly independent vectors x, y and the zero vector (i.e., A{z,y,0}), one

can compute the height vector from y to the side z and orthogonal to x using

the formula h(z,y):=y— le‘ﬁ"gw Then z L h(x,y). The same might be done for

normed spaces using the function p’, as a generalization of an inner product.

In this case we consider the height function h(z,y):=y— pﬁg(f‘l;y)x

Alsina et al. [1] investigated functions f: X — X that transform the height
of the triangle with sides x, y, x — y into the corresponding height of the

triangle determined by sides f(z), f(y), f(z) — f(y), i.e. f(A{z,y,0}) =
AN{f(z), f(y),0}. Namely, they studied the condition f(h(x,y))=h(f(z), f(y)),

which leads to the functional equation f (y— p/ﬁiﬁ;y) x) = f(y)—%f( ).

In particular, Alsina et al. [1] obtained the following result.

Theorem 1. [1, p. 102, Theorem 3.7.2] If X is a real normed linear space and
f: X— X is a continuous function, then f is a solution of

Ay Ny U@ Fm) L
1 (o= Fjape) = 100 - S @, e

and vanishes only at zero if and only if, f is a linear similarity.

At the end of their book [1, p. 178, Open problem 6] Alsina, Sikorska and
Tomas put the following problem.
Open problem Solve the functional equation

@) N @) fw)
f (y ||IL'H2 ) _f(y) ||f(:17)||2 f( )a ,yeX, (1)

where f: X — X is injective and f(z)7#0 whenever x#0.

The aim of this paper is to present a partial solution of the above open
problem. In particular, we will prove that the assumption of the continuity of
f is redundant in some circumstances. Moreover, it is not necessary to assume
that f is injective.

2. Results

Throughout this section we will work with real normed spaces of dimensions
not less than 2. We will consider the norm derivatives in various spaces (X
and Y'); however, we will use one common symbol p/, for them. We will prove
that f: X —Y is a solution of (1) if and only if it is a linear similarity (scalar
multiple of a linear isometry). This assertion, however, can be obtained under
the assumption of the smoothness of X. But, unlike Theorem 1, it will not be
assumed that a function f is continuous.
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Lemma 2. Let X,Y be normed spaces, let f: X —Y satisfy (1). Then f(0)=

Proof. By (1) we get £(0) = f (y=252y) = fly) - “EEE () =

fly)— fly)=0. O

Now we prove the first main result of this paper.

Theorem 3. Let X, Y be normed spaces and let f: X =Y satisfy (1). Suppose
that z#0 = f(z)#0. Then f is additive.

Proof. First we will prove that f preserves the linear independence of two
vectors. Suppose that f(y)=af(z) and = # 0. Then

() ) ) AU af(@) | d)
(o= " O
(nd1) oo 7ap’+(f(z)7f(x)) ) (249
A R
From the assumption (i.e. f(z) =0 = z =0) we have that y — %x =

0, hence the vectors z,y are linearly dependent. So, we have proved that f
preserves the linear independence of two vectors.
Fix two linearly independent vectors a,b& X. Then we have

_AA@ f0) @ (@) N na)
fO-"wr 1@ f(b al? )
) oy Pr(@ath) N @
- f( T )
O oy @) flatd)) .
= fer) - reE— 1@

It follows from the above equalities that

o P f@th) A (@) fB)Y
oo =10+ (B ) @ )
Putting b, a in place of a, b, respectively, in the above equality we get
Wb = fla PL(f(b), f(bta)) P (f(b), f(a))
sta+0 = o+ (B )0 o

We know that f(a), f(b) are linearly independent. Thus, combining (2) and
Py (£(a).f(atb))  p (f(a).f(b))

(3), we immediately get TFTe — S = 1 Now equality (2)
becomes f(a+b) = f(b) +1- f(a). To sum up, it has been shown that
a, b are linearly independent = f(a + b)= f(a)+ f(b). (4)

Now let  and y be linearly dependent. We may assume that x # 0 # y.
We consider two cases. Assume first that y = vz for some v € R\ {—1}.
There are linearly independent vectors a,b € X such that a + b = z. Then
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Faty) = flatyz) = flatbrre) D fla)+Fb+yz) L Fla)+F o)+ f(vae) L

fla+b)+ f(yz) = f(x)+ f(yz). To sum up, it has been shown that
re X\ {0}, yeR\{-1} = flz+y2)=f(2)+f(y2). (5)
Now assume y=—z. We have f(z)= f(2x+(77) 2&6) (O)f(Qx) +f((f%) 2:0) =

fQx)+f(—x) = flatxHf(—x) © (2 Hf (2 )+f (—=2). Tt follows from the above
equalities that 0 = f(x)+f(—z). By Lemma 2 we already know that f(0) =0
Therefore f(z+y) = f(z+(—x)) = f(0) =0 = f(z)+f(—z) = f(z)+f(y). So
we have the additivity of f on the whole space X. O

Lemma 4. Let X,Y be normed spaces and let f: X —Y satisfy (1). Then f
preserves p -orthogonality.

Proof. Assume that x L, y, ie., p/,(z,y) = 0. We assume that f(z) # 0 (if
(1)
=f

F(2) =0, then f(z)L,, f(y)). Notice that f(y) = f (y— Za) & fly) -
PR (@), hence PEEI () = 0. This gives ! (/). f(4)) =0.
Hence f(z)L,, f(y). Thus, in fact, f preserves p,-orthogonality. O

Now we prove the second main result of this paper.

Theorem 5. Let X,Y, f be as in Theorem 3. Suppose that X is smooth. Then
f is homogeneous.

Proof. Fix y in X \ {0}. We know that dimspan{y} = 1, so, it is best to think
of flspan{y}: span{y}—7Y as a function f: R—Y.

Now we can prove that f|s,angy} is homogeneous. Since we already know
that f is additive, it suffices to show that ||f\span{y} H is bounded below on
the segment {yy : v € [1,2]}. Let 8 € (0,1]. Applying (nd6), there exists a
we X \ {0} such that y 1, w and y+wl, By—w. It follows from Lemma 4
that f(y)L,, f(w). Therefore,

IF@IP = P (fW), f@)+0 = p' (f(y), (W) +0' (f(y), f(w))

(ndl) ,

9 ) ) f ) e 1F @) 1)+ Fa)ll

and dividing by ||f(y)|l, we obtain ||f(y)|| < ||f(y)+ f(w)|. But since also
y+wl,, By—w, we conclude that f(y+w)L,, f(By—w), and by the additivity
of f we have f(y)+f(w)L,, f(By)—f(w). In the same manner we can prove

1 (y)+f )l < @)+ f(w) + f(By) = f(w)]-
Therefore ||f(y)+f(w)||<||f(v)+ f(By)||. From this we deduce that

IF I < 1F @)+ F)l < [1F W)+ F Bl = 11 +By)l-

Thus we have proved:

Be0,1) = [lfWII<If((+B)y)ll-

(nd1)
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Observe that the above condition implies that Hf|span{y}(~) H is bounded below
on the segment {yy : y€[1,2]}. The proof of Theorem 5 is complete. O

We can combine the results of Theorems 3 and 5 and Lemma 4 to obtain
the third main result. Finally, we can solve (1) completely.

Theorem 6. Let X,Y be real normed spaces. Suppose that X is smooth. Assume
that f: X —Y is nonzero, suppose that z#0 = f(z)#0. Then, the following
conditions are equivalent:

(a) f salisfies (1),
(b) f is linear and 3y>0 Veex || f(2)]] = 7|z

Proof. We prove (a)=-(b). It follows from Theorems 3,5 that f is linear. Ac-
cording to Lemma 4, f preserves p-orthogonality. The class of linear map-
pings preserving p-orthogonality coincides with the class of linear similarities
(cf. [3, Theorem 5]). The proof of this implication is complete. The converse
implication has a trivial verification. O
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