On a functional equation characterizing linear similarities

Pawee Wójcik

Abstract

The aim of this paper is to give an answer to a question posed by Alsina, Sikorska and Tomás. Namely, we show that, under suitable assumptions, a function $f: X \rightarrow Y$ from a normed space X into a normed space Y, satisfying the functional equation

$$
f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right)=f(y)-\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x), \quad x, y \in X
$$

has to be a linear similarity (scalar multiple of a linear isometry).
Mathematics Subject Classification. Primary 39B52, 46C50; Secondary 46B20, 39B55.
Keywords. Functional equation, Normed spaces, Norm derivatives, Smoothness, Orthogonality in normed spaces, Height function.

1. Introduction

Let $(X,\|\cdot\|)$ be a real normed space. We define norm derivatives $\rho_{ \pm}^{\prime}: X \times X \rightarrow \mathbb{R}$ by $\rho_{ \pm}^{\prime}(x, y):=\|x\| \cdot \lim _{t \rightarrow 0^{ \pm}} \frac{\|x+t y\|-\|x\|}{t}$. The convexity of the norm yields that ρ_{+}^{\prime} and ρ_{-}^{\prime} are well-defined. Now we define ρ_{+}-orthogonality: $x \perp_{\rho_{+}} y: \Leftrightarrow$ $\rho_{+}^{\prime}(x, y)=0$. The following properties can be found, e.g., in [1,2].
(nd1) $\forall_{x, y \in X} \forall_{\alpha \in \mathbb{R}} \quad \rho_{ \pm}^{\prime}(x, \alpha x+y)=\alpha\|x\|^{2}+\rho_{ \pm}^{\prime}(x, y)$;
(nd2) $\forall_{x, y \in X} \forall_{\alpha \geqslant 0} \quad \rho_{ \pm}^{\prime}(\alpha x, y)=\alpha \rho_{ \pm}^{\prime}(x, y)=\rho_{ \pm}^{\prime}(x, \alpha y)$;
(nd3) $\forall_{x, y \in X} \forall_{\alpha<0} \quad \rho_{ \pm}^{\prime}(\alpha x, y)=\alpha \rho_{\mp}^{\prime}(x, y)=\rho_{ \pm}^{\prime}(x, \alpha y)$;
(nd4) $\forall_{x, y \in X} \quad\left|\rho_{ \pm}^{\prime}(x, y)\right| \leqslant\|x\| \cdot\|y\|, \rho_{ \pm}^{\prime}(x, x)=\|x\|^{2}, \rho_{-}^{\prime}(x, y) \leqslant \rho_{+}^{\prime}(x, y)$;
(nd5) $\forall_{x, y, z \in X} \quad \rho_{+}^{\prime}(x, y+z) \leqslant \rho_{+}^{\prime}(x, y)+\rho_{+}^{\prime}(x, z)$.
A normed space X is said to be smooth if for every $x \in X \backslash\{0\}$ there is a unique supporting functional at x, i.e., a unique functional $x^{*} \in X^{*}$ such that $\left\|x^{*}\right\|=1$ and $x^{*}(x)=\|x\|$. Moreover, we may state this definition in an equivalent form, namely: X is smooth $\Leftrightarrow \rho_{+}^{\prime}=\rho_{-}^{\prime} \Leftrightarrow \forall_{x \in X} \rho_{+}^{\prime}(x, \cdot)$ is linear. If X is smooth, then the following condition holds (see [1]):
(nd6) for any two-dimensional subspace P of X and for every $x \in P, \lambda \in$ $(0,+\infty)$, there exists a $y \in P$ such that $x \perp_{\rho_{+}} y$ and $x+y \perp_{\rho_{+}} \lambda x-y$.
In a real inner product space $(X,\langle\cdot \mid \cdot\rangle)$, given the triangle determined by two linearly independent vectors x, y and the zero vector (i.e., $\triangle\{x, y, 0\}$), one can compute the height vector from y to the side x and orthogonal to x using the formula $h(x, y):=y-\frac{\langle x \mid y\rangle}{\|x\|^{2}} x$. Then $x \perp h(x, y)$. The same might be done for normed spaces using the function ρ_{+}^{\prime} as a generalization of an inner product. In this case we consider the height function $h(x, y):=y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x$.

Alsina et al. [1] investigated functions $f: X \rightarrow X$ that transform the height of the triangle with sides $x, y, x-y$ into the corresponding height of the triangle determined by sides $f(x), f(y), f(x)-f(y)$, i.e. $f(\triangle\{x, y, 0\})=$ $\triangle\{f(x), f(y), 0\}$. Namely, they studied the condition $f(h(x, y))=h(f(x), f(y))$, which leads to the functional equation $f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right)=f(y)-\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x)$. In particular, Alsina et al. [1] obtained the following result.

Theorem 1. [1, p. 102, Theorem 3.7.2] If X is a real normed linear space and $f: X \rightarrow X$ is a continuous function, then f is a solution of

$$
f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right)=f(y)-\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x), \quad x, y \in X
$$

and vanishes only at zero if and only if, f is a linear similarity.
At the end of their book [1, p. 178, Open problem 6] Alsina, Sikorska and Tomás put the following problem.

Open problem Solve the functional equation

$$
\begin{equation*}
f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right)=f(y)-\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x), \quad x, y \in X \tag{1}
\end{equation*}
$$

where $f: X \rightarrow X$ is injective and $f(x) \neq 0$ whenever $x \neq 0$.
The aim of this paper is to present a partial solution of the above open problem. In particular, we will prove that the assumption of the continuity of f is redundant in some circumstances. Moreover, it is not necessary to assume that f is injective.

2. Results

Throughout this section we will work with real normed spaces of dimensions not less than 2 . We will consider the norm derivatives in various spaces (X and Y); however, we will use one common symbol ρ_{+}^{\prime} for them. We will prove that $f: X \rightarrow Y$ is a solution of (1) if and only if it is a linear similarity (scalar multiple of a linear isometry). This assertion, however, can be obtained under the assumption of the smoothness of X. But, unlike Theorem 1, it will not be assumed that a function f is continuous.

Lemma 2. Let X, Y be normed spaces, let $f: X \rightarrow Y$ satisfy (1). Then $f(0)=0$.
Proof. By (1) we get $f(0)=f\left(y-\frac{\rho_{+}^{\prime}(y, y)}{\|y\|^{2}} y\right)=f(y)-\frac{\rho_{+}^{\prime}(f(y), f(y))}{\|f(y)\|^{2}} f(y)=$ $f(y)-f(y)=0$.

Now we prove the first main result of this paper.
Theorem 3. Let X, Y be normed spaces and let $f: X \rightarrow Y$ satisfy (1). Suppose that $z \neq 0 \Rightarrow f(z) \neq 0$. Then f is additive.

Proof. First we will prove that f preserves the linear independence of two vectors. Suppose that $f(y)=\alpha f(x)$ and $x \neq 0$. Then

$$
\begin{aligned}
f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right) & \stackrel{(1)}{=} \alpha f(x)-\frac{\rho_{+}^{\prime}(f(x), \alpha f(x))}{\|f(x)\|^{2}} f(x) \stackrel{(n d 1)}{=} \\
& \stackrel{(n d 1)}{=} \alpha f(x)-\alpha \frac{\rho_{+}^{\prime}(f(x), f(x))}{\|f(x)\|^{2}} f(x) \stackrel{(n d 4)}{=} 0 .
\end{aligned}
$$

From the assumption (i.e. $f(z)=0 \Rightarrow z=0$) we have that $y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x=$ 0 , hence the vectors x, y are linearly dependent. So, we have proved that f preserves the linear independence of two vectors.

Fix two linearly independent vectors $a, b \in X$. Then we have

$$
\begin{aligned}
f(b)-\frac{\rho_{+}^{\prime}(f(a), f(b))}{\|f(a)\|^{2}} f(a) & \stackrel{(1)}{=} f\left(b-\frac{\rho_{+}^{\prime}(a, b)}{\|a\|^{2}} a\right) \stackrel{(n d 1)}{=} \\
& \stackrel{(n d 1)}{=} f\left(a+b-\frac{\rho_{+}^{\prime}(a, a+b)}{\|a\|^{2}} a\right) \stackrel{(1)}{=} \\
& \stackrel{(1)}{=} f(a+b)-\frac{\rho_{+}^{\prime}(f(a), f(a+b))}{\|f(a)\|^{2}} f(a) .
\end{aligned}
$$

It follows from the above equalities that

$$
\begin{equation*}
f(a+b)=f(b)+\left(\frac{\rho_{+}^{\prime}(f(a), f(a+b))}{\|f(a)\|^{2}}-\frac{\rho_{+}^{\prime}(f(a), f(b))}{\|f(a)\|^{2}}\right) f(a) \tag{2}
\end{equation*}
$$

Putting b, a in place of a, b, respectively, in the above equality we get

$$
\begin{equation*}
f(a+b)=f(a)+\left(\frac{\rho_{+}^{\prime}(f(b), f(b+a))}{\|f(b)\|^{2}}-\frac{\rho_{+}^{\prime}(f(b), f(a))}{\|f(b)\|^{2}}\right) f(b) \tag{3}
\end{equation*}
$$

We know that $f(a), f(b)$ are linearly independent. Thus, combining (2) and (3), we immediately get $\frac{\rho_{+}^{\prime}(f(a), f(a+b))}{\|f(a)\|^{2}}-\frac{\rho_{+}^{\prime}(f(a), f(b))}{\|f(a)\|^{2}}=1$. Now equality (2) becomes $f(a+b)=f(b)+1 \cdot f(a)$. To sum up, it has been shown that

$$
\begin{equation*}
a, b \text { are linearly independent } \Rightarrow f(a+b)=f(a)+f(b) \tag{4}
\end{equation*}
$$

Now let x and y be linearly dependent. We may assume that $x \neq 0 \neq y$.
We consider two cases. Assume first that $y=\gamma x$ for some $\gamma \in \mathbb{R} \backslash\{-1\}$. There are linearly independent vectors $a, b \in X$ such that $a+b=x$. Then
$f(x+y)=f(x+\gamma x)=f(a+b+\gamma x) \stackrel{(4)}{=} f(a)+f(b+\gamma x) \stackrel{(4)}{=} f(a)+f(b)+f(\gamma x) \stackrel{(4)}{=}$ $f(a+b)+f(\gamma x)=f(x)+f(\gamma x)$. To sum up, it has been shown that

$$
\begin{equation*}
x \in X \backslash\{0\}, \gamma \in \mathbb{R} \backslash\{-1\} \Rightarrow f(x+\gamma x)=f(x)+f(\gamma x) . \tag{5}
\end{equation*}
$$

Now assume $y=-x$. We have $f(x)=f\left(2 x+\left(-\frac{1}{2}\right) 2 x\right) \stackrel{(5)}{=} f(2 x)+f\left(\left(-\frac{1}{2}\right) 2 x\right)=$ $f(2 x)+f(-x)=f(x+x)+f(-x) \stackrel{(5)}{=} f(x)+f(x)+f(-x)$. It follows from the above equalities that $0=f(x)+f(-x)$. By Lemma 2 we already know that $f(0)=0$. Therefore $f(x+y)=f(x+(-x))=f(0)=0=f(x)+f(-x)=f(x)+f(y)$. So, we have the additivity of f on the whole space X.

Lemma 4. Let X, Y be normed spaces and let $f: X \rightarrow Y$ satisfy (1). Then f preserves ρ_{+}-orthogonality.
Proof. Assume that $x \perp_{\rho_{+}} y$, i.e., $\rho_{+}^{\prime}(x, y)=0$. We assume that $f(x) \neq 0$ (if $f(x)=0$, then $\left.f(x) \perp_{\rho_{+}} f(y)\right)$. Notice that $f(y)=f\left(y-\frac{\rho_{+}^{\prime}(x, y)}{\|x\|^{2}} x\right) \stackrel{(1)}{=} f(y)-$ $\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x)$, hence $\frac{\rho_{+}^{\prime}(f(x), f(y))}{\|f(x)\|^{2}} f(x)=0$. This gives $\rho_{+}^{\prime}(f(x), f(y))=0$. Hence $f(x) \perp_{\rho_{+}} f(y)$. Thus, in fact, f preserves ρ_{+}-orthogonality.

Now we prove the second main result of this paper.
Theorem 5. Let X, Y, f be as in Theorem 3. Suppose that X is smooth. Then f is homogeneous.
Proof. Fix y in $X \backslash\{0\}$. We know that $\operatorname{dim} \operatorname{span}\{y\}=1$, so, it is best to think of $\left.f\right|_{\operatorname{span}\{y\}}: \operatorname{span}\{y\} \rightarrow Y$ as a function $f: \mathbb{R} \rightarrow Y$.

Now we can prove that $\left.f\right|_{\operatorname{span}\{y\}}$ is homogeneous. Since we already know that f is additive, it suffices to show that $\left\|\left.f\right|_{\operatorname{span}\{y\}}(\cdot)\right\|$ is bounded below on the segment $\{\gamma y: \gamma \in[1,2]\}$. Let $\beta \in(0,1]$. Applying (nd6), there exists a $w \in X \backslash\{0\}$ such that $y \perp_{\rho_{+}} w$ and $y+w \perp_{\rho_{+}} \beta y-w$. It follows from Lemma 4 that $f(y) \perp_{\rho_{+}} f(w)$. Therefore,

$$
\begin{aligned}
&\|f(y)\|^{2}=\rho_{+}^{\prime}(f(y), f(y))+0=\rho_{+}^{\prime}(f(y), f(y))+\rho_{+}^{\prime}(f(y), f(w)) \stackrel{(n d 1)}{=} \\
& \stackrel{(n d 1)}{=} \rho_{+}^{\prime}(f(y), f(y)+f(w)) \stackrel{(n d 4)}{\leqslant}\|f(y)\| \cdot\|f(y)+f(w)\|,
\end{aligned}
$$

and dividing by $\|f(y)\|$, we obtain $\|f(y)\| \leqslant\|f(y)+f(w)\|$. But since also $y+w \perp_{\rho_{+}} \beta y-w$, we conclude that $f(y+w) \perp_{\rho_{+}} f(\beta y-w)$, and by the additivity of f we have $f(y)+f(w) \perp_{\rho_{+}} f(\beta y)-f(w)$. In the same manner we can prove

$$
\|f(y)+f(w)\| \leqslant\|f(y)+f(w)+f(\beta y)-f(w)\| .
$$

Therefore $\|f(y)+f(w)\| \leqslant\|f(y)+f(\beta y)\|$. From this we deduce that

$$
\|f(y)\| \leqslant\|f(y)+f(w)\| \leqslant\|f(y)+f(\beta y)\|=\|f(y+\beta y)\|
$$

Thus we have proved:

$$
\beta \in(0,1] \Rightarrow\|f(y)\| \leqslant\|f((1+\beta) y)\| .
$$

Observe that the above condition implies that $\left\|\left.f\right|_{\text {span }\{y\}}(\cdot)\right\|$ is bounded below on the segment $\{\gamma y: \gamma \in[1,2]\}$. The proof of Theorem 5 is complete.

We can combine the results of Theorems 3 and 5 and Lemma 4 to obtain the third main result. Finally, we can solve (1) completely.

Theorem 6. Let X, Y be real normed spaces. Suppose that X is smooth. Assume that $f: X \rightarrow Y$ is nonzero, suppose that $z \neq 0 \Rightarrow f(z) \neq 0$. Then, the following conditions are equivalent:
(a) f satisfies (1),
(b) f is linear and $\exists_{\gamma>0} \forall_{x \in X}\|f(x)\|=\gamma\|x\|$.

Proof. We prove $(\mathrm{a}) \Rightarrow(\mathrm{b})$. It follows from Theorems 3,5 that f is linear. According to Lemma $4, f$ preserves ρ_{+}-orthogonality. The class of linear mappings preserving ρ_{+}-orthogonality coincides with the class of linear similarities (cf. [3, Theorem 5]). The proof of this implication is complete. The converse implication has a trivial verification.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Alsina, C., Sikorska, J., Tomás, M.S.: Norm Derivatives and Characterizations of Inner Product Spaces. World Scientific, Hackensack (2010)
[2] Amir, D.: Characterization of Inner Product Spaces. Birkhäuser Verlag, Basel (1986)
[3] Chmieliński, J., Wójcik, P.: On a ρ-orthogonality. Aequ. Math. 80, 45-55 (2010)
Paweł Wójcik
Institute of Mathematics
Pedagogical University of Cracow
Podchorążych 2
30-084 Kraków
Poland
e-mail: pawel.wojcik@up.krakow.pl
Received: March 8, 2018
Revised: July 19, 2018

