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1. Introduction

The theory of metric spaces initiated in 1906 by Fréchet [16] has developed
into a huge branch of mathematics. The three axioms of a metric can be
considered as three pillars of this theory. However, some of these conditions
might be substituted by others or even omitted completely. This practice stems
either from a purely theoretic curiosity-driven tendency to generalise already
known concepts or is motivated by the necessity of practical applications.

Thus, several distinct concepts have been developed. For instance, if we
omit the first axiom of a metric, then we obtain the so-called pseudometric,
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which is broadly used within the theory of uniform spaces. Skipping the sym-
metry axiom allows us to define hemimetric spaces (see, e.g., [19]). In many
real-life situations it is more reasonable to use this method of measuring dis-
tance. Lastly, the generalisation which will be the focus of our attention in
this paper is obtained by dropping the triangle inequality and thus obtaining
the so-called semimetrics (see, e.g., [5,11,27]). Within the scope of this article,
we will deal mainly with a subclass of those spaces called quasimetric spaces
(see, e.g., [4,7,25,26]), which are also known under the name of b-metric spaces
(see, e.g., [2,13]). Some readers might be misled by the notion of a semimetric,
which differs from the one introduced in [23, Chapter 10]. However, we would
like to adapt most terminology from Wilson’s paper [27], who is one of the
pioneers of this field of topology.

The paper is organized as follows. The first section is devoted to introduc-
ing the notions used in the article, as well as recalling a few selected results in
the field of semimetric spaces. Then we dedicate the next section to recalling
an important metrization technique of Frink [17] and propose two possible re-
finements of Frink’s theorem. Each of them optimises the result obtained by
Frink in some way either by dropping some restrictions on the assumptions
or by improving the thesis in the original statement. The third section starts
with establishing Cantor’s intersection theorem for semimetric spaces satisfy-
ing one of Wilson’s [27] axioms. A proof uses a metrization theorem obtained
in our previous paper [11]. Next, as a simple consequence, we get a further
generalization of Cantor’s theorem in which we allow sets to be non-closed.
This enables us to derive from that result a quasimetric version of the Banach
Contraction Principle established by Bakhtin [4]. A novelty here is that we
also provide quite a lot of error estimates for sequences of approximate fixed
points and iterates of a mapping. Some of them seem to be new even in a
metric setting.

2. Main notions

Let us start with recalling the core notion of this article, i.e., the definition of a
semimetric space, which can be found in many papers, starting from [10,24,27],
and ending with a recent monograph [22].

Definition 2.1. A pair (X, d) consisting of a non-empty set X and a function
d : X×X → [0,+∞) is said to be a semimetric space if it satisfies the following
conditions:

(Q1) d(x, y) = 0 ⇐⇒ x = y;
(Q2) d(x, y) = d(y, x)

for all x, y ∈ X. The function d is then called a semimetric.
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A myriad of possible subcategories of such a broad class of spaces is ob-
tainable by adding some extra axioms, which can be considered as triangle-like
conditions. As we have already mentioned, in the scope of this paper we will
be dealing mainly with K-quasimetric spaces, which are a proper subclass of
semimetric spaces.

Definition 2.2. A semimetric space (X, d) is called a quasimetric space or,
more specifically, a K-quasimetric space, where K � 1 is fixed, if it satisfies
the following condition:
(Q3) d(x, z) � K · max{d(x, y), d(y, z)}
for all x, y, z ∈ X. In this case, the function d is called a K-quasimetric.

A 1-quasimetric space is known broadly in the literature as an ultrametric
space. Every 1-quasimetric space is therefore a metric space. On the other
hand, every metric space is, in fact, a 2-quasimetric space. The reverse, how-
ever, does not hold even for 1 < K � 2, i.e., there exist K-quasimetric spaces
which are not metric, which is shown in the following simple

Example 2.3. Consider a set X := {a, b, c} consisting of three distinct elements.
Define a function d : X ×X → R as follows: put 0 for d(a, a), d(b, b) and d(c, c),
and d(a, b) = d(b, a) = 1, d(a, c) = d(c, a) = 4, d(c, b) = d(b, c) = 2. One may
think of such a space as a ‘non-existent triangle’, where the lengths of its sides
are equal to 1, 2 and 4, respectively.

Actually, every semimetric space (X, d) is a quasimetric space, if the set X
is finite.

An equivalent definition of the above notion can be given by replacing (Q3)
by the following axiom: for a fixed M � 1 and all x, y, z ∈ X,
(Q3′) d(x, z) � M · (d(x, y) + d(y, z)) .

It is easily seen that conditions (Q3) and (Q3′) are equivalent. In fact,
(Q3′) implies (Q3) with a constant K = 2M , whereas (Q3) implies (Q3′)
with a constant M = K. In further sections (unless stated otherwise), by a
K-quasimetric we understand a semimetric satisfying the condition (Q3).

A stronger concept was given by Fagin et al. [14]:

Definition 2.4. A semimetric d is said to satisfy a c-relaxed polygonal inequality
(c-rpi in short) if

d(x, y) � c · (d(x, x1) + d(x1, x2) + · · · + d(xn, y))

for a fixed c � 1, any n ∈ N and all finite sequences x, x1, . . . , xn, y ∈ X.

In the same paper, the authors proved the following useful and interesting

Theorem 2.5 (Fagin et al.). For any semimetric space (X, d) and c � 1, the
following conditions are equivalent:
(i) (X, d) satisfies c-rpi;
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(ii) there exists a metric ρ on X such that

∀x,y∈X ρ(x, y) � d(x, y) � c · ρ(x, y).

Topology in semimetric spaces can be defined in various ways. The first
and most common approach is to define a topology in the following way:

A is open in (X, d) ⇐⇒ ∀x∈A ∃r>0 B(x, r) ⊂ A,

where B(x, r) := {y ∈ X : d(x, y) < r} is an open ball. However, for some
spaces this topology is not coherent with the descriptive words ‘open ball’,
as examples of semimetric spaces in which open balls are not open sets have
been provided in [2,3,11,25]. What makes this topology particularly useful is
the fact that the convergence of a sequence (xn) ∈ XN to some point x ∈ X
with respect to this topology is equivalently described by d(xn, x) → 0. This
topology will be considered as a default one throughout this paper, unless
explicitly stated otherwise. A topology in which each open ball is an open set
(i.e., open balls form a subbasis of the topology in (X, d)) is considered in
[2,11].

Many authors have also posed questions concerning the metrizability of
semimetric spaces (usually equipped with some additional conditions). In our
previous paper [11] we showed that, in particular, semimetric spaces satisfying
Wilson’s [27] axiom (W5) are uniformly metrizable. A semimetric space is said
to satisfy (W5) if for any three sequences (xn), (yn), (zn) ∈ XN,

d(xn, yn) → 0 and d(yn, zn) → 0 imply that d(xn, zn) → 0.

Definition 2.6. Let X be a non-empty set and d1, d2 be semimetrics defined
on X. We say that d1 and d2 are uniformly equivalent if the following two
conditions hold:

∀ε > 0 ∃δ > 0 ∀x, y ∈ X (d(x, y) < δ =⇒ ρ(x, y) < ε) ;
∀ε > 0 ∃δ > 0 ∀x, y ∈ X (ρ(x, y) < δ =⇒ d(x, y) < ε) .

In the next section, the topic of metrizability is revisited, focusing on metric
bounds, which can be obtained for a certain class of K-quasimetric spaces.

3. Refinements of Frink’s theorem

In [17] Frink provided an innovative method for constructing a metric equiv-
alent to a 2-quasimetric. We recall his result in an equivalent form indicated
by Schroeder [26].

Theorem 3.1 (Frink). Let (X, d) be a 2-quasimetric space. Then there exists a
metric ρ on X such that

∀x,y∈X ρ(x, y) � d(x, y) � 4ρ(x, y).
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In this theorem the metric ρ is obtained by the so-called chain approach,
namely, ρ is defined by

ρ(x, y) := inf
n∑

i=1

d(xi−1, xi), (3.1)

where the infimum is taken over all finite sequences of points x0, x1, x2, . . . , xn,
where x0 = x and xn = y, thus guaranteeing that the triangle inequality is
satisfied. In what follows, we will denote by ρinf the function defined by (3.1).

Theorem 3.1 was extended by Schroeder [26], who obtained the following

Theorem 3.2 (Schroeder). Let (X, d) be a K-quasimetric space with K � 2.
Then there exists a metric ρ on X such that

∀x,y∈X ρ(x, y) � d(x, y) � 2Kρ(x, y).

A natural question arises, whether one can obtain a better estimation of
d than that in Theorem 3.2. We will now present two possible refinements of
this theorem. The first one leaves the restriction K � 2 and gives an optimal
bounding constant. The other relaxes the restriction and provides an optimal
bound but for the pth power of the quasimetric d and not d itself.

3.1. The first refinement

In this section we present the first of the two mentioned generalisations of
Theorems 3.1 and 3.2. Note that the idea to use p := logK 2 in the proof of
the following theorem originates from the paper of Paluszyński and Stempak
[25].

Theorem 3.3. If (X, d) is a K-quasimetric space with K � 2, then there exists
a metric ρ on X for which the following inequalities hold:

∀x,y∈X ρ(x, y) � d(x, y) � K2ρ(x, y). (3.2)

Proof. The case where K = 1 yields an ultrametric space which is, in fact,
a metric space. Fix K ∈ (1, 2] and set p := logK 2. Then p � 1 and dp is a
2-quasimetric. Applying Theorem 3.1 to dp, we obtain the existence of a metric
ρ′ such that

∀x,y∈X ρ′(x, y) � dp(x, y) � 4 · ρ′(x, y).

To proceed further, we recall the following well-known

Lemma 3.4. Let (X, ρ) be a metric space. If f : [0,+∞) → [0,+∞) is concave,
continuous and f−1 ({0}) = {0}, then f ◦ ρ defines a metric equivalent to ρ.
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Since the function [0,+∞) � x �→ x
1
p satisfies the assumptions of Lemma

3.4, we have that ρ := (ρ′)
1
p is also a metric. Moreover, since K2p = 4, ρ

satisfies the condition

∀x,y∈X ρ(x, y) � d(x, y) � K2 · ρ(x, y),

which completes the proof. �

Of course, since K2 � 2K for K ∈ [1, 2], Theorem 3.3 gives a better
estimation than Theorem 3.2.

A natural question arises whether the constant K2 is optimal in Theorem
3.3. Our next result gives a positive answer to this question.

Theorem 3.5. Let a function ϕ : [1, 2] → [0,∞) be such that for any K ∈ [1, 2]
and any K-quasimetric space (X, d), there exists a metric ρ such that

ρ � d � ϕ(K)ρ.

Then ϕ(K) � K2 for all K ∈ [1, 2].

Proof. Suppose to the contrary that there exists K ∈ [1, 2] such that α :=
ϕ(K) < K2. Consider a set X := {x0, x1, x2, x3}, where xi 
= xj for i 
= j.
Since α < K2, there exists m ∈ N such that (1 − 1

m )K2 > α. Then define a
K-quasimetric d on X as follows:

d(x0, x1) := d(x2, x3) =
1

2m
;

d(x1, x2) := 1 − 1
m

;

d(x0, x2) := d(x1, x3) = K

(
1 − 1

m

)
;

d(x0, x3) := K2

(
1 − 1

m

)
;

d(xi, xj) := d(xj , xi) if i > j

and d(xi, xi) = 0 for i = 0, 1, 2, 3. It is not difficult to check that d is indeed a
K-quasimetric. Thus by hypothesis, we can find a metric ρ satisfying ρ � d �
ϕ(K)ρ = αρ. Hence

ρ(x0, x3) �
3∑

i=1

ρ(xi−1, xi) �
3∑

i=1

d(xi−1, xi) =
1

2m
+ 1 − 1

m
+

1
2m

= 1.

Since d(x0, x3) = K2
(
1 − 1

m

)
> α, we get that

α < d(x0, x3) � αρ(x0, x3) � α · 1 = α,

which gives a contradiction. �
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A natural question arises whether the constant K = 2 plays a special role
in Theorem 3.1. More precisely, does Frink’s chain approach work if we apply
it to a K-quasimetric with K > 2? This question was answered negatively
by Schroeder [26], who gave, for any K > 2, an interesting but complicated
example of a K-quasimetric space (X, d) for which the function ρinf defined by
(3.1) is not a metric. Hence, taking into account that the metric ρ in Theorem
3.1 was constructed in fact as ρinf , we obtain the following

Corollary 3.6. Let K be a real number. Then K � 2 if and only if for any
K-quasimetric space (X, d), the function ρinf defined by (3.1) is a metric on
X.

On the other hand, Dung and Hang [13], answering a question of Kirk and
Shahzad [22], constructed a Caristi [9] mapping T on a 16-quasimetric space
such that T has no fixed point. For the reader’s convenience we recall the
definition of such mappings.

Definition 3.7. Let (X, d) be a K-quasimetric space. T : X → X is called a
Caristi mapping if there exists a lower semicontinuous function φ : X → R

which is bounded from below and satisfies d(x, Tx) � φ(x) − φ(Tx) for all
x ∈ X.

Following [8] we say that T is asymptotically regular if for any x ∈ X,
d(Tnx, Tn+1x) → 0.

Now we extend Corollary 3.6 by establishing a list of seven equivalent con-
ditions including two concerning the fixed point property for Caristi mappings.

Theorem 3.8. Let K be a real number. The following conditions are equivalent:
(i) K � 2;
(ii) for every K-quasimetric space (X, d) there exists a metric ρ such that

for some c � 1,

∀x,y∈X ρ(x, y) � d(x, y) � c · ρ(x, y);

(iii) for every K-quasimetric space (X, d), the c-relaxed polygonal inequality
is satisfied for some c � 1;

(iv) for every complete K-quasimetric space (X, d), any Caristi mapping has
a fixed point;

(v) for every complete K-quasimetric space (X, d), any continuous and
asymptotically regular Caristi mapping on X has a fixed point;

(vi) for every K-quasimetric space (X, d), the function ρinf defined by (3.1)
is a metric;

(vii) for every K-quasimetric space (X, d) with |X| > 1, the function ρinf
defined by (3.1) is nonzero.

Proof. Notice that if K < 1, then all the conditions (i)–(vii) are true, since
X is then a singleton. So in the remaining part of the proof we assume that
K � 1.
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(i) =⇒ (ii) follows from Theorem 3.1.
(ii) ⇐⇒ (iii) holds by Theorem 2.5.
(ii) =⇒ (iv): Let (X, d) be a complete K-quasimetric space and let

T : X → X be a Caristi mapping with an associated lower semicontinuous,
bounded from below function φ. Hence for any x ∈ X,

ρ(x, Tx) � d(x, Tx) � φ(x) − φ(Tx).

Moreover, since ρ and d are uniformly equivalent, (X, ρ) is also complete and
φ is lower semicontinuous with respect to ρ, so by Caristi’s theorem [9] T has
a fixed point.

(iv) =⇒ (v) is obvious.
(v) =⇒ (i): Suppose to the contrary that K > 2. Set p := log2 K. Then

p > 1 and K = 2p. Clearly, if η(t) := tp for t � 0, then η(0) = η′(0) = 0, so by
[21, Theorem 7], there exist a complete metric space (X, ρ) and a continuous
and asymptotically regular mapping T : X → X such that

ρp(x, Tx) � φ(x) − φ(Tx) for x ∈ X,

where φ : X → [0,∞) is continuous but T has no fixed point. Set

d(x, y) := ρp(x, y) for x, y ∈ X.

By [26, Remark 1.1], d is a K-quasimetric. Moreover, it is easily seen that d
and ρ are uniformly equivalent, so (X, d) is complete and T is a continuous and
asymptotically regular Caristi mapping with respect to d, which contradicts
(v) since T has no fixed point.

(i) =⇒ (vi) follows from Frink’s construction used in the proof of Theorem
3.1.

(vi) =⇒ (vii) is obvious.
(vii) =⇒ (i): Suppose to the contrary that K > 2. Set p := log2 K and

consider the set X := R equipped with a quasimetric d given by the following
formula:

∀x,y∈R d(x, y) := |x − y|p.
Again, by [26, Remark 1.1], d is a K-quasimetric. Take a pair of arbitrary
distinct points x0, y0 ∈ R. We will show that ρinf(x0, y0) = 0. Without loss of
generality we may assume that x0 < y0. Consider the following sequence of
paths leading from x0 to y0:

x
(j)
i :=

(
1 − i

j

)
· x0 +

i

j
· y0,

for all j ∈ N and i ∈ {0, 1, . . . , j}. Thus in the j-th step we split the distance

between x0 and y0 into j equal fragments, each of the length
(

1
j |x0 − y0|

)p
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(described by the semi-metric d). From the definition of ρinf we obtain that

ρinf(x0, y0) =
j−1∑

i=0

d(x(j)
i , x

(j)
i+1) =

j−1∑

i=0

(
1
j
|x0 − y0|

)p

=
(

j

jp
|x0 − y0|p

)
=

|x0 − y0|p
jp−1

j→∞−−−→ 0.

Since j can be arbitrarily large, ρinf(x0, y0) has to be equal to 0. Due to the
fact that both x0 and y0 were chosen arbitrarily, ρinf vanishes everywhere on
X, which yields a contradiction. �

3.2. The second refinement

The restrictions imposed on the constant K in both Theorem 3.3 and Frink’s
Theorem 3.1 can be omitted if the quasimetric d is replaced by d raised to a
proper power p > 0. The advantage of this method over the previous one is
that it allows us (by manipulating the power p) to obtain arbitrarily narrow
metric bounds. This is established precisely in the following

Proposition 3.9. Let (X, d) be a K-quasimetric space. Then for any ε > 0,
there exist p ∈ (0, 1] and a metric ρ for which

∀x,y∈X ρ(x, y) � dp(x, y) � (1 + ε)ρ(x, y). (3.3)

Proof. The case where K = 1 is obvious, so we assume further that K > 1.
Put q := min{1, logK 2}. Then, q ∈ (0, 1] and dq is a K ′-quasimetric with
K ′ � 2. By Frink’s Theorem 3.1, there exists a metric D on X, for which

∀x,y∈X D(x, y) � dq(x, y) � 4D(x, y). (3.4)

Fix ε > 0. Since 4
1
n → 1, there exists k ∈ N such that 4

1
k � 1 + ε. Define

a function f by f(x) := x
1
k for x � 0. Applying f to both sides of (3.4), we

obtain that for any x, y ∈ X,

D
1
k (x, y) � d

q
k (x, y) � 4

1
k D

1
k (x, y) � (1 + ε)D

1
k (x, y).

By Lemma 3.4, if ρ := D
1
k , then ρ is a metric and putting p := q

k we get that
ρ � dp � (1 + ε)ρ. Clearly, p ∈ (0, 1]. �

Checking whether a given function fulfills the first two axioms of a metric
is, in general, not problematic. The difficulty is usually to determine if the
condition (Q3) is satisfied. Sometimes it is easier to verify another condition,
which is equivalent to either (Q3) or (Q3′). The next theorem provides such
conditions. However, it is worth noting here that a similar result appeared in [3]
(see [3, Proposition 4.1]), where the authors proved the implication (i) =⇒ (ii)
formulated below. Here we expand the list with two additional conditions. We
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say that a function ϕ : [0,∞) → [0,∞) satisfies condition Δ2 with a constant
C if

ϕ(2t) � Cϕ(t) for all t � 0.

Theorem 3.10. Let (X, d) be a semimetric space. The following conditions are
equivalent:
(i) d is a K-quasimetric for some K � 1;
(ii) for every non-decreasing function ϕ : [0,∞) → [0,∞) fulfilling Δ2 and

such that ϕ−1({0}) = {0}, ϕ ◦ d is a quasimetric;
(iii) for every ε > 0 there exists p ∈ (0, 1] and a metric ρ on X such that

ρ(x, y) � dp(x, y) � (1 + ε)ρ(x, y) for all x, y ∈ X;
(iv) there exists p ∈ (0, 1] such that dp fulfills the c-relaxed polygonal inequal-

ity.

Proof. (i) ⇒ (ii): Assume that d is a K-quasimetric. Let ϕ be as in (ii),
where condition Δ2 is satisfied with a constant C. Of course the condition
ϕ−1({0}) = {0} guarantees that ϕ ◦ d fulfills (Q1) and it is obvious that ϕ ◦ d
is symmetric. Let x, y, z ∈ X. Let n0 ∈ N be such that K

2n0 � 1. Then:

ϕ(d(x, z)) � ϕ (K max {d(x, y), d(y, z)}) � Cϕ

(
K

2
max {d(x, y), d(y, z)}

)

� · · · � Cn0ϕ

(
K

2n0
max {d(x, y), d(y, z)}

)

� Cn0ϕ (max {d(x, y), d(y, z)}) = Cn0 max {ϕ (d(x, y)) , ϕ (d(y, z))},

which means that ϕ ◦ d is a Cn0 -quasimetric.
(ii) ⇒ (iii): First note that ϕ = id satisfies the conditions in (ii), so d is a

quasimetric. Fix ε > 0. By Proposition 3.9, there exist p ∈ (0, 1) and a metric
ρ such that ρ(x, y) � dp(x, y) � (1 + ε)ρ(x, y) for all x, y ∈ X.

(iii) ⇒ (iv): This implication is due to Fagin et al. [14,15].
(iv) ⇒ (i): Assume that dp fulfills the c-relaxed polygonal inequality.

Clearly, in particular, dp is then a quasimetric. Hence, d is a quasimetric as
well, because ϕ(t) = t

1
p fulfills the conditions from (ii), so we may refer to

(i) =⇒ (ii) with d replaced by dp. �

4. Theorems of Cantor and Banach in a quasimetric setting

In this section we generalise the Cantor intersection theorem onto quasimetric
spaces, presenting also its more general version. Moreover, we derive from it the
Banach Fixed-Point Theorem for quasimetric spaces, which was first proved
by Bakhtin [4]. Then in [1] the authors showed that the quasimetric version
can be obtained from its metric counterpart using remetrization techniques.
We prove that a more general version of the Banach Contraction Principle is
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also true for quasimetric spaces and present a proof of it using the generalised
version of Cantor’s theorem.

First, let us start with a technical lemma which will be of use in the proof
of the Cantor intersection theorem for quasimetric spaces.

Lemma 4.1. Let d1 and d2 be two semimetrics defined on a nonempty set X.
The following conditions are equivalent:

(i) d1 and d2 are uniformly equivalent;
(ii) for every sequence (An)n∈N of subsets of X, the following equivalence

holds:

diamd1 An → 0 ⇐⇒ diamd2 An → 0,

where diamdi
A := supx,y∈A di(x, y) is the diameter of a set A ⊂ X with

respect to the semimetric di for i = 1, 2.

Proof. (i) =⇒ (ii): Assume that d1 is uniformly equivalent to d2 and let (An)
be a sequence of subsets of X such that diamd1 An → 0. We will show that
diamd2 An → 0. Fix ε > 0. Then there exist δ > 0 and n0 ∈ N such that for any
x, y ∈ X, if d1(x, y) < δ, then d2(x, y) < ε and diamd1 An < δ for each n � n0.
Hence, for n � n0 and x, y ∈ An, we have that d1(x, y) � diamd1 An < δ, so
d2(x, y) < ε, which implies that diamd2 An � ε for n � n0. This shows that
diamd2 An → 0. Now, by interchanging the roles of d1 and d2, we obtain that
the stated equivalence holds.

(ii) =⇒ (i): Suppose to the contrary that d1 and d2 are not uniformly
equivalent. Without loss of generality we may assume that the first condition
from Definition 2.6 does not hold, i.e., there exists ε0 > 0 such that for all
n ∈ N, there exist points xn, yn in X such that

d1(xn, yn) <
1
n

and d2(xn, yn) � ε0.

If we set An := {xn, yn} for n ∈ N, then diamd1 An → 0, but diamd2 An � ε0
which yields a contradiction. �

Now with the help of Lemma 4.1 and remetrization techniques, we will
prove the Cantor intersection theorem for semimetric spaces satisfying (W5).

Theorem 4.2. Let (X, d) be a complete semimetric space in which (W5) holds.
Let (An)n∈N be a descending sequence of closed nonempty subsets of X such
that diam An → 0. Then

⋂
n∈N

An = {x∗} for some x∗ ∈ X.

Proof. Due to [11, Theorem 3.2], there exists a metric ρ which is uniformly
equivalent to d on X. Clearly, (X, ρ) is then complete. By Lemma 4.1, since
diamd An → 0, we get that diamρ An → 0, so the result follows from the classic
Cantor’s intersection theorem. �
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It is well known that the classic Cantor’s intersection theorem yields the
Banach Contraction Principle. This observation is due to Boyd and Wong [6]
(see also [18, p. 8]), who proved that if T is a Banach contraction on a metric
space (X, ρ), then sets An defined by

An :=
{

x ∈ X : ρ(x, Tx) � 1
n

}
for n ∈ N,

satisfy the assumptions of Cantor’s theorem. Thus, a natural question arises
whether Theorem 4.2 could be used to prove the following quasimetric version
of the Banach Contraction Principle established by Bakhtin [4]. We denote by
L(T ) the Lipschitz constant of a mapping T .

Theorem 4.3 (Bakhtin). Let (X, d) be a complete quasimetric space, T : X →
X be Lipschitzian with L(T ) ∈ [0, 1). Then T has a unique fixed point x∗ ∈ X
and for any x ∈ X, Tnx → x∗.

However, it turns out that, in general, Bakhtin’s theorem cannot be proved
via Cantor’s intersection theorem for quasimetric spaces. This is caused by
the fact that, as shown in Example 4.4 given below, there exists a complete
quasimetric space (X, d) (even satisfying a c-relaxed polygonal inequality) and
a Banach contraction T : X → X such that for any ε > 0, the set

Fixε T := {x ∈ X : d(x, Tx) � ε}
is not closed. Consequently, there does not exist a sequence (αn) such that
αn ↘ 0 and the sets Fixαn

T satisfy the assumptions of Theorem 4.2, so the
Boyd-Wong [6] trick does not work in this case.

Example 4.4. Let X = R+ := [0,∞), Q+ := Q ∩ [0,∞), Tx := x√
5

for x ∈ X

and for x, y ∈ X, let

d(x, y) =
{ |x − y|, if x, y ∈ Q or x, y /∈ Q;

2|x − y|, elsewhere.

Note that |x − y| � d(x, y) � 2|x − y|. Hence, (X, d) satisfies the 2-rpi and if
x, y ∈ X, then

d(Tx, Ty) � 2|Tx − Ty| =
2√
5
|x − y| � 2√

5
d(x, y),

so L(T ) � 2√
5

< 1. Let x ∈ X and consider the following cases:

(a) if x ∈ Q, or x /∈ Q and x√
5

∈ Q, then d(x, Tx) = 2x
(
1 − 1√

5

)
;

(b) if x /∈ Q and x√
5

/∈ Q, then d(x, Tx) = x
(
1 − 1√

5

)
.

Let ε > 0. In case (a), d(x, Tx) � ε if and only if 2x√
5
(
√

5 − 1) � ε, i.e.,

x � 5+
√
5

8 ε. In case (b), d(x, Tx) � ε if and only if x√
5
(
√

5 − 1) � ε, i.e.,
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x � 5+
√
5

4 ε. Hence we may infer that

Fixε T :=

[
0,

5 +
√

5
8

ε

]
∪

((
5 +

√
5

8
ε,

5 +
√

5
4

ε

]
∩ (R \ Q) ∩ (R \ A)

)
,

where A := {m
n

√
5 : m,n ∈ N}. It is easily seen that (R \Q) ∩ (R \ A) is dense

in R+. This implies that for any open set U ⊂ R+, U ∩ (R \ Q) ∩ (R \ A) = U .
Hence we easily obtain that Fixε T =

[
0, 5+

√
5

4 ε
]
, so Fixε T is not closed.

Now we will generalise Theorem 4.2 to get a version of Cantor’s theorem
which yields the Banach Contraction Principle for mappings on quasimetric
spaces.

Theorem 4.5. (Generalized Cantor’s intersection theorem for semimetric spac-
es) Let (X, d) be a complete semimetric space satisfying (W5), (An)n∈N be a
descending sequence of nonempty subsets of X such that diam An → 0 and
there exists a subsequence (Akn

) such that for any n ∈ N, Akn
⊂ An. Then⋂

n∈N
An = {x∗} for some x∗ ∈ X.

Proof. We will apply Theorem 4.2 to the sequence (Akn
). Of course, (Akn

)
is a descending sequence of closed sets with diameters tending to 0, since
diam Akn

� diam An. Moreover,
⋂

n∈N

An ⊂
⋂

n∈N

Akn
⊂

⋂

n∈N

Akn
⊂

⋂

n∈N

An,

which implies that
⋂

n∈N
An =

⋂
n∈N

Akn
= {x∗} for some x∗ ∈ X. �

We will now present a proof of the quasimetric version of the Banach Fixed
Point Theorem using Theorem 4.5. For this purpose let us recall some basic
notions. For a semimetric space (X, d) and a mapping T : X → X, by FixT
we understand the set of all fixed points of T . Moreover, recall that if (αn)n∈N

is a sequence of positive numbers such that αn ↘ 0, then we denote

An := {x ∈ X : d(x, Tx) � αn} = Fixαn
T.

The following result explains when the sequence (An) satisfies the assump-
tions of Theorem 4.5. For metric spaces, the condition (2) of Lemma 4.6 was
established in [21].

Lemma 4.6. Let (X, d) be a semimetric space and let T , (αn), (An) be as
defined above. Then we have:

1. there exists a subsequence (Akn
) such that Akn

⊂ An for each n ∈ N if
and only if for any ε > 0, there exists δ > 0 such that Fixδ T ⊂ Fixε T ;

2. diam An → 0 if and only if for any sequences (xn), (yn) of elements of
X, d(xn, Txn) → 0 and d(yn, T yn) → 0 imply that d(xn, yn) → 0.



290 K. Chrząszcz et al. AEM

Proof. Ad 1. ‘ =⇒ ’: Let ε > 0. Choose n ∈ N such that αn < ε and put
δ := αkn

. Then

Fixδ T = Akn
⊂ An ⊂ Fixε T.

‘ ⇐= ’: Let n ∈ N and ε = αn. From the assumption, there exists δn > 0
such that Fixδn T ⊂ Fixαn

T = An. Choose mn ∈ N such that for all j � mn,
αj < δn. We define the sequence (kn) recursively. Put k1 := m1. Having defined
kn, put kn+1 := max{kn + 1,mn+1}. Then kn+1 > kn � mn, so αkn

< δn and
hence

Akn
⊂ Fixδn T ⊂ An.

Ad 2. ‘ =⇒ ’: Assume that diam An → 0. Let (xn) and (yn) be such that
d(xn, Txn) → 0 and d(yn, T yn) → 0. Fix ε > 0. Then there exists k ∈ N such
that diam Ak < ε. Since αk > 0, there is p ∈ N such that for each n � p,
d(xn, Txn) � αk and d(yn, T yn) � αk, i.e., xn, yn ∈ Ak. Hence

d(xn, yn) � diam Ak < ε for all n � p,

so d(xn, yn) → 0.
‘ ⇐= ’: Since An+1 ⊂ An, we have that diam An+1 � diam An for each

n ∈ N. Hence diam An ↘ r for some r ∈ [0,∞]. Suppose to the contrary that
r > 0. Choose any s ∈ (0, r). Then s < ∞ and diam An > s for any n ∈ N, so
there exist xn and yn in An such that d(xn, yn) > s. On the other hand,

d(xn, Txn) � αn and d(yn, T yn) � αn,

so d(xn, Txn) → 0 and d(yn, T yn) → 0. By hypothesis, d(xn, yn) → 0. Hence,
since d(xn, yn) > s, we obtain, letting n tend to ∞, that 0 � s > 0, which
yields a contradiction. �

We will also need the following two lemmas.

Lemma 4.7. Let (X, d) be a quasimetric space satisfying (Q3′) with a constant
M � 1, and let T : X → X be a Lipschitzian mapping with the Lipschitz
constant α. Then for any x, y ∈ X and k ∈ N, the following inequalities hold:
(1) d(x, y)(1 − αM2) � Md(x, Tx) + M2d(y, Ty);
(2) if x∗ = Tx∗, then d(x, x∗)(1 − αM) � Md(x, Tx);
(3) d(x, T kx) � d(x, Tx)

(
M 1−αk−1Mk−1

1−αM + αk−1Mk−1
)
, if α 
= 1

M ;

(4) d(x, T kx) � d(x, Tx) (M(k − 1) + 1) if α = 1
M ;

(5) d(x, Tx) � d(x, y)M (1 + αM) + M2d(y, Ty).
Moreover, for any ε > 0, there exists δ > 0 such that Fixδ T ⊂ Fixε T .

Proof. By (Q3′) used twice, we obtain

d(x, y) � M (d(x, Tx) + M (d(Tx, Ty) + d(Ty, y)))
� αM2d(x, y) + Md(x, Tx) + M2d(y, Ty),
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which yields (1). Similarly,

d(x, x∗) � M (d(x, Tx) + d(Tx, Tx∗)) � αMd(x, x∗) + Md(x, Tx),

so (2) holds. We show that (3) and (4) are satisfied. We have that

d(x, T kx) � M
(
d(x, Tx) + αd(x, T k−1x)

)

� M
(
d(x, Tx) + αM

(
d(x, Tx) + αd(x, T k−2x)

))
.

Continuing in this fashion we obtain that

d(x, T kx) � d(x, Tx)

⎛

⎝
k−1∑

j=1

αj−1M j + αk−1Mk−1

⎞

⎠ ,

which yields both (3) and (4). To show (5) we again use (Q3′) twice to get
that

d(x, Tx) � M (d(x, y) + M (d(y, Ty) + αd(x, y))) ,

so (5) holds.
Finally, fix ε > 0 and set δ := ε

M2 . Let (xn) be such that d(xn, Txn) � δ
and xn → x. Then, by (5),

d(x, Tx) � d(x, xn)M (1 + αM) + M2d(xn, Txn)
� d(x, xn)M(1 + αM) + M2δ.

Letting n tend to infinity, we obtain that

d(x, Tx) � M2δ = ε.

�

The following result is well known for selfmaps of metric spaces. We omit
the proof, since it does not differ from its metric version.

Lemma 4.8. Let T be a selfmap of a semimetric space such that for some
k ∈ N, T k has a unique fixed point x∗ and for any x0 ∈ X,

lim
n→∞ d

(
T knx0, x∗

)
= 0.

Then FixT = {x∗} and for any x0 ∈ X,

lim
n→∞ d (Tnx0, x∗) = 0.

We can now proceed to the aforementioned alternative proof of the Banach
Theorem 4.3. It will be more convenient for us to work with condition (Q3′).
In fact, we will prove the following more general result.

Theorem 4.9. Let (X, d) be a complete quasimetric space satisfying (Q3′) with
a constant M � 1, i.e., for any x, y, z ∈ X,

d(x, y) � M (d(x, z) + d(z, y)) .
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Let a mapping T : X → X be Lipschitzian with the Lipschitz constant α.
Assume that for some p ∈ N, β := L(T p) < 1 and let q ∈ N be such that
βq < 1

M2 . Then T has a unique fixed point x∗ ∈ X and for every x0 ∈ X,
Tnx0 → x∗. Moreover, for any sequence (xn), if d(xn, Txn) → 0, then xn → x∗
and
(a) if α 
= 1

M and β 
= 1
M , then

d(xn, x∗) � d(xn, Txn)
M

1 − βqM

(
M

1 − βq−1Mq−1

1 − βM
+ βq−1Mq−1

)
·

·
(

M
1 − αp−1Mp−1

1 − αM
+ αp−1Mp−1

)
;

(b) if α = 1
M and β 
= 1

M , then

d(xn, x∗) � d(xn, Txn)
M

1 − βqM

(
M

1 − βq−1Mq−1

1 − βM
+ βq−1Mq−1

)
·

· (M(p − 1) + 1) ;

(c) if α 
= 1
M and β = 1

M , then

d(xn, x∗) � d(xn, Txn)
M

1 − βq−1
(M(q − 1) + 1) ·

·
(

M
1 − αp−1Mp−1

1 − αM
+ αp−1Mp−1

)
;

(d) if α = β = 1
M , then

d(xn, x∗) � d(xn, Txn)
M

1 − αq−1
(M(q − 1) + 1) .

Proof. We divide the proof into three steps.

Step 1 Assume that α < 1
M2 . Set

An :=
{

x ∈ X : d(x, Tx) � 1
n

}
for n ∈ N.

By Lemmas 4.6 and 4.7, there exists a subsequence (Akn
) such that Akn

⊂ An

for each n ∈ N. Since α < 1 and for any x ∈ X, d(Tn, Tn+1x) � αnd(x, Tx), we
may infer that each An is nonempty. We show that diam An → 0. If x, y ∈ An,
then by Lemma 4.7 (1), taking into account that 1 − αM2 > 0, we get that

d(x, y) � M

1 − αM2
(d(x, Tx) + Md(y, Ty)) � M(M + 1)

1 − αM2
· 1
n

,

which yields that diam An → 0. By Theorem 4.5, FixT =
⋂

n∈N
An = {x∗} for

some x∗ ∈ X. Now let (xn) be such that d(xn, Txn) → 0. Since α < 1
M2 � 1

M ,
we obtain by Lemma 4.7 (2) that

d(xn, x∗) � M

1 − αM
d(xn, Txn), (4.1)
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so xn → x∗. In particular, if x0 ∈ X and xn := Tnx0, then d(xn, Txn) → 0,
so by (4.1) we infer that

d(Tnx0, x∗) � Mαn

1 − αM
d(x0, Tx0)

and hence Tnx0 → x∗.

Step 2 Now assume that α < 1. Then there exists k ∈ N such that αk <
1

M2 . By Step 1, substituting T for T k, we obtain that FixT k = {x∗} and
lim

n→∞ T knx0 = x∗ for any x0 ∈ X. By Lemma 4.8, FixT = {x∗} and Tnx0 → x∗
for any x0 ∈ X. Moreover, it follows from Step 1 that if (xn) is such that
d(xn, T kxn) → 0, then xn → x∗ and since L(T k) � αk we may infer from (4.1)
that

d(xn, x∗) � M

1 − αkM
d(xn, T kxn). (4.2)

Now assume that (xn) is such that d(xn, Txn) → 0. By (3), we get that

d(xn, T kxn) � d(xn, Txn)
(

M
1 − αk−1Mk−1

1 − αM
+ αk−1Mk−1

)
, (4.3)

if α 
= 1
M , and

d(xn, T kxn) � d(xn, Txn)(M(k − 1) + 1), (4.4)

if α = 1
M . In both cases d(xn, T kxn) → 0, so xn → x∗ and by (4.2), (4.3) and

(4.4), we get that if α 
= 1
M , then

d(xn, x∗) � M

1 − αkM

(
M

1 − αk−1Mk−1

1 − αM
+ αk−1Mk−1

)
d(xn, Txn),

(4.5)
and if α = 1

M , then since αkM = αk−1, we get that

d(xn, x∗) � M

1 − αk−1
(M(k − 1) + 1) d(xn, Txn). (4.6)

(Let us notice that in the latter case, k > 1, so 1 − αk−1 > 0; otherwise
1
M = α1 < 1

M2 � 1
M , a contradiction.)

Step 3 Finally, let α be an arbitrary nonnegative real. By hypothesis, β =
L(T p) < 1 and βq < 1

M2 . By Step 2, replacing T , α and k by T p, β and q,
respectively, we obtain with the help of Lemma 4.8 that FixT = {x∗} and
Tnx0 → x∗ for any x0 ∈ X. Moreover, (4.5) and (4.6) imply that if β 
= 1

M ,
then

d(xn, x∗) � M

1 − βqM

(
M

1 − αq−1Mq−1

1 − αM
+ αq−1Mq−1

)
d(xn, T pxn), (4.7)

and if β = 1
M , then

d(xn, x∗) � M

1 − βq−1
(M(q − 1) + 1) d(xn, T pxn). (4.8)
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Now using Lemma 4.7 ((3) and (4)) with x := xn and k := p, we easily obtain
from (4.7) and (4.8) all the four inequalities given in Theorem 4.9. �

Remark 4.10. Under the assumptions of Theorem 4.9 we have that

d(Tnx0, T
n+1x0) → 0 for any x0 ∈ X.

Thus, the four inequalities established in Theorem 4.9 enable us to give
the a posteriori error estimates for a sequence of iterates of T . For example, if
α 
= 1

M and β 
= 1
M , then we have that

d(Tnx0, x∗) � d(Tnx0, T
n+1x0)

M

1 − βqM

(
M

1 − βq−1Mq−1

1 − βM
+

+βq−1Mq−1
)

·
(

M
1 − αp−1Mp−1

1 − αM
+ αp−1Mp−1

)
.

Remark 4.11. Following De Blasi and Myjak [12] we say that the fixed point
problem (FPP in short) for a mapping T is well-posed if T has a unique fixed
point x∗ and for any sequence (xn), d(xn, Txn) → 0 implies that xn → x∗.
Thus, by Theorem 4.9, the FPP for a Lipschitzian mapping having a contrac-
tive iterate is well-posed.

Putting p = 1 in Theorem 4.9 and taking into account that in this case
α = β, we obtain the following result, which is still an extension of Bakhtin’s
Theorem 4.3.

Corollary 4.12. Let (X, d) be a complete quasimetric space, satisfying (Q3′)
with a constant M � 1, i.e., for any x, y, z ∈ X,

d(x, y) � M (d(x, z) + d(z, y)) .

Let a mapping T : X → X be Lipschitzian with α := L(T ) < 1, and let q ∈ N

be such that αq < 1
M2 . Then T has a unique fixed point x∗ ∈ X. Moreover, for

any sequence (xn), if d(xn, Txn) → 0, then xn → x∗ and
(a) if α 
= 1

M , then

d(xn, x∗) � d(xn, Txn)
M

1 − αqM

(
M

1 − αq−1Mq−1

1 − αM
+ αq−1Mq−1

)
;

(b) if α = 1
M , then

d(xn, x∗) � d(xn, Txn)
M

1 − αq−1
(M(q − 1) + 1) .

In particular, for any x0 ∈ X, Tnx0 → x∗ and
(a) if α 
= 1

M , then

d(Tnx0, x∗) � d(x0, Tx0)
αnM

1 − αqM

(
M

1 − αq−1Mq−1

1 − αM
+ αq−1Mq−1

)
;
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(b) if α = 1
M , then

d(Tnx0, x∗) � d(x0, Tx0)
αn−1

1 − αq−1
(M(q − 1) + 1) .

On the other hand, in the case where M = 1, we obtain the following metric
version of Theorem 4.9. Let us note that we may then put q = 1.

Corollary 4.13. Let (X, ρ) be a complete metric space and let a mapping T :
X → X be Lipschitzian with the Lipschitz constant α. Assume that for some
p ∈ N, β := L(T p) < 1. Then T has a unique fixed point x∗ ∈ X and for any
x0 ∈ X, Tnx0 → x∗. Moreover, for any sequence (xn), if ρ(xn, Txn) → 0,
then xn → x∗ and
(a) if α 
= 1, then

ρ(xn, x∗) � ρ(xn, Txn)
1

1 − β

αp − 1
α − 1

;

(b) if α = 1, then

ρ(xn, x∗) � ρ(xn, Txn)
p

1 − β
.

In particular, for any x0 ∈ X, we get the following a posteriori error estimates:
(a) if α 
= 1, then

ρ(Tnx0, x∗) � ρ(Tnx0, T
n+1x0)

1
1 − β

αp − 1
α − 1

;

(b) if α = 1, then

ρ(Tnx0, x∗) � ρ(Tnx0, T
n+1x0)

p

1 − β
.

It is worth pointing out that the first part of Corollary 4.13 concerning the
existence of a fixed point is often used in applications. In particular, in the
proof of the classical Picard-Lindelöf theorem presented in [18, pp. 15–16] it is
shown that the integral operator F corresponding to the Cauchy initial value
problem is Lipschitzian, but not necessarily contractive. Nevertheless, there
exists p ∈ N such that L (F p) < 1, so Corollary 4.13 is applicable. However,
we have not found in the literature any information on error estimates in such
a case, so the second part of Corollary 4.13 may be new.

Remark 4.14. Step 1 of the proof of Theorem 4.9 shows that if
An :=

{
x ∈ X : d(x, Tx) � 1

n

}
for n ∈ N and L(T ) is sufficiently small, then

the sequence (An) satisfies the assumptions of Theorem 4.3. However, since by
Theorem 4.9 the fixed point problem for T is well posed, we may infer with
the help of point 2 of Lemma 4.6 that in fact (An) satisfies the assumptions
of Theorem 4.3 without any restrictions on L(T ).
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