
Aequat. Math. 93 (2019), 257–275
c© The Author(s) 2018
0001-9054/19/010257-19
published online July 28, 2018
https://doi.org/10.1007/s00010-018-0589-9 Aequationes Mathematicae

Vector valued Banach limits and generalizations applied to the
inhomogeneous Cauchy equation

Wolfgang Prager and Jens Schwaiger

Dedicated to Karol Baron on the occasion of his 70th birthday.

Abstract. In Prager and Schwaiger (Grazer Math Ber 363:171–178, 2015) the classical notion
of Banach limits was used to solve the inhomogeneous Cauchy equation f(x + y) − f(x) −
f(y) = φ(x, y) for real functions of one real variable. Here these methods are generalized to
more general target spaces, namely Banach spaces which admit vector valued Banach limits.
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1. Introduction

The main topic of this paper is the investigation of the inhomogeneous Cauchy
equation

f(x + y) − f(x) − f(y) = φ(x, y), (1)
where φ : V × V → W is given and f : V → W is to be determined. The
emphasis lies on giving explicit formulas for solutions when certain hypotheses
on the inhomogeneity are fulfilled. It is well known (see [7]) that the solvability
of this equation is equivalent to the properties

φ(ξ, η) = φ(η, ξ) (2)
φ(ξ, η) + φ(ξ + η, ζ) = φ(η, ζ) + φ(ξ, η + ζ) (3)

of the inhomogeneity φ. Solving the equation in general is based on the appli-
cation of Zorn’s Lemma. In our case, if the domain and co-domain are rational
vector spaces, assuming the existence of a basis for such vector spaces is enough
to give explicit solutions. In the generic case the existence of such a basis is
granted only by applying also Zorn’s Lemma. Nevertheless situations may
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appear where a basis of a vector space is known a priori. Thus this construc-
tion may be interesting in such cases. In [10] solutions of the inhomogeneous
Cauchy equation where constructed for φ : R × R → R by using the existence
of Banach limits on R ([3]). Just recently this notion has been extended to
certain Banach spaces. Here we try to generalize some results from [10] to that
case. Since, as in the original case, these generalizations are applicable only if
(1) is solvable, the construction of solutions fits perfectly into this framework.

2. Solution of the inhomogeneous Cauchy-equation

We start with a restatement of the solvability conditions (2), (3), appropriate
for our purposes.

Lemma 1. The function φ : V ×V → W satisfies (2) and (3) for all ξ, η, ζ ∈ V
if and only if φ satisfies

φ(0, α) = φ(α, 0) = φ(0, 0) (4)

for all α ∈ V and

φ(α + β, γ + δ) − φ(α, γ) − φ(β, δ) = φ(α + γ, β + δ) − φ(α, β) − φ(γ, δ) (5)

for all α, β, γ, δ ∈ V .

Proof. Suppose φ satisfies (2) and (3). Taking ξ = η = 0, ζ = α in (3), we have
φ(0, 0) = φ(0, α), which equals φ(α, 0) by (2). Taking in (3) ξ = α, η = γ, ζ =
β + δ and ξ = α, η = β, ζ = γ + δ, respectively, we have

φ(α, γ) + φ(α + γ, β + δ) = φ(γ, β + δ) + φ(α, β + γ + δ),
φ(α, β) + φ(α + β, γ + δ) = φ(β, γ + δ) + φ(α, β + γ + δ),

hence

φ(α+β, γ + δ)−φ(α, γ)+φ(γ, β + δ)= φ(α + γ, β + δ) − φ(α, β) + φ(β, γ + δ).

Moreover, from (3) we get

φ(γ, β + δ) = φ(γ, β) + φ(γ + β, δ) − φ(β, δ),
φ(β, γ + δ) = φ(β, γ) + φ(β + γ, δ) − φ(γ, δ).

Observing (2) this renders (5). Suppose φ satisfies (4) and (5). Taking α = ξ,
β = η, γ = 0, δ = ζ, we get from (5)

φ(ξ + η, ζ) − φ(ξ, 0) − φ(η, ζ) = φ(ξ, η + ζ) − φ(ξ, η) − φ(0, ζ),

which implies (3) since φ(ξ, 0) = φ(0, 0) = φ(0, ζ) by (1). Moreover, taking
α = δ = 0, β = ξ, γ = η in (5), we get (2) since φ(0, η) = φ(η, 0) = φ(ξ, 0) =
φ(0, ξ) by (1). �
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In what follows, given a (Hamel) basis of V over Q, all solutions of (1)
will be given. The ideas for the definition of the solution f arise from some
necessary conditions on f in (1).

Rewriting this equation as f(x + y) = f(x) + f(y) + φ(x, y) we get by
induction that

f

(
n∑

i=1

xi

)
=

n∑
i=1

f(xi) +
n−1∑
i=1

φ

⎛
⎝xi,

n∑
j=i+1

xj

⎞
⎠ ,

which for x1 = x2 = · · · = xn = x means

f(nx) = nf(x) +
n−1∑
i=1

φ(x, (n − i)x) = nf(x) +
n−1∑
i=1

φ(x, ix).

Since f(0) = f(−x) + f(x) + φ(x,−x) and f(x) = nf( 1
nx) +

∑n−1
i=1 φ( 1

nx, i
nx)

all values f
(∑

b∈B λbb
)

may be expressed in terms of f(b) and certain values
of φ, where B is a finite subset of V and all λb ∈ Q.

Now we gather some auxiliary results needed for the construction.

Lemma 2. Suppose φ satisfies (2) and (3). Then φ satisfies

n−1∑
i=1

φ

⎛
⎝ai,

n∑
j=i+1

aj

⎞
⎠ =

n−1∑
i=1

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠ (6)

for all n ∈ N, a1, . . . , an ∈ V , and for all permutations π ∈ Symn.

Proof. The proof is by induction on n. For n = 1, (6) is trivially true. Let
be n ∈ N and as the induction hypothesis suppose (6) is true for n − 1. Let
π ∈ Symn be any permutation and consider

n−1∑
i=1

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠ = φ

⎛
⎝aπ(1),

n∑
j=2

aπ(j)

⎞
⎠+

n−1∑
i=2

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠ .

(7)
In case π(1) = 1 applying the induction hypothesis by permuting the argu-
ments aπ(2), . . . , aπ(n) with π−1

∣∣
{2,3,...,n}∈ Symn−1 we get

n−1∑
i=2

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠ =

(n−1)−1∑
i=1

φ

⎛
⎝aπ(i+1),

n−1∑
j=i+1

aπ(j+1)

⎞
⎠

=
n−1∑
i=2

φ

⎛
⎝ai,

n∑
j=i+1

aj

⎞
⎠ ,

which proves the statement for this case. In case π(1) �= 1 we introduce the
transposition σ := (π(2) 1) ∈ Symn and, observing that σ(π(1)) = π(1), apply
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to the right hand side of (7) the induction hypothesis with the permutation
σ
∣∣
{π(2),π(3),...,π(n)}∈ Symn−1 to obtain

n−1∑
i=1

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠

= φ

⎛
⎝aπ(1),

n∑
j=2

aσ◦π(j)

⎞
⎠ +

n−1∑
i=2

φ

⎛
⎝aσ◦π(i),

n∑
j=i+1

aσ◦π(j)

⎞
⎠

= φ

⎛
⎝aπ(1), aσ◦π(2) +

n∑
j=3

aσ◦π(j)

⎞
⎠ + φ

⎛
⎝aσ◦π(2),

n∑
j=3

aσ◦π(j)

⎞
⎠

+
n−1∑
i=3

φ

⎛
⎝aσ◦π(i),

n∑
j=i+1

aσ◦π(j)

⎞
⎠ .

From (2) and (3) it follows that φ satisfies φ(ξ, ζ + η) + φ(ζ, η) = φ(ζ, ξ + η) +
φ(ξ, η) for all ξ, η, ζ and taking ξ = aπ(1), η =

∑n
j=3 aσ◦π(j), ζ = aσ◦π(2) we

obtain further

n−1∑
i=1

φ

⎛
⎝aπ(i),

n∑
j=i+1

aπ(j)

⎞
⎠

= φ

⎛
⎝aσ◦π(2), aπ(1) +

n∑
j=3

aσ◦π(j)

⎞
⎠ + φ

⎛
⎝aπ(1),

n∑
j=3

aσ◦π(j)

⎞
⎠

+
n−1∑
i=3

φ

⎛
⎝aσ◦π(i),

n∑
j=i+1

aσ◦π(j)

⎞
⎠

= φ

⎛
⎝a1,

n∑
j=2

aj

⎞
⎠ +

n−1∑
i=2

φ

⎛
⎝aρ◦σ◦π(i),

n∑
j=i+1

aρ◦σ◦π(j)

⎞
⎠

=
n−1∑
i=1

φ

⎛
⎝ai,

n∑
j=i+1

aj

⎞
⎠ ,

where we have used in the last line σ◦π(2) = 1 and then applied the induction
hypothesis with the permutation (ρ ◦ σ ◦ π)−1

∣∣
{2,3,...,n}∈ Symn−1, where ρ ∈

Symn is the transposition ρ := (π(1) 1). �
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Lemma 3. Suppose φ satisfies (2) and (3). Then
lp−1∑
k=0

φ

(
k

l
a,

1
l
a

)
=

p−1∑
k=0

φ(ka, a) + p

l−1∑
k=1

φ

(
k

l
a,

1
l
a

)
(8)

for all a ∈ V , p ∈ N0, l ∈ N.

Proof. We fix a ∈ V and l ∈ N arbitrarily and perform induction on p. For
p = 0 the validity of (8) is evident. Suppose (8) is true for a p ∈ N0. Then

l(p+1)−1∑
k=0

φ

(
k

l
a,

1
l
a

)
=

lp−1∑
k=0

φ

(
k

l
a,

1
l
a

)
+

l−1∑
k=0

φ

(
(k + lp)

1
l
a,

1
l
a

)

=
p−1∑
k=0

φ(ka, a) + p

l−1∑
k=1

φ

(
k

l
a,

1
l
a

)

+
l−1∑
k=0

(
φ

(
pa, (k + 1)

1
l
a

)
− φ

(
pa,

k

l
a

)
+ φ

(
k

l
a,

1
l
a

))

=
p−1∑
k=0

φ(ka, a) + p

l−1∑
k=1

φ

(
k

l
a,

1
l
a

)
− φ(pa, 0) + φ(pa, a) +

l−1∑
k=0

φ

(
k

l
a,

1
l
a

)

=
(p+1)−1∑

k=0

φ(ka, a) + (p + 1)
l−1∑
k=1

φ

(
k

l
a,

1
l
a

)
,

where we have used (3) with ξ = pa, η = k a
l , ζ = a

l and φ(0, a
l ) = φ(pa, 0) by

Lemma 1. �
Let B ⊂ V be a Hamel basis of V over Q. Then for each x ∈ V there is

a unique finite subset B = Bx ⊆ B and a unique family (λb)b∈B ∈ (Q\{0})B

such that x =
∑

b∈B λbb. (For x = 0 the set Bx is the empty set and the
corresponding family of λb is the empty family.) This implies that for any
C ⊆ B and any family (μc)c∈C ∈ Q

C such that x =
∑

c∈C μcc it follows that
Bx ⊆ C, μb = λb for b ∈ Bx, and μc = 0 for c ∈ C\Bx.

Lemma 4. Let B ⊂ V be finite, n := #B the cardinality of B, let (λb)b∈B ∈ Q
B

and α : {1, 2, . . . , n} → B be bijective. Then the expression

F ∗(B, (λb)b∈B , α) :=
n−1∑
i=1

φ

⎛
⎝λbα(i)bα(i),

n∑
j=i+1

λbα(j)bα(j)

⎞
⎠

is independent of α.

Proof. This follows immediately from Lemma 3. �
According to this lemma the function F ,

F (B, (λb)b∈B) := F ∗(B, (λb)b∈B), α) − #B · φ(0, 0)
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for some bijection α : {1, 2, . . . ,#B} → B, is well-defined.

Lemma 5. Let B ⊆ C ⊆ V , #C < ∞, and let (λb)b∈C be such that λb = 0 for
all b ∈ C\B. Then F (C, (λb)b∈C) = F (B, (λb)b∈B).

Proof. Let n := #C, m := #B and let, which is always possible,
α : {1, 2, . . . , n} → C be such that α ({1, 2, . . . ,m}) = B. Then

F (C, (λb)b∈C) := F ∗(C, (λb)b∈C), α) − nφ(0, 0)

=
n−1∑
i=1

φ

⎛
⎝λbα(i)bα(i),

n∑
j=i+1

λbα(j)bα(j)

⎞
⎠ − nφ(0, 0)

=
m−1∑
i=1

φ

⎛
⎝λbα(i)bα(i),

n∑
j=i+1

λbα(j)bα(j)

⎞
⎠

+
n−1∑
i=m

φ

⎛
⎝λbα(i)bα(i),

n∑
j=i+1

λbα(j)bα(j)

⎞
⎠ − nφ(0, 0)

= F (B, (λb)b∈B) + mφ(0, 0) + (n − m)φ(0, 0) − nφ(0, 0)

= F (B, (λb)b∈B),

where we used φ(λbα(m)bα(m), 0) = φ(0, 0). �

Given b ∈ V , p, q ∈ Z, q > 0, we define

G∗(b, p, q) := sgn
(

p

q

)⎛
⎝|p|−1∑

k=0

φ

(
k

q
b,

1
q
b

)
−

∣∣∣∣pq
∣∣∣∣

q−1∑
k=1

φ

(
k

q
b,

1
q
b

)⎞
⎠ .

Lemma 6. Given b ∈ V , p, q, r, s ∈ Z, q, s > 0 such that p
q = r

s , it follows that
G∗(b, p, q) = G∗(b, r, s).

Proof. If p = 0 then r = 0, too. Thus G∗(b, p, q) = G∗(b, r, s) in this case. If
p �= 0 also r �= 0 and we may assume that, say, p and q are coprime. Then,
since p

q = r
s there is some l ∈ N such that r = ln and s = lq. We have to show

that

sgn(λ)

⎛
⎝|p|−1∑

k=0

φ

(
k

q
b,

1
q
b

)
− |λ|

q−1∑
k=1

φ

(
k

q
b,

1
q
b

)⎞
⎠

= sgn(λ)

⎛
⎝|r|−1∑

k=0

φ

(
k

s
b,

1
s
b

)
− |λ|

s−1∑
k=1

φ

(
k

s
b,

1
s
b

)⎞
⎠ .

(9)
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After division by sgn(λ), observing Lemma 3 and (1), we get for the right hand
side of (9) that

l|p|−1∑
k=0

φ

(
k

lq
b,

1
lq

b

)
− |λ|

lq−1∑
k=0

φ

(
k

lq
b,

1
lq

b

)
+ |λ|φ

(
0,

1
lq

b

)

=
|p|−1∑
k=0

φ

(
k

q
b,

1
q
b

)
+ |p|

l−1∑
k=1

φ

(
k

lq
b,

1
lq

b

)

− |λ|
q−1∑
k=0

φ

(
k

q
b,

1
q
b

)
− q|λ|

l−1∑
k=1

φ

(
k

lq
b,

1
lq

b

)

+ |λ|φ
(

0,
1
lq

b

)
=

|p|−1∑
k=0

φ

(
k

q
b,

1
q
b

)
− |λ|

q−1∑
k=1

φ

(
k

q
b,

1
q
b

)
,

hence (9) is true. �
Thus, given b ∈ V , λ = p

q , p, q ∈ Z, q > 0, the function G, G(b, λ) :=
G∗(b, p, q) is well-defined and G(b, 0) = 0.

Now let B be a Hamel basis of V , x ∈ V , B ⊆ B finite and (λB)b∈B ∈ Q
B

such that

x =
∑
b∈B

λbb.

Then, using the considerations above, we may define functions f1, f2, f3 : V →
W by

f1(x) := F (B, (λb)b∈B)

f2(x) :=
∑
b∈B

G(b, λb)

f3(x) =
∑
b∈B

H(b, λb),

where H(b, λb) := 1
2

(
(sgn(λb))2 − sgn(λb)

)
(φ(0, 0) − φ(λbb,−λbb)).

Note that also f3 is well-defined since
(
(sgn(λb))2 − sgn(λb)

)
= 0 for λb = 0.

Theorem 1. Let φ : V × V → W satisfy (2), (3), let B be a basis of V over
Q. Then f : V → W , f(x) := f1(x) + f2(x) + f3(x) for x ∈ V , is a particular
solution of (1) and thus necessarily f(0) = −φ(0, 0).
A function g : V → W solves (1) iff f − g is additive.
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Proof. The considerations above show that f is well-defined. Since f2(0) =
f3(0) = 0, we have f(0) = f1(0) = −nφ(0, 0)+(n−1)φ(0, 0) = −φ(0, 0). Taking
for granted that f is a solution of (1), the second part obviously becomes true.

It remains to show that f indeed is a solution. Let x =
∑

b∈B λbb,
y =

∑
b∈B μbb,let n := #B and α : {1, 2, . . . , n} → B be bijective. With the

abbreviations li := λα(i)βα(i), mi := μα(i)βα(i) we get observing (5) that

f1(x + y) − f1(x) − f1(y)

= nφ(0, 0) +
n−1∑
i=1

⎛
⎝φ

⎛
⎝li + mi,

n∑
j=i+1

(lj + mj)

⎞
⎠

−φ

⎛
⎝li,

n∑
j=i+1

lj

⎞
⎠ − φ(mi,

n∑
j=i+1

mj)

⎞
⎠

= nφ(0, 0) +
n−1∑
i=1

⎛
⎝φ

⎛
⎝ n∑

j=i

lj ,

n∑
j=i

mj

⎞
⎠

−φ

⎛
⎝ n∑

j=i+1

lj ,
n∑

j=i+1

mj

⎞
⎠ − φ(li,mi)

⎞
⎠

= nφ(0, 0) + φ

⎛
⎝ n∑

j=1

lj ,
n∑

j=1

mj

⎞
⎠ −

n∑
i=1

φ(li,mi)

= nφ(0, 0) + φ(x, y) −
∑
b∈B

φ(λbb, μbb).

(10)

Now we will show that for all b ∈ B we have

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)
= φ(λbb, μbb) − φ(0, 0). (11)

We set νb := λb + μb = pb+rb

q and cb := 1
q b. Moreover we may assume

λb = pb

q , μb = rb

q with pb, rb ∈ Z and some q ∈ N, a common denominator for
all fractions λb, μb, b ∈ B. Then

G(b, λb + μb) − G(b, λb) − G(b, μb)

= sgn(νb)
|pb+rb|−1∑

k=0

φ(kcb, cb) − pb + rb

q

q−1∑
k=1

φ(kcb, cb)

− sgn(pb)
|pb|−1∑
k=0

φ(kcb, cb) +
pb

q

q−1∑
k=1

φ(kcb, cb)
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− sgn(rb)
|rb|−1∑
k=0

φ(kcb, cb)) +
rb

q

q−1∑
k=1

φ(kcb, cb) (12)

= sgn(νb)
|pb+rb|−1∑

k=0

φ(kcb, cb) − sgn(pb)
|pb|−1∑
k=0

φ(kcb, cb)

− sgn(rb)
|rb|−1∑
k=0

φ(kcb, cb))

and with an analogous application for H

H(b, λb + μb) − H(b, λb) − H(b, μb)

=
1
2
(sgn(νb)2 − sgn(νb)) (φ(0, 0) − φ(νbb,−νbb))

− 1
2
(sgn(λb)2 − sgn(λb)) (φ(0, 0) − φ(λbb,−λbb))

− 1
2
(sgn(μb)2 − sgn(μb)) (φ(0, 0) − φ(μbb,−μbb)) .

(13)

Corresponding to the possible distributions of signs we consider the cases listed
in the following table. A column without a numeral contains a case which is
obtained from the immediately preceding one, considering (2) by renaming λb

by μb and vice versa. Therefore these cases need not be treated separately.

1. 2. 3. 4. 5. 6. 7. 8.

λb > 0 > 0 < 0 > 0 < 0 > 0 < 0 > 0 = 0 < 0 = 0 < 0 = 0
μb > 0 < 0 > 0 < 0 > 0 < 0 > 0 = 0 > 0 = 0 < 0 < 0 = 0
νb > 0 > 0 > 0 < 0 < 0 = 0 = 0 > 0 > 0 < 0 < 0 < 0 = 0

1. In case λb > 0, μb > 0 (hence νb > 0) we have for the sums in (12)
pb+rb−1∑

k=0

φ(kcb, cb) −
pb−1∑
k=0

φ(kcb, cb) −
rb−1∑
k=0

φ(kcb, cb)

=
rb+pb−1∑

k=rb

φ(kcb, cb) −
pb−1∑
k=0

φ(kcb, cb),

therefore

G(b, λb + μb) − G(b, λb) − G(b, μb) =
pb−1∑
k=0

(φ((k + rb)cb, cb) − φ(kcb, cb))

=
pb−1∑
k=0

(φ(rbcb, (k + 1)cb) − φ(rbcb, kcb)) = φ(λbb, μbb) − φ(0, 0),
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where we have used (3) and then (2). Obviously H(b, λb + μb) − H(b, λb) −
H(b, μb) = 0.

2. In case λb > 0, μb < 0, νb > 0 we have for the sums in (12)

pb−|rb|−1∑
k=0

φ(kcb, cb) −
pb−1∑
k=0

φ(kcb, cb) +
|rb|−1∑
k=0

φ(kcb, cb)

=
pb−|rb|−1∑

k=0

φ(kcb, cb) −
pb−1∑
k=|rb|

φ(kcb, cb).

Therefore

G(b, λb + μb) − G(b, λb) − G(b, μb) =
pb−|rb|−1∑

k=0

(φ(kcb, cb) − φ((k + |rp|)cb, cb))

=
pb−|rb|−1∑

k=0

(φ(kcb, |rb|cb) − φ((k + 1)cb, |rb|cb))

= φ(0, |rb|cb) − φ((pb − |rb|cb, |rb|cb) = φ(0, 0) − φ(νbb,−μbb),

where we have used (3). This time

H(b, λb + μb) − H(b, λb) − H(b, μb) = −φ(0, 0) + φ(μbb,−μbb),

such that

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

= φ(μbb,−μbb) − φ(λb+¯
μbb,−μbb) = φ(λbb, μbb) − φ(0, 0),

where we have used (5) with α = λbb, β = μbb, γ = 0, δ = −β and then (1).
3. In case λb > 0, μb < 0, νb < 0 we have for the sums in (12)

−
−pb+|rb|−1∑

k=0

φ(kcb, cb) −
pb−1∑
k=0

φ(kcb, cb) +
|rb|−1∑
k=0

φ(kcb, cb)

= −
−pb+|rb|−1∑

k=0

φ(kcb, cb) +
|rb|−1∑
k=pb

φ(kcb, cb),

therefore

G(b, λb + μb) − G(b, λb) − G(b, μb)

= −
−pb+|rb|−1∑

k=0

(φ(kcb, cb) − φ((k + pb)cb, cb))

= −
−pb+|rb|−1∑

k=0

(φ(kcb, pbcb) − φ((k + 1)cb, pbcb))
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= −φ(0, pbcb) + φ((−pb + |rb|)cb, pbcb) = −φ(0, 0) + φ(−(λb + μb)b, λbb),

while

H(b, λb + μb) − H(b, λb) − H(b, μb)
= −φ((λb + μb)b,−(λb + μb)b) + φ(μbb,−μbb).

It follows that

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

= φ(λbb, μbb) − φ(0, 0),

where we have used (3) with η = λbb, ζ = μbb and ξ = −η − ζ.
4. In case λb > 0, μb = −λb (hence νb = 0) we get, observing pp = |rb| and

(2) that

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

= 0 + (−φ(0, 0) + φ(−λbb, λbb)) = φ(λbb, μbb) − φ(0, 0).

5. In case λb > 0, μb = 0 (hence νb = λb > 0) we get immediately

G(b, λb+μb)−G(b, λb)−G(b, μb) = H(b, λb+μb)−H(b, λb)−H(b, μb) = 0, (14)

so that
G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

= φ(0, 0) − φ(0, 0) = φ(λbb, 0) − φ(0, 0) = φ(λbb, μbb) − φ(0, 0).
(15)

6. In case λb < 0, μb = 0 (hence νb = λb < 0) we get G(b, λb+μb)−G(b, λb)−
G(b, μb) = 0 immediately and H(b, λb + μb) − H(b, λb) − H(b, μb) = 0 since
νb = λb, so that (15) holds in this case also.

7. In case λb < 0, μb < 0 (hence νb < 0) we have for the sums in (12)

−
|pb|+|rb|−1∑

k=0

φ(kcb, cb) +
|pb|−1∑
k=0

φ(kcb, cb) +
|rb|−1∑
k=0

φ(kcb, cb)

=
|pb|−1∑
k=0

φ(kcb, cb) −
|pb|+|rb|−1∑

k=|rb|
φ(kcb, cb),

therefore

G(b, λb + μb) − G(b, λb) − G(b, μb) =
|pb|−1∑
k=0

(φ(kcb, cb) − φ((k + |rb|)cb, cb))

=
|pb|−1∑
k=0

(φ(kcb, |rb|cb)−φ((k + 1)cb, |rb|cb))= (φ(|rb|cb, 0) − φ(|rb|cb, |pb|cb))

= φ(0, 0) − φ(−λbb,−μbb),
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where we have used (3), (1) and (2). Furthermore,

H(b, λb + μb) − H(b, λb) − H(b, μb)

= −φ(0, 0) − φ((λb + μb)b,−(λb + μb)b) + φ(λbb,−λbb) + φ(μbb,−μbb)

= −2φ(0, 0) + φ(λbb, μbb) + φ(−λbb,−μbb),

where we have used (5) with α = λbb, β = μbb, γ = −α, δ = −β, so that

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

= φ(λbb, μbb) − φ(0, 0).

8. Finally in case λb = μb = νb = 0, (14) holds trivially and therefore (15)
too.

Adding together we thus obtain∑
b∈B

G(b, λb + μb) − G(b, λb) − G(b, μb) + H(b, λb + μb) − H(b, λb) − H(b, μb)

=
∑
b∈B

φ(λbb, μbb) − nφ(0, 0),

which with (10) yields the result. �

3. Different types of Banach limits

In [1] one may find the following definition of a vector valued Banach limit. It
is also shown there that this includes the usual definition of a Banach limit on
bounded sequences of reals (see [3]).

Definition 1. Let X be a normed space and let �∞(X) be the space of bounded
sequences on X equipped with the supremum norm. Then L : �∞(X) → X is
a Banach limit if

(i) L is linear and continuous
(ii) L(x) = limn→∞ xn for any convergent sequence x = (xn)n∈N in X,
(iii) (shift invariance) L ◦ σ = L, where σ : �∞(X) → �∞(X) is defined by

σ((xn)n∈N) := (xn+1)n∈N, and
(iv) the operator norm of L equals 1: ‖L‖ = 1.

In this paper it was proved that Banach limits exist on the dual X∗ of
any normed space X. The proof used an ultrafilter U on N containing {A ⊆
N |N\S is finite} and the definition

L((xn)n∈N) = U − lim
x1 + x2 + · · · xn

n
(16)

which is meaningful with respect to the w∗-topology since then any ball is
compact.
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[6, Thm. 5.3.4] contains the result, that x∗ = U − lim(x∗
n) is contained in

clw∗

{
1
n

(x∗
1 + x∗

2 + · · · + x∗
n) |n ∈ N

}
,

the closure with respect to the w∗-topology of the set
{

1
n (x∗

1 + x∗
2 + · · · + x∗

n)
|n ∈ N}.

Theorem 2. Let X be a normed space and X∗ its dual. Then the Banach limit
L defined by (16) has the property that for any sequence ξ = (x∗

n)n∈N ∈ �∞(X∗)
the value L(ξ) is contained in clw∗conv{x∗

n |n ∈ N}, the closure with respect
to the w∗-topology of the convex hull of the elements in the sequence.
But there are Banach limits which do not fulfill this property.

Proof. The first part is clear by the lines above if one takes into account that{
1
n

(x∗
1 + x∗

2 + · · · + x∗
n) |n ∈ N

}
⊆ conv{x∗

n |n ∈ N}.

The second part follows from the last item of the following remark, since by
[2] there are different Banach limits on the reals. �

Corollary 1. Since all Banach limits are shift invariant it follows that L(ξ) ∈⋂
m∈N

clw∗conv{x∗
n |n ∈ N, n ≥ m}, which in the original (real) case reflects

the property that for any Banach limit λ on R

lim inf
n→∞ xn ≤ λ((xn)n∈N) ≤ lim sup

n→∞
xn.

Remark 1. Let X := R
2 be endowed with the �1-norm ‖(x, y)‖ := |x|+ |y|, let

e1 = (1, 0), e2 = (0, 1).
1. The operator norm on X∗ is given by ‖f‖ = ‖(f(e1), f(e2)‖∞ :=

max{|f(e1)| , |f(e2)|}.
2. A sequence (fn)n∈N is contained in �∞(X∗) iff the sequences (fn(ei))n∈N

are contained in �∞(R) for i = 1, 2. More exactly: ‖fn‖ ≤ M for all n iff
|fn(ei)| ≤ M for all n ∈ N and for i = 1, 2.

3. The w∗-topology and the norm-topology on X∗ coincide, since X has
finite dimension.

4. Let L1, L2 be Banach limits on R. Then L : �∞(X∗) → X∗, L((fn)n∈N) :=
L1((fn(e1))n∈N)π1 + L2((fn(e2))n∈N)π2 is a Banach limit on X∗, where
π1, π2 denote the projections from X to the first and second component
respectively.

5. If L1 �= L2 there is some sequence (fn)n∈N ∈ �∞(X∗) such that
L((fn)n∈N) �∈ clw∗conv {fn |n ∈ N}.

Proof of the remark above. The first part follows immediately from the defi-
nition. This implies the second item. A proof of the third one is contained in
[11].
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Regarding the fourth item one may proceed in the following manner. Let
(fn)n∈N be any sequence in �∞(X∗). Then the sequences fn(e1) and fn(e2)
are bounded real sequences. Thus their Banach limits exist for all Banach
limits on R. Accordingly L((fn)n∈N) ∈ X∗. Obviously L is shift invariant since
L1, L2 are. If the sequence fn converges to f , the sequences fn(ei) will converge
to f(ei), i = 1, 2. Thus Li((fn(ei))) = f(ei) for i = 1, 2. Since obviously L
is also linear, it remains to show that ‖L‖ = 1. Note that ‖L((fn)n∈N)‖ =
max{|L1((fn(e1))n∈N)| , |L2((fn(e2))n∈N)|}. Note also that ‖L1‖ = ‖L2‖ = 1.
This implies |L1((fn(e1))n∈N| ≤ 1 · ‖(fn(e1))n∈N‖∞ and |L2((fn(e2))n∈N| ≤
1 · ‖(fn(e2))n∈N‖∞. Using 2. this also gives ‖L((fn)n∈N)‖ ≤ ‖(fn)n∈N‖∞ =
sup{‖fn∈N‖ |n ∈ N}. So ‖L‖ ≤ 1. Let fn(e1) = fn(e2) = 1, i.e., fn(x, y) = x+
y. Then L((fn)n∈N)(x, y) = x+y for all x, y since Li((1)n∈N) = 1. Note finally
that ‖(fn)n∈N‖∞ = 1 = ‖L(fn)n∈N‖. This implies ‖L‖ ≥ 1 and altogether
‖L‖ = 1.

Now we deal with the final part. Let c = (cn)n∈N ∈ �∞(R) be such that
L1(c) �= L2(c) and define fn := cn(π1 − π2). Then ‖fn‖ = |cn| for all n.
For all x ∈ R the set Ax := {f ∈ X∗ | f(x, x) = 0} is closed in the w∗-
topology as it is the complement of the w∗-open set {f ∈ X∗ | f(x, x) �= 0}.
Let A : Ax for some x �= 0. By 2. this set is also closed with respect to the norm
topology. It is also convex since it is a linear subspace of X∗. Assume now that
f := L((fn)n∈N) ∈ clw∗conv {fn |n ∈ N}. Then f ∈ A since A is convex and
closed. But f = L1(c)π1 − L2(c)π2 and thus f(x, x) = (L1(c) − L2(c))x �= 0 as
x �= 0. This yields f �∈ A. �

Using Banach limits L1, L2, . . . , Lm it is easy to construct Banach limits
on R

n. The following theorem answers the question whether a result similar
to that of Theorem 2 holds true.

Theorem 3. Let m ≥ 2 and let L1, L2, . . . , Lm : �∞(R) → R be Banach lim-
its. Then L : �∞(Rm) → R

m, L((xn)n∈N) := (Li((x
(i)
n )n∈N))1≤i≤m, where

xm = (x(i)
m )1≤i≤m, is a Banach limit for (Rm, ‖.‖∞).

This Banach limit has the property that L((xn)n∈N) ∈ cl‖.‖conv {nn |n ∈ N}
for all (xn)n∈N ∈ �∞(Rm) iff L1 = L2 = · · · = Lm.

Proof. The properties (i)–(iii) for L immediately follow from the corresponding
properties of Li. Since ‖Li‖ = 1 and since we use the supremum norm on R

m

it follows that ‖L‖ ≤ 1. Now we consider the constant sequence determined
by 1m := (1, 1, . . . , 1). Li are Banach limits. Thus Li((1, 1, . . .)) = 1. Therefore
L((1m, 1m, . . .)) = 1m. Thus ‖L‖ ≥ ‖1m‖∞ = 1 and also ‖L‖ = 1, as desired.

Suppose that L1 = L2 = · · · = Lm and assume that

L((xn)n∈N) �∈ K := cl‖.‖conv {xn |n ∈ N} .

Then by the separation theorem for closed convex sets (see [4, Théoréme 1.7])
there is some a = (a1, a2, . . . , am) ∈ R

m and some α ∈ R such that
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∑m
i=1 aix

(i)
n < α for all n and such that

∑m
i=1 aiLi((x

(i)
n )n∈N) > α. But∑m

i=1 aiLi((x
(i)
n )n∈N) = L1

(
(
∑m

i=1 aix
(i)
n )n∈N

)
and by the property of a

Banach limit this value must be ≤ α since
∑m

i=1 aix
(i)
n < α for all n. Thus

L((xn)n∈N) ∈ K, as desired.
Finally assume (without loss of generality) that L1 �= L2 and that

L1((zn)n∈N) �= L2((zn)n∈N) for some (zn)n∈N ∈ �∞(Rm). Then the sequence
xn, xn := (zn, zn, 0, . . . , 0) is contained in �∞(Rm). Moreover all xn are
contained in the (closed) linear subspace E := {x = (x1, x2, . . . , xm) ∈
R

m |x1 = x2, x3 = · · · = xm = 0} of R
m. Assume that L((xn)n∈N) ∈

cl‖.‖conv {xn |n ∈ N} ⊆ E. But

L((xn)n∈N) = (L1((zn)n∈N), L2((zn)n∈N), 0, . . . , 0)

and L1((zn)n∈N) �= L2((zn)n∈N), a contradiction. �

4. Solutions of the inhomogeneous Cauchy equation expressed in
terms of Banach limits

In [10] it was shown that for V = W = R the relations (2) and (3) imply

φ(n(x + y), x + y)) − φ(nx, x) − φ(ny, y)

= φ((n + 1)x, (n + 1)y) − φ(nx, ny) − φ(x, y), x, y ∈ V
(17)

provided that (1) has a solution at all. The proof for arbitrary rational vector
spaces V,W is the same. Thus (17) holds true in view of Theorem 1. The
following generalizes Theorem 2 of [10].

Theorem 4. Let V be a rational vector space and X a normed space which
admits a Banach limit L : �∞(X) → X. Assume that φ : V × V → X satisfies
(2) and (3) and that the sequences φ(nx, x) and φ(nx, ny) are contained in
�∞(X) for all x, y ∈ V . Then f : V → x, f(x) := −L((φ(nx, x))n∈N) is a
solution of (1).

Proof. Note that L may be applied to all sequences generated by (17) sepa-
rately. Then the result follows from the fact that L is shift invariant and that
L maps constant functions to the corresponding constant. �

Example 1 (Unbounded φ). Let the rational vector space V as above be of
infinite dimension and let X admit a Banach limit L : �∞(X) → X. For x ∈ V
let Cx := Q>0x, where Q>0 denotes the set of all positive rational numbers.
Then the set of all Cx gives a partition of V . Let R ⊆ V be a set of repre-
sentatives for this partition, i.e., V =

⋃
r∈R Cr and Cr ∩ Cs = ∅ for r, s ∈ R,

r �= s.
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Take g : R → X arbitrary and h : V → X bounded and define f : V → X
by f(x) := g(r) + h(x), where x ∈ Cr. Morever let φ : V × V → X be defined
by φ(x, y) := f(x + y) − f(x) − f(y).

Then Theorem 4 works for φ: If x ∈ Cr, y ∈ Cs, x + y ∈ Ct the Cauchy
difference for f is given by f(x + y) − f(x) − f(y) = g(t) − g(r) − g(s) + h(x +
y) − h(x) − h(y). Since nx, (n + 1)x ∈ Cr, we get φ(nx, x) = h((n + 1)x) −
h(nx)−h(x). A similar calculation shows that φ(nx, ny) = g(t)−g(r)−g(s)+
h(n(x+y))−h(nx)−h(ny). Thus the hypotheses of the theorem are satisfied.

g may be chosen unbounded since by the assumption on V the set R of
representatives has to be infinite.

Example 2 (L2([0, 1])). By [6, Lemma 4.2.2] any Hilbert space, in particular
the space of square integrable functions on [0, 1] admit a Banach limit. Define
φ : L2([0, 1])×L2([0, 1]) → L2([0, 1]) by φ(f, g) := sin ◦(f +g)− sin ◦f − sin ◦g.
This is well defined, since sin ◦f is measurable and even square integrable since
sin is bounded. Moreover φ itself is bounded because

∫ 1

0

∣∣sin2(f(x))
∣∣ dx ≤ 1.

Thus a fortiori φ satisfies the hypotheses of the theorem above.

Example 3 (�2(R)). �2(R) is a Hilbert space. Thus also in this case Banach
limits exist. For x = (xn)n∈N put f(x) := (sin(xn)/n2)n∈N. Then f(x) ∈ �2(R)
and ‖f(x)‖22 ≤ ∑∞

n=1
1

n2 . Accordingly the theorem may be applied to φ with
φ(x, y) = f(x + y) − f(x) − f(y).

Example 4. Consider R
m with the maximum norm. In view of Theorem 3 we

may choose real Banach limits L1, L2, . . . , Lm, such that L with L((xn)n∈N) :=
(Li((x

(i)
n )n∈N))1≤i≤m is a Banach limit for R

m. Then we may construct some
φ : Rm × R

m → R
m by taking any φi : R → R satisfying the hypotheses of

Theorem 4 and by defining φ(x, y) := (φi(xi, yi))1≤i≤m. Concrete examples
for φi may be found in [10].

5. Abstract Banach limits and solutions of the inhomogeneous
Cauchy equation

Analyzing the considerations of the previous section it turns out that con-
dition (iv) of a Banach limit is not used when proving Theorem 4. Here we
want to discuss a more general situation. Throughout we consider an Abelian
semigroup S, an Abelian group G �= {0} and an inhomogeneity φ : S ×S → G,
which satisfies (2) and (3) so that (1) has a solution f : S → G.

Theorem 5. Let S be a subgroup of the group GN of all sequences (zn)n∈N

with zn ∈ G for all n. Let us suppose that all sequences c := (c)n∈N, c ∈ G, are
contained in S and that σ(S ) ⊆ S , where σ is defined as in Definition 1,
(iii). Let furthermore L : S → G be a homomorphism of groups such that
L(c) = c for all c ∈ G and L ◦ σ = L.
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Then g, g(x) := −L ((φ(nx, x)n∈N)), is a solution of (1) provided that all
sequences (φ(nx, x))n∈N and (φ(nx, ny))n∈N, x, y ∈ G, are contained in S .

Proof. Put gn(x) := φ(nx, x) and hn(x, y) := φ(nx, ny) and let G(x) :=
(gn(x))n∈N, H(x, y) := (hn(x, y))n∈N. Because 1 is solvable by assumption,
relation (17) holds true, i.e.,

G(x + y) − G(x) − G(y) = σ(H(x, y)) − H(x, y) − φ(x, y).

By assumption all sequences involved are contained in S . Thus applying L
and using the properties thereof we get −g(x + y) + g(x) + g(y) = −φ(x, y),
as desired. �

Now we discuss some examples of G,S , L.

Example 5. G arbitrary, S = C := {c | c ∈ G}, L(c) := c.

Example 6. (Generalization of the example above) Let n ∈ N, assume that x �
G �→ nx =: μn(x) ∈ G is bijective and write 1

nx := μ−1
n (x). Let S := Cn :=

{x = (xm)m∈N ∈ GN | xm+n = xm for all m ∈ N} and L(x) := 1
n (x1+· · ·+xn).

Note that L(c) = 1
n (nc) = c and that L(x) = 1

n

∑m−1+n
i=m xi for all m ∈ N,

since
∑m+n

i=m xi =
∑m−1+n

i=m xi − xm + xm+n =
∑m−1+n

i=m xi.

Example 7. Let G be an Abelian group such that μn is bijective for all n ∈ N,
i.e., a uniquely divisible Abelian group and thus a rational vector space. Define
S := C∞ :=

⋃
n∈N

Cn. This in fact is a linear subspace of G since z ∈ Cn,
w ∈ Cm, r, s ∈ Q imply that rz + sw ∈ Cnm. From Example 6 it follows that
1
n (x1 + · · · + xn) = 1

n

∑m−1+n
i=m xi for all x ∈ Cn. In fact

1
n

(x1 + · · · + xn) =
1
m

(x1 + · · · + xm) for all x ∈ Cn ∩ Cm.

Since Cn, Cm ⊆ Cnm, it is enough to show that 1
n

∑n
i=1 xi = 1

nm

∑nm
i=1 xi,

which follows from
nm∑
i=1

xi =
m∑

k=1

kn∑
i=(k−1)n+1

xi =
m∑

k=1

n

(
1
n

n∑
i=1

xi

)
= mn

(
1
n

n∑
i=1

xi

)
.

This implies that L : C∞ → G, L(x) := 1
n

∑
i=1 xi for x ∈ Cn is well-defined.

Moreover L is linear and obviously has all the remaining properties to be
satisfied.

Example 8. Let G be a normed space over K, K be a subfield of the field C

of complex numbers and let

S := {x ∈ GN | μ(x) converges to some ξ ∈ G},

where μ(x) :=
(
1
n (x1 + x2 + · · · + xn)

)
n∈N

. The function L : S → G is defined
by L(x) := limn→∞ μ(x) = limn→∞ 1

n (x1+x2+ · · ·+xn). Obviously L is linear
and L(c) = c. Moreover L(σ(x)) = L(x) since
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1
n

(x2 + x3 + · · · + xn+1) =
n + 1

n
· 1
n + 1

(x1 + x2 + · · · + xn+1) − x1

n
.

In this example C∞ ⊆ S and L(x) = 1
m (x1 + x2 + · · · + xm) for all x ∈ Cm ⊆

C∞:
If x ∈ Cm and n ∈ N let k := [n/m], i.e., mk ≤ n < (k + 1)m. Then

1
n

n∑
i=1

xi =
1
n

k∑
j=1

jm∑
i=(j−1)m+1

xi +
1
n

n∑
i=mk+1

xi =
1
n

km
1
m

m∑
i=1

xi +
1
n

n−mk∑
i=1

xi.

(18)
km
n ≤ 1 < km

n + m
n implies 1 − m

n < km
n ≤ 1. Thus the first term in the last

part of (18) tends to 1
n

∑m
i=1 xi for n → ∞. The corresponding second part

tends to zero since there are only finitely many terms of the form
∑n−mk

i=1 xi.
Finally we note that in general S �⊆ �∞(G).
Let us assume that

√
k ∈ K for all k ∈ N. We fix some c ∈ G\{0} and put

x2k+ε := (− 1)2k+ε−1
√

kc for ε ∈ {0, 1} and k ∈ N. Then obviously x �∈ �∞(G)
but x ∈ S since

∑2k
i=1 xi = 0 and

∑2k+1
i=1 xi =

√
k + 1c.

Of course any normed space X admitting a Banach limit L is also an
example when we take S = �∞(X).
The following remark however demonstrates that there must be some restric-
tions on the space S .

Remark 2. For S = GN no suitable choice is possible: Assume that L : GN →
G is a homomorphism and satisfies L(c) = c for all c ∈ G and L ◦ σ = L.
Choose c ∈ G\{0} and define x = (c, 2c, . . . , nc, . . .). Then σ(x) − x = c and
L(c) = 0, a contradiction.
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