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A note on functional equations connected with the Cauchy mean
value theorem

Rados�law �Lukasik

Abstract. The aim of this paper is to describe the solution (f, g) of the equation

[f(x) − f(y)]g′(αx + (1 − α)y) = [g(x) − g(y)]f ′(αx + (1 − α)y), x, y ∈ I,

where I ⊂ R is an open interval, f, g : I → R are differentiable, α is a fixed number from
(0, 1).
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1. Introduction

Throughout this paper I is an open interval, α ∈ (0, 1
2 ] (we can obtain the

whole interval (0, 1) because the role of α and 1 − α is symmetric in (1)). For
a differentiable function f : I → R we define a set Uf := {x ∈ I : f ′(x) �= 0}.
In view of the Darboux property of f ′ we can write Uf as a sum of pairwise
disjoint open intervals (we denote this family of open intervals by Af ).

We would like to present solutions of the following functional equation

[f(x) − f(y)]g′(αx + (1 − α)y) = [g(x) − g(y)]f ′(αx + (1 − α)y), x, y ∈ I,

(1)

where f, g : I → R are differentiable.
This equation was solved by Balogh et al. [2] for three times differentiable

functions on R. For the case of the Lagrange MVT (g = id) with α = 1
2 this

problem was considered by Haruki [3] and Aczél [1]. The generalization of (1)
corresponds also to an open problem posed by Sahoo and Riedel [6].
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2. Auxiliary results

We divide our considerations into two cases α �= 1
2 or α = 1

2 . We start with
two lemmas which we use in both cases.

Lemma 1. Let f, g : I → R be differentiable functions such that (1) holds.
Then for each x ∈

(
(1−α) inf I +α inf Uf , (1−α) sup I +α supUf

)
such that

∃ε>0

(
(x − ε, x] ⊂ I\Uf or [x, x + ε) ⊂ I\Uf

)
we have g′(x) = 0.

Proof. Let J ⊂ I\Uf be a maximal closed subinterval of I\Uf , a = inf J ,
b = supJ , a < b, which means that either J = [a, b] and a, b ∈ cl Uf or
J = (inf I, inf Uf ] or J = [sup Uf , sup I). We have the following cases:
(a) ∃I1∈Af

sup I1 = a.
Let z ∈ [a, αa + (1 − α)b), then there exists x ∈ I1 such that a − x <
αa+(1−α)b−z

α . Let y = b − αx+(1−α)b−z
1−α . Then z = αx + (1 − α)y. Since

(1 − α)(b − y) = αx + (1 − α)b − z = α(x − a) + αa + (1 − α)b − z

> −(αa + (1 − α)b − z) + αa + (1 − α)b − z = 0,

y =
z − αx

1 − α
=

z − αa + α(a − x)
1 − α

>
z − αa

1 − α
≥ a − αa

1 − α
= a,

we have y ∈ J . Hence

0 = [g(x) − g(y)]f ′(z) = [f(x) − f(y)]g′(z) = [f(x) − f(a)]g′(z). (2)

Since f ′|I1 �= 0, we have f(x) �= f(a) and g′(z) = 0.
(b) ∃(In)n∈N⊂Af

(∀n∈N sup In ≤ inf In+1) ∧ lim
n→∞ sup In = a. Let z ∈ [a, αa +

(1 − α)b), then there exists n ∈ N such that a − inf In < αa+(1−α)b−z
α .

Let x ∈ In be such that f(x) �= f(a), y = b − αx+(1−α)b−z
1−α . Then

z = αx + (1 − α)y. Similarly as in the previous case we have y ∈ J .
Hence (2) holds and g′(z) = 0.

(c) ∃I1∈Af
inf I1 = b. Let z ∈ (αb + (1 − α)a, b], then there exists x ∈ I1

such that x − b < z−αb+(1−α)a
α . Let y = a + z−αx−(1−α)a

1−α . Then z =
αx + (1 − α)y. Since

(1 − α)(y − a) = z − αx − (1 − α)a = z + α(b − x) − αb − (1 − α)a

> z − (z − αb − (1 − α)a) − αb − (1 − α)a = 0,

y =
z − αx

1 − α
=

z − αb + α(b − x)
1 − α

<
z − αb

1 − α
≤ b − αb

1 − α
= b,

we have y ∈ J . Hence (2) holds. Since f ′|I1 �= 0, we have f(x) �= f(b)
and g′(z) = 0.

(d) ∃(In)n∈N⊂Af
(∀n∈N inf In ≥ sup In+1) ∧ lim

n→∞ inf In = b. Let z ∈ (αb +

(1 − α)a, b], then there exists n ∈ N such that sup In − b < z−αb+(1−α)a
α .
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Let x ∈ In be such that f(x) �= f(b), y = a + z−αx−(1−α)a
1−α . Then

z = αx + (1 − α)y. Similarly as in the previous case we have y ∈ J .
Hence (2) holds and g′(z) = 0.

Since

αb + (1 − α)a = a + α(b − a) ≤ a + b

2
≤ b − α(b − a) = αa + (1 − α)b,

for J ⊂ (inf Uf , sup Uf ) we have g′(x) = 0 for x ∈ J .
If J = (inf I, inf Uf ], then g′(x) = 0 for x ∈ ((1−α) inf I +α inf Uf , inf Uf ].
And finally, if J = [sup Uf , sup I), then g′(x) = 0 for x ∈ [sup Uf , (1 −

α) sup I + α sup Uf ). �
Lemma 2. Let f, g : I → R be differentiable and satisfy Eq. (1). Assume that
{1, f, g} are linearly dependent on each J ∈ Af and inf I = −∞ or sup I =
+∞. Then {1, f, g} are linearly dependent on I.

Proof. It is easy to see that if f is constant, then for every g Eq. (1) holds.
Assume that f is non-constant and sup I = +∞.
Let I1, I2 ∈ Af satisfy sup I1 ≤ inf I2. There exist c1, c2, d1, d2 ∈ R such that
g(x) = c1f(x) + d1 for x ∈ I1 and g(x) = c2f(x) + d2 for x ∈ I2. For each
x ∈ I1 and z ∈ I2 we define yx,z = z−αx

1−α ∈ I. Then z = αx + (1 − α)yx,z. We
have

[f(x) − f(yx,z)]c2f ′(z) = [f(x) − f(yx,z)]g′(z)

= [g(x) − g(yx,z)]f ′(z) = [c1f(x) + d1 − g(yx,z)]f ′(z), x ∈ I1, z ∈ I2.

Hence

(c1 − c2)f(x)f ′(z) = [g(yx,z) − c2f(yx,z) − d1]f ′(z), x ∈ I1, z ∈ I2,

and since f ′(z) �= 0, we obtain

(c1 − c2)f(x) = g
(z − αx

1 − α

)
− c2f

(z − αx

1 − α

)
− d1, x ∈ I1, z ∈ I2. (3)

Using the differentiation of the above equation with respect to z we obtain
that RHS of (3) is constant and also LHS of (3) is constant. The function f |I1
is injective so we get c1 = c2.
This shows us that there exists c ∈ R such that

∀J∈Af
∃dJ∈R∀x∈J g(x) = cf(x) + dJ .

Using this form and Lemma 1, for each J ∈ Af we have the following cases:
(a) ∃I1∈Af

[supJ, inf I1] ⊂ I\Uf .
Let a = supJ , b = inf I1. We have

cf(a) + dJ = lim
x→a−

cf(x) + dJ = lim
x→a−

g(x) = g(a) = g(b)

= lim
x→b+

g(x) = lim
x→b+

cf(x) + dI1 = cf(b) + dI1 = cf(a) + dI1 .
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Hence dI1 = dJ .
(b) ∃(In)n∈N⊂Af

(∀n∈N inf In+1 ≥ sup In) ∧ [ lim
n→∞ sup In, inf J ] ⊂ I\Uf .

Let a = lim
n→∞ sup In, b = inf J . In view of the previous case we get

dIn = dIn+1 . We have

cf(a) + dIn = lim
x→a−

cf(x) + dIn = lim
x→a−

g(x) = g(a) = g(b) = lim
x→b+

g(x)

= lim
x→b+

cf(x) + dJ = cf(b) + dJ = cf(a) + dJ , n ∈ N.

Hence dIn = dJ for all n ∈ N.
(c) ∃I1∈Af

[sup I1, inf J ] ⊂ I\Uf .
Let a = sup I1, b = inf J . We have

cf(a) + dI1 = lim
x→a−

cf(x) + dI1 = lim
x→a−

g(x) = g(a) = g(b)

= lim
x→b+

g(x) = lim
x→b+

cf(x) + dJ = cf(b) + dJ = cf(a) + dJ .

Hence dI1 = dJ .
(d) ∃(In)n∈N⊂Af

(∀n∈N sup In+1 ≤ inf In) ∧ [sup J, lim
n→∞ inf In] ⊂ I\Uf .

Let a = supJ , b = lim
n→∞ inf In. In view of the previous case we get

dIn = dIn+1 . We have

cf(a) + dJ = lim
x→a−

cf(x) + dJ = lim
x→a−

g(x) = g(a) = g(b) = lim
x→b+

g(x)

= lim
x→b+

cf(x) + dIn = cf(b) + dIn = cf(a) + dIn , n ∈ N.

Hence dIn = dJ for all n ∈ N.

From the above we obtain that there exist c, d ∈ R such that g(x) = cf(x) + d
for all x ∈ Uf .
Now we will show that g also has this form on I\Uf . We have the following
cases:

• Let J ⊂ (inf Uf , sup Uf )\Uf be a closed interval such that a, b ∈ cl Uf ,
where a = inf J , b = supJ . Then we have

g(x) = g(a) = lim
y→a−, y∈Uf

g(y) = lim
y→a−, y∈Uf

cf(x) + d

= cf(a) + d = cf(x) + d, x ∈ J.

• Assume that a = supUf < ∞ and let J = [sup Uf ,+∞). Then we have

g(x) = g(a) = lim
y→a−, y∈Uf

g(y) = lim
y→a−, y∈Uf

cf(x) + d

= cf(a) + d = cf(x) + d, x ∈ [a,+∞).

• Assume that a := inf I < b := inf Uf . Let x ∈ (a, b], z ∈ Uf , y := z−αx
1−α .

Then z = αx+(1−α)y and from the form of g on Uf and the above two



Vol. 92 (2018) A note on functional equations 939

cases we have g(y) = cf(y) + d. Hence

g(x)f ′(z) = [g(x) − g(y)]f ′(z) + g(y)f ′(z) = [f(x) − f(y)]g′(z)

+ [cf(y) + d]f ′(z) = [f(x) − f(y)]cf ′(z) + [cf(y) + d]f ′(z)

= [cf(x) + d]f ′(z),

which means that g(x) = cf(x) + d.

Assume that f is non-constant and inf I = −∞. Let F,G : − I → R be given
by the formulas F (x) = f(−x), G(x) = g(−x) for x ∈ −I. Then we have
F ′(x) = −f ′(−x), G′(x) = −g′(x) for x ∈ −I and F,G satisfy Eq. (1). Since
sup−I = +∞, there exist c, d ∈ R such that G(x) = cF (x) + d for x ∈ −I,
which means that g(x) = cf(x) + d for x ∈ I. �

3. Main result for the asymmetric case

First, we consider the case when α �= 1
2 . We start with the following.

Lemma 3. Let J ⊂ R be an open interval, f, g, h : J → R be continuous func-
tions, f be strictly monotone and the following functional equation hold

g(x) − g(y) = h(αx + (1 − α)y)[f(x) − f(y)], x, y ∈ J. (4)

Then there exist c, d ∈ R such that g(x) = cf(x) + d, h(x) = c for all x ∈ J .

Proof. Let u ∈ J . We define two numbers

au := max
{

1 − 2α

1 − α
inf J +

α

1 − α
u,

1 − α

α
u − 1 − 2α

α
supJ

}
,

bu := min
{

1 − 2α

1 − α
sup J +

α

1 − α
u,

1 − α

α
u − 1 − 2α

α
inf J

}
.

We observe that
1 − 2α

1 − α
inf J +

α

1 − α
u <

1 − 2α

1 − α
u +

α

1 − α
u = u,

1 − α

α
u − 1 − 2α

α
supJ <

1 − α

α
u − 1 − 2α

α
u = u,

1 − 2α

1 − α
sup J +

α

1 − α
u >

1 − 2α

1 − α
u +

α

1 − α
u = u,

1 − α

α
u − 1 − 2α

α
inf J >

1 − α

α
u − 1 − 2α

α
u = u.

Hence au < u < bu. We define an open interval Iu := (au, bu) ∩ J . Therefore
u ∈ Iu.
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Let v ∈ Iu. Then for x = 1−α
1−2αv − α

1−2αu, y = 1−α
1−2αu − α

1−2αv we have

αx + (1 − α)y =
(α − α2)v − α2u + (1 − 2α + α2)u − (α − α2)v

1 − 2α
= u,

αy + (1 − α)x =
(α − α2)u − α2v + (1 − 2α + α2)v − (α − α2)u

1 − 2α
= v.

We also have

x =
1 − α

1 − 2α
v − α

1 − 2α
u >

(1 − α)au − αu

1 − 2α

≥ (1 − 2α) inf J + αu − αu

1 − 2α
= inf J,

x =
1 − α

1 − 2α
v − α

1 − 2α
u <

(1 − α)bu − αu

1 − 2α

≤ (1 − 2α) sup J + αu − αu

1 − 2α
= supJ,

y =
1 − α

1 − 2α
u − α

1 − 2α
v <

(1 − α)u − αau

1 − 2α

≤ (1 − α)u − (1 − α)u + (1 − 2α) sup J

1 − 2α
= supJ,

y =
1 − α

1 − 2α
u − α

1 − 2α
v >

(1 − α)u − αbu

1 − 2α

≥ (1 − α)u − (1 − α)u + (1 − 2α) inf J

1 − 2α
= inf J,

which means that x, y ∈ J .
We observe that

h(u) = h(αx + (1 − α)y) =
g(x) − g(y)
f(x) − f(y)

=
g(y) − g(x)
f(y) − f(x)

= h(αy + (1 − α)x) = h(v).

Hence we have that h is constant on Iu.
Now we show that h is constant. Fix u, v ∈ J, u < v. Let c0 = u, cn = sup Icn−1

for n ∈ N. Since cn−1 ∈ Icn−1 , (cn)n∈N is strictly increasing. We also have
Icn−1 ∩ Icn �= ∅, so h is constant on (inf Iu, lim

n→∞ cn). If lim
n→∞ cn = +∞, then

we get h(u) = h(v). Assume that lim
n→∞ cn < +∞. We have

cn+1 − cn ≥ min
{

1 − 2α

1 − α
supJ +

α

1 − α
cn,

1 − α

α
cn − 1 − 2α

α
inf J

}
− cn

= min
{

1 − 2α

1 − α
(sup J − cn),

1 − 2α

α
(cn − inf J)

}
, n ∈ N.
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Since cn − inf J > c1 − inf J > 0 for n ∈ N,

0 = lim
n→∞(cn+1 − cn) = lim

n→∞
1 − 2α

1 − α
(supJ − cn),

which means that lim
n→∞ cn = supJ and we get h(u) = h(v).

Let c := h(u) for u ∈ J . Fix y ∈ J and let d := g(y) − cf(y). We observe
that

g(x) = g(x) − g(y) + g(y) = [f(x) − f(y)]h(αx + (1 − α)y) + g(y)

= cf(x) − cf(y) + g(y) = cf(x) + d, x ∈ J,

which ends the proof. �

Corollary 4. Let J ⊂ R be an open interval, f, g : J → R be differentiable
functions such that (1) holds and f ′(x) �= 0 for all x ∈ J . Then there exist
c, d ∈ R such that g(x) = cf(x) + d for all x ∈ J .

In view of the above corollary we obtain

Corollary 5. Let f, g : I → R be differentiable and satisfy Eq. (1). Then {1, f, g}
are linearly dependent on each J ∈ Af .

Finally we have the main result for the asymmetric case.

Theorem 6. Let f, g : I → R be differentiable and satisfy Eq. (1). Assume that
inf I = −∞ or sup I = +∞. Then either f is constant and g is an arbitrary
function or there exist c, d ∈ R such that g(x) = cf(x) + d for x ∈ I.

Proof. In view of Corollary 5 and Lemma 2 we obtain the thesis of this theo-
rem. �

Remark 7. It is easy to see that for differentiable functions f, g : I → R, if
{1, f, g} are linearly dependent, then (1) holds.

4. Main result for the symmetric case

Now we consider the case when α = 1
2 .

Lundberg in his papers [4, Table 1], [5, Theorem 1.2] considers the following
functional equation

ϕ(x + y) =
F (x)G(y) + H(x)L(y)

m(x) + n(y)

on rectangles in R
2 for continuous functions F,G,H,L,m, n, ϕ, which is a gen-

eralization of Eq. (1) on each J ∈ Af . He presents solutions of this equation
but they have indirect forms, so we use only the fact that for differentiable
functions f, g : I → R which satisfy Eq. (1) we have two cases on every open
interval J ∈ Af : either {1, f, g} are linearly dependent on J or f and g are
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infinitely differentiable. Particularly, on every J ∈ Af , if {1, f, g} are linearly
independent, then they are three times differentiable and we can use the fol-
lowing two facts from [2].

Remark 8 (see [2, Remark 10]). Let f, g : I → R be differentiable functions
which satisfy (1). On every interval J ∈ Af one of the following cases holds:
(a) {1, f, g} are linearly dependent;
(b) f, g ∈ Lin {1, id, id2};
(c) f, g ∈ Lin {1, eμid, e−μid} for some μ > 0;
(d) f, g ∈ Lin {1, sin(μid), cos(μid)} for some μ > 0;
where id is the identity on J .

Lemma 9 (see [2, Lemma 11]). Let f, g : I → R be differentiable functions
which satisfy (1), J ∈ Af be such that g′(a) = 0, where a = inf J > inf I or
a = supJ < sup I. Then {1, f, g} are linearly dependent on J .

This lemma is proved in the case a = inf J > inf I, but the proof in the
case a = supJ < sup I is analogous.

Now we are ready to prove the main result.

Theorem 10. Let f, g : I → R be differentiable and satisfy Eq. (1). Then one
of the following possibilities holds:
(a) {1, f, g} are linearly dependent on each J ∈ Af ;
(b) f, g ∈ Lin {1, id, id2};
(c) f, g ∈ Lin {1, eμid, e−μid} for some μ > 0;
(d) f, g ∈ Lin {1, sin(μid), cos(μid)} for some μ > 0.

Proof. We can split Af into disjoint subsets Af = Lf ∪ Qf ∪ Ef ∪ Tf , where

Lf = {J ∈ Af : {1, f |J , g|J} are linearly dependent},

Qf = {J ∈ Af\Lf : f |J , g|J ∈ Lin {1, id, id2}},
Ef = {J ∈ Af\Lf : f |J , g|J ∈ Lin {1, eμid, e−μid} for some μ > 0},

Tf = {J ∈ Af\Lf : f |J , g|J ∈ Lin {1, sin(μid), cos(μid)} for some μ > 0}.

We have the same split for Ag.
If Uf = Ug = I, then in view of Remark 8 we have the thesis of this

theorem, so we can assume that Uf �= I.
Now we consider four cases:

• Assume that Qf �= ∅. Let I ∈ Qf . We have f ′(p) = 0, where p = inf J >
inf I or p = supJ < sup I. Since there exist a1, a2, a3, b1, b2, b3 ∈ R such
that f(x) = a1x

2 +a2x+a3, g(x) = b1x
2 + b2x+ b3 for x ∈ J and f ′ on cl J

has only one root, we have that 0 = f ′(p) = 2a1p + a2 and J = (p, sup I)
or (inf I, p). In view of Lemma 9 we have g′(p) �= 0. Hence

0 = [g(p + h) − g(p − h)]f ′(p) = [f(p + h) − f(p − h)]g′(p),
h ∈ R, p + h, p − h ∈ I,
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which means that

f(p + h) = f(p − h), h ∈ R, p + h, p − h ∈ I. (5)

We have

f(p − h) = f(p + h) = a1(p + h)2 + a2(p + h) + a3

= a1(p − h)2 + a2(p − h) + a3 + 2h(2a1p + a2)

= a1(p − h)2 + a2(p − h) + a3, h ∈ R, p + h ∈ J, p − h ∈ I,

so the set (2p − J) ∩ I is a subset of some J2 ∈ Qf ({1, f, g} are linearly
independent on J so also on (2p − J) ∩ I). Since f ′ on cl J2 has only one
root p, J2 = I\J . Hence f(x) = a1x

2 + a2x + a3 for x ∈ I and we can also
prove in a similar way that g(x) = b1x

2 + b2x + b3 for x ∈ I.
• Assume that Ef �= ∅. Let I ∈ Ef . We have f ′(p) = 0, where p = inf J > inf I

or p = supJ < sup I. Since there exist μ > 0, a1, a2, a3, b1, b2, b3 ∈ R such
that f(x) = a1e

μx + a2e
−μx + a3, g(x) = b1e

μx + b2e
−μx + b3 for x ∈ J and

f ′ on cl J has only one root, we have that 0 = f ′(p) = μ(a1e
μp − a2e

−μp)
and J = (p, sup I) or (inf I, p). Similarly as in the first case we obtain (5).
We also have

f(p − h) = f(p + h) = a1e
μ(p+h) + a2e

−μ(p+h) + a3

= a1e
μ(p−h) + a2e

−μ(p−h) + a3 + (eμh − e−μh)(a1e
μp − a2e

−μp)

= a1e
μ(p−h) + a2e

−μ(p−h) + a3, h ∈ R, p + h ∈ J, p − h ∈ I,

so the set (2p − J) ∩ I is a subset of some J2 ∈ Ef ({1, f, g} are linearly
independent on J so also on (2p − J) ∩ I). Since f ′ on cl J2 has only one
root p, J2 = I\J . Hence f(x) = a1e

μx + a2e
−μx + a3 for x ∈ I and we can

also prove in a similar way that g(x) = b1e
μx + b2e

−μx + b3 for x ∈ I.
• Assume that Tf �= ∅. Let I ∈ Tf . We have f ′(p) = 0, where p = inf J > inf I

or p = supJ < sup I. Since there exist μ > 0, a1, a2, a3, b1, b2, b3 ∈ R such
that f(x) = a1 cos(μx)+a2 sin(μx)+a3, g(x) = b1 cos(μx)+ b2 sin(μx)+ b3
for x ∈ J , we have that 0 = f ′(p) = μ(a2 cos(μp) − a1 sin(μp)). Similarly as
in the first case we obtain (5). We also have

f(p − h) = f(p + h) = a1 cos(μ(p + h)) + a2 sin(μ(p + h)) + a3

= a1 cos(μ(p − h)) + a2 sin(μ(p − h)) + a3

+ a1[cos(μ(p + h)) − cos(μ(p − h))] + a2[sin(μ(p + h)) − sin(μ(p − h))]

= a1 cos(μ(p − h)) + a2 sin(μ(p − h)) + a3

+ 2a2 sin(μp) sin(−μh) + 2a1 sin(μh) cos(μp)

= a1 cos(μ(p − h)) + a2 sin(μ(p − h)) + a3
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+ 2 sin(μh)[a2 cos(μp) − a1 sin(μp)]

= a1 cos(μ(p − h)) + a2 sin(μ(p − h)) + a3, h ∈ R, p + h ∈ J, p − h ∈ I,

so the set (2p − J) ∩ I is a subset of some J2 ∈ Tf ({1, f, g} are linearly
independent on J so also on (2p − J) ∩ I). Using this method we obtain
that f(x) = a1 cos(μx) + a2 sin(μx) + a3 for x ∈ I and we can also prove in
a similar way that g(x) = b1e

μx + b2e
−μx + b3 for x ∈ I.

• Assume that Lf �= ∅. From the three previous cases we get that Af = Lf .
�

Theorem 11. Let f, g : I → R be differentiable and satisfy Eq. (1) and sup I =
+∞ or inf I = −∞. Then one of the following possibilities holds:
(a) {1, f, g} are linearly dependent;
(b) f, g ∈ Lin {1, id, id2};
(c) f, g ∈ Lin {1, eμid, e−μid} for some μ > 0;
(d) f, g ∈ Lin {1, sin(μid), cos(μid)} for some μ > 0.

Proof. We have only to show that in the first case we have the linear depen-
dence on the whole I, which follows from Lemma 2. �

Remark 12. It is not difficult to check that (1) holds for differentiable functions
f, g : I → R which have one of the forms a – d on (arbitrary) I.

5. Final remarks

If we have an arbitrary open interval we cannot obtain the linear dependency of
{1, f, g} on the whole I as in Theorems 6 and 11. We have some arbitrariness
near the ends of the interval (Example 13) or different coefficients of linear
dependence between f and g on the intervals from Af (Example 14).

Example 13. Let h : (−1, α − 1) → R be a differentiable function such that
lim

x→(α−1)−
h(x) = 1 and lim

x→(α−1)−
h′(x) = 0, functions f, g : (−1, α) → R are

given by the formulas

f(x) =
{

0, x ∈ (−1, 0]
x2, x ∈ (0, α) ,

g(x) =

⎧
⎨
⎩

h(x), x ∈ (−1, α − 1)
1, x ∈ [α − 1, 0]
x2 + 1, x ∈ (0, α)

.

Then f and g satisfy Eq. (1). Indeed, we have
• if x, y ≥ α − 1, then αx + (1 − α)y ≥ α − 1 and since g(z) = f(z) + 1 for

z ≥ α−1, we get f ′(αx+(1−α)y) = g′(αx+(1−α)y) and f(x)−f(y) =
g(x) − g(y).
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• if x, y ≤ 0 then αx + (1 − α)y ≤ 0, so we get f ′(αx + (1 − α)y) = 0 and
f(x) − f(y) = 0.

• if x < α − 1 and y > 0, then

αx + (1 − α)y > αx > −α ≥ α − 1,

αx + (1 − α)y < α(α − 1) + (1 − α)α = 0,

so αx + (1 − α)y ∈ (α − 1, 0), which give us f ′(αx + (1 − α)y) = 0 and
g′(αx + (1 − α)y) = 0.

• if y < α − 1 and x > 0, then

αx + (1 − α)y > (1 − α)y > 1 − α,

αx + (1 − α)y < αα + (1 − α)(α − 1) = 2α − 1 ≤ 0,

so αx + (1 − α)y ∈ (α − 1, 0), which give us f ′(αx + (1 − α)y) = 0 and
g′(αx + (1 − α)y) = 0.

Example 14. Let c ∈ R, functions f, g : (− α
1−α , 1

1−α ) → R be given by the
formulas

f(x) =

⎧
⎨
⎩

−x2, x ∈ (− α
1−α , 0)

0, x ∈ [0, 1]
(x − 1)2, x ∈ (1, 1

1−α )
,

g(x) =

⎧
⎨
⎩

−cx2, x ∈ (− α
1−α , 0)

0, x ∈ [0, 1]
(x − 1)2, x ∈ (1, 1

1−α )
.

Then f and g satisfy Eq. (1). Indeed, we have
• if x, y ∈ (− α

1−α , 0) or x, y ∈ [0, 1] or x, y ∈ (1, 1
1−α ), then it is obvious.

• if x < 0 and y > 1, then

0 ≤ 1 − 2α ≤ −α + (1 − α) ≤ αx + (1 − α)y ≤ (1 − α)y ≤ 1,

so f ′(αx + (1 − α)y) = g′(αx + (1 − α)y) = 0.
• if y < 0 and x > 1, then

0 = α − (1 − α)
α

1 − α
≤ αx + (1 − α)y ≤ αx ≤ α

1 − α
≤ 1,

so f ′(αx + (1 − α)y) = g′(αx + (1 − α)y) = 0.
• if x < 0 ≤ y ≤ 1 then either αx + (1 − α)y ∈ [0, 1] (and we get f ′(αx +

(1 − α)y) = g′(αx + (1 − α)y) = 0) or αx + (1 − α)y < 0 (and we obtain
f(x)g′(αx + (1 − α)y) = g(x)f ′(αx + (1 − α)y)).
Analogously we have the case when y < 0 ≤ x ≤ 1.

• if 0 ≤ x ≤ 1 < y then either αx + (1 − α)y ∈ [0, 1] (and we get f ′(αx +
(1 − α)y) = g′(αx + (1 − α)y) = 0) or αx + (1 − α)y > 1 (and we obtain
f(x)g′(αx + (1 − α)y) = g(x)f ′(αx + (1 − α)y)).
Analogously we have the case when 0 ≤ y ≤ 1 < x.
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Sahoo and Riedel [6, 9, Sect. 2.7] posed the following

Problem 15. Find all functions f, g, ϕ, ψ : R → R satisfying

[f(x) − f(y)]ϕ
(

x + y

2

)
= [g(x) − g(y)]ψ

(
x + y

2

)
, x, y ∈ R. (6)

This problem was solved by Balogh et al. [2, Theorem 12] for three times
differentiable functions f, g.

Using Theorem 11 we can extend their solutions for differentiable functions
(the proof is similar).

Theorem 16. Let f, g : I → R be differentiable and ϕ,ψ : I → R be arbitrary
functions satisfying Eq. (6), sup I = +∞ or inf I = −∞. If ∀x∈I [ϕ(x) �=
0 ∨ ψ(x) �= 0], then one of the following possibilities holds:
(a) there exist constants A0, A1, A2 ∈ R such that for all s ∈ I we have

A0 + A1f(s) + A2g(s) = 0 and [A1ψ(s) + A2ϕ(s)]g′(s) = 0;
(b) there exist constants A0, A1, A2, B0, B1, B2 ∈ R such that for all s ∈ I

we have f(s) = A0 + A1s + A2s
2, g(s) = B0 + B1s + B2s

2 and

[A1 + 2A2s]ϕ(s) = [B1 + 2B2s]ψ(s);

(c) there exist μ > 0 and constants A0, A1, A2, B0, B1, B2 ∈ R such that for
all s ∈ I we have f(s) = A0 + A1e

μs + A2e
−μs, g(s) = B0 + B1e

μs +
B2e

−μs and

[A1e
μs − A2e

−μs]ϕ(s) = [B1e
μs − B2e

−μs]ψ(s);

(d) there exist μ > 0 and constants A0, A1, A2, B0, B1, B2 ∈ R such that
for all s ∈ I we have f(s) = A0 + A1 sin(μs) + A2 cos(μs), g(s) =
B0 + B1 sin(μs) + B2 cos(μs) and

[A1 cos(μs) − A2 sin(μs)]ϕ(s) = [B1 cos(μs) − B2 sin(μs)]ψ(s).

Open Access. This article is distributed under the terms of the Creative Commons At-
tribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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