A note on functional equations connected with the Cauchy mean value theorem

RadosŁaw Łukasik (D)

Abstract

The aim of this paper is to describe the solution (f, g) of the equation $$
[f(x)-f(y)] g^{\prime}(\alpha x+(1-\alpha) y)=[g(x)-g(y)] f^{\prime}(\alpha x+(1-\alpha) y), x, y \in I,
$$ where $I \subset \mathbb{R}$ is an open interval, $f, g: I \rightarrow \mathbb{R}$ are differentiable, α is a fixed number from $(0,1)$.

Mathematics Subject Classification. 39B22.
Keywords. Functional equation, Mean value theorem, Linearly dependent functions.

1. Introduction

Throughout this paper I is an open interval, $\alpha \in\left(0, \frac{1}{2}\right]$ (we can obtain the whole interval $(0,1)$ because the role of α and $1-\alpha$ is symmetric in (1)). For a differentiable function $f: I \rightarrow \mathbb{R}$ we define a set $U_{f}:=\left\{x \in I: f^{\prime}(x) \neq 0\right\}$. In view of the Darboux property of f^{\prime} we can write U_{f} as a sum of pairwise disjoint open intervals (we denote this family of open intervals by \mathcal{A}_{f}).

We would like to present solutions of the following functional equation

$$
\begin{equation*}
[f(x)-f(y)] g^{\prime}(\alpha x+(1-\alpha) y)=[g(x)-g(y)] f^{\prime}(\alpha x+(1-\alpha) y), x, y \in I \tag{1}
\end{equation*}
$$

where $f, g: I \rightarrow \mathbb{R}$ are differentiable.
This equation was solved by Balogh et al. [2] for three times differentiable functions on \mathbb{R}. For the case of the Lagrange MVT ($g=\mathrm{id}$) with $\alpha=\frac{1}{2}$ this problem was considered by Haruki [3] and Aczél [1]. The generalization of (1) corresponds also to an open problem posed by Sahoo and Riedel [6].

2. Auxiliary results

We divide our considerations into two cases $\alpha \neq \frac{1}{2}$ or $\alpha=\frac{1}{2}$. We start with two lemmas which we use in both cases.

Lemma 1. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable functions such that (1) holds. Then for each $x \in\left((1-\alpha) \inf I+\alpha \inf U_{f},(1-\alpha) \sup I+\alpha \sup U_{f}\right)$ such that $\exists_{\varepsilon>0}\left((x-\varepsilon, x] \subset I \backslash U_{f}\right.$ or $\left.[x, x+\varepsilon) \subset I \backslash U_{f}\right)$ we have $g^{\prime}(x)=0$.
Proof. Let $J \subset I \backslash U_{f}$ be a maximal closed subinterval of $I \backslash U_{f}, a=\inf J$, $b=\sup J, a<b$, which means that either $J=[a, b]$ and $a, b \in \operatorname{cl} U_{f}$ or $J=\left(\inf I, \inf U_{f}\right]$ or $J=\left[\sup U_{f}, \sup I\right)$. We have the following cases:
(a) $\exists_{I_{1} \in \mathcal{A}_{f}} \sup I_{1}=a$.

Let $z \in[a, \alpha a+(1-\alpha) b)$, then there exists $x \in I_{1}$ such that $a-x<$ $\frac{\alpha a+(1-\alpha) b-z}{\alpha}$. Let $y=b-\frac{\alpha x+(1-\alpha) b-z}{1-\alpha}$. Then $z=\alpha x+(1-\alpha) y$. Since $(1-\alpha)(b-y)=\alpha x+(1-\alpha) b-z=\alpha(x-a)+\alpha a+(1-\alpha) b-z$ $>-(\alpha a+(1-\alpha) b-z)+\alpha a+(1-\alpha) b-z=0$,
$y=\frac{z-\alpha x}{1-\alpha}=\frac{z-\alpha a+\alpha(a-x)}{1-\alpha}>\frac{z-\alpha a}{1-\alpha} \geq \frac{a-\alpha a}{1-\alpha}=a$,
we have $y \in J$. Hence

$$
\begin{equation*}
0=[g(x)-g(y)] f^{\prime}(z)=[f(x)-f(y)] g^{\prime}(z)=[f(x)-f(a)] g^{\prime}(z) . \tag{2}
\end{equation*}
$$

Since $\left.f^{\prime}\right|_{I_{1}} \neq 0$, we have $f(x) \neq f(a)$ and $g^{\prime}(z)=0$.
(b) $\exists_{\left(I_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{f}}\left(\forall_{n \in \mathbb{N}} \sup I_{n} \leq \inf I_{n+1}\right) \wedge \lim _{n \rightarrow \infty} \sup I_{n}=a$. Let $z \in[a, \alpha a+$ $(1-\alpha) b)$, then there exists $n \in \mathbb{N}$ such that $a-\inf I_{n}<\frac{\alpha a+(1-\alpha) b-z}{\alpha}$. Let $x \in I_{n}$ be such that $f(x) \neq f(a), y=b-\frac{\alpha x+(1-\alpha) b-z}{1-\alpha}$. Then $z=\alpha x+(1-\alpha) y$. Similarly as in the previous case we have $y \in J$. Hence (2) holds and $g^{\prime}(z)=0$.
(c) $\exists_{I_{1} \in \mathcal{A}_{f}} \inf I_{1}=b$. Let $z \in(\alpha b+(1-\alpha) a, b]$, then there exists $x \in I_{1}$ such that $x-b<\frac{z-\alpha b+(1-\alpha) a}{\alpha}$. Let $y=a+\frac{z-\alpha x-(1-\alpha) a}{1-\alpha}$. Then $z=$ $\alpha x+(1-\alpha) y$. Since
$(1-\alpha)(y-a)=z-\alpha x-(1-\alpha) a=z+\alpha(b-x)-\alpha b-(1-\alpha) a$
$>z-(z-\alpha b-(1-\alpha) a)-\alpha b-(1-\alpha) a=0$,
$y=\frac{z-\alpha x}{1-\alpha}=\frac{z-\alpha b+\alpha(b-x)}{1-\alpha}<\frac{z-\alpha b}{1-\alpha} \leq \frac{b-\alpha b}{1-\alpha}=b$,
we have $y \in J$. Hence (2) holds. Since $\left.f^{\prime}\right|_{I_{1}} \neq 0$, we have $f(x) \neq f(b)$ and $g^{\prime}(z)=0$.
(d) $\exists_{\left(I_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{f}}\left(\forall_{n \in \mathbb{N}} \inf I_{n} \geq \sup I_{n+1}\right) \wedge \lim _{n \rightarrow \infty} \inf I_{n}=b$. Let $z \in(\alpha b+$ $(1-\alpha) a, b]$, then there exists $n \in \mathbb{N}$ such that $\sup I_{n}-b<\frac{z-\alpha b+(1-\alpha) a}{\alpha}$.

Let $x \in I_{n}$ be such that $f(x) \neq f(b), y=a+\frac{z-\alpha x-(1-\alpha) a}{1-\alpha}$. Then $z=\alpha x+(1-\alpha) y$. Similarly as in the previous case we have $y \in J$. Hence (2) holds and $g^{\prime}(z)=0$.
Since

$$
\alpha b+(1-\alpha) a=a+\alpha(b-a) \leq \frac{a+b}{2} \leq b-\alpha(b-a)=\alpha a+(1-\alpha) b
$$

for $J \subset\left(\inf U_{f}, \sup U_{f}\right)$ we have $g^{\prime}(x)=0$ for $x \in J$.
If $J=\left(\inf I, \inf U_{f}\right]$, then $g^{\prime}(x)=0$ for $x \in\left((1-\alpha) \inf I+\alpha \inf U_{f}, \inf U_{f}\right]$.
And finally, if $J=\left[\sup U_{f}, \sup I\right)$, then $g^{\prime}(x)=0$ for $x \in\left[\sup U_{f},(1-\right.$ $\left.\alpha) \sup I+\alpha \sup U_{f}\right)$.

Lemma 2. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and satisfy Eq. (1). Assume that $\{1, f, g\}$ are linearly dependent on each $J \in \mathcal{A}_{f}$ and $\inf I=-\infty$ or $\sup I=$ $+\infty$. Then $\{1, f, g\}$ are linearly dependent on I.

Proof. It is easy to see that if f is constant, then for every g Eq. (1) holds. Assume that f is non-constant and $\sup I=+\infty$.
Let $I_{1}, I_{2} \in \mathcal{A}_{f}$ satisfy $\sup I_{1} \leq \inf I_{2}$. There exist $c_{1}, c_{2}, d_{1}, d_{2} \in \mathbb{R}$ such that $g(x)=c_{1} f(x)+d_{1}$ for $x \in I_{1}$ and $g(x)=c_{2} f(x)+d_{2}$ for $x \in I_{2}$. For each $x \in I_{1}$ and $z \in I_{2}$ we define $y_{x, z}=\frac{z-\alpha x}{1-\alpha} \in I$. Then $z=\alpha x+(1-\alpha) y_{x, z}$. We have

$$
\begin{aligned}
{[f(x)} & \left.-f\left(y_{x, z}\right)\right] c_{2} f^{\prime}(z)=\left[f(x)-f\left(y_{x, z}\right)\right] g^{\prime}(z) \\
& =\left[g(x)-g\left(y_{x, z}\right)\right] f^{\prime}(z)=\left[c_{1} f(x)+d_{1}-g\left(y_{x, z}\right)\right] f^{\prime}(z), x \in I_{1}, z \in I_{2}
\end{aligned}
$$

Hence

$$
\left(c_{1}-c_{2}\right) f(x) f^{\prime}(z)=\left[g\left(y_{x, z}\right)-c_{2} f\left(y_{x, z}\right)-d_{1}\right] f^{\prime}(z), x \in I_{1}, z \in I_{2}
$$

and since $f^{\prime}(z) \neq 0$, we obtain

$$
\begin{equation*}
\left(c_{1}-c_{2}\right) f(x)=g\left(\frac{z-\alpha x}{1-\alpha}\right)-c_{2} f\left(\frac{z-\alpha x}{1-\alpha}\right)-d_{1}, x \in I_{1}, z \in I_{2} \tag{3}
\end{equation*}
$$

Using the differentiation of the above equation with respect to z we obtain that RHS of (3) is constant and also LHS of (3) is constant. The function $\left.f\right|_{I_{1}}$ is injective so we get $c_{1}=c_{2}$.
This shows us that there exists $c \in \mathbb{R}$ such that

$$
\forall_{J \in \mathcal{A}_{f}} \exists_{d_{J} \in \mathbb{R}} \forall_{x \in J} g(x)=c f(x)+d_{J} .
$$

Using this form and Lemma 1 , for each $J \in \mathcal{A}_{f}$ we have the following cases:
(a) $\exists_{I_{1} \in \mathcal{A}_{f}}\left[\sup J, \inf I_{1}\right] \subset I \backslash U_{f}$.

Let $a=\sup J, b=\inf I_{1}$. We have

$$
\begin{aligned}
c f(a) & +d_{J}=\lim _{x \rightarrow a^{-}} c f(x)+d_{J}=\lim _{x \rightarrow a^{-}} g(x)=g(a)=g(b) \\
& =\lim _{x \rightarrow b^{+}} g(x)=\lim _{x \rightarrow b^{+}} c f(x)+d_{I_{1}}=c f(b)+d_{I_{1}}=c f(a)+d_{I_{1}} .
\end{aligned}
$$

Hence $d_{I_{1}}=d_{J}$.
(b) $\exists_{\left(I_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{f}}\left(\forall_{n \in \mathbb{N}} \inf I_{n+1} \geq \sup I_{n}\right) \wedge\left[\lim _{n \rightarrow \infty} \sup I_{n}, \inf J\right] \subset I \backslash U_{f}$.

Let $a=\lim _{n \rightarrow \infty} \sup I_{n}, b=\inf J$. In view of the previous case we get $d_{I_{n}}=d_{I_{n+1}}$. We have

$$
\begin{aligned}
c f(a) & +d_{I_{n}}=\lim _{x \rightarrow a^{-}} c f(x)+d_{I_{n}}=\lim _{x \rightarrow a^{-}} g(x)=g(a)=g(b)=\lim _{x \rightarrow b^{+}} g(x) \\
& =\lim _{x \rightarrow b^{+}} c f(x)+d_{J}=c f(b)+d_{J}=c f(a)+d_{J}, n \in \mathbb{N} .
\end{aligned}
$$

Hence $d_{I_{n}}=d_{J}$ for all $n \in \mathbb{N}$.
(c) $\exists_{I_{1} \in \mathcal{A}_{f}}\left[\sup I_{1}, \inf J\right] \subset I \backslash U_{f}$.

Let $a=\sup I_{1}, b=\inf J$. We have

$$
\begin{aligned}
c f(a) & +d_{I_{1}}=\lim _{x \rightarrow a^{-}} c f(x)+d_{I_{1}}=\lim _{x \rightarrow a^{-}} g(x)=g(a)=g(b) \\
& =\lim _{x \rightarrow b^{+}} g(x)=\lim _{x \rightarrow b^{+}} c f(x)+d_{J}=c f(b)+d_{J}=c f(a)+d_{J}
\end{aligned}
$$

Hence $d_{I_{1}}=d_{J}$.
(d) $\exists_{\left(I_{n}\right)_{n \in \mathbb{N}} \subset \mathcal{A}_{f}}\left(\forall_{n \in \mathbb{N}} \sup I_{n+1} \leq \inf I_{n}\right) \wedge\left[\sup J, \lim _{n \rightarrow \infty} \inf I_{n}\right] \subset I \backslash U_{f}$.

Let $a=\sup J, b=\lim _{n \rightarrow \infty} \inf I_{n}$. In view of the previous case we get $d_{I_{n}}=d_{I_{n+1}}$. We have

$$
\begin{aligned}
c f(a) & +d_{J}=\lim _{x \rightarrow a^{-}} c f(x)+d_{J}=\lim _{x \rightarrow a^{-}} g(x)=g(a)=g(b)=\lim _{x \rightarrow b+} g(x) \\
& =\lim _{x \rightarrow b^{+}} c f(x)+d_{I_{n}}=c f(b)+d_{I_{n}}=c f(a)+d_{I_{n}}, n \in \mathbb{N}
\end{aligned}
$$

Hence $d_{I_{n}}=d_{J}$ for all $n \in \mathbb{N}$.
From the above we obtain that there exist $c, d \in \mathbb{R}$ such that $g(x)=c f(x)+d$ for all $x \in U_{f}$.
Now we will show that g also has this form on $I \backslash U_{f}$. We have the following cases:

- Let $J \subset\left(\inf U_{f}, \sup U_{f}\right) \backslash U_{f}$ be a closed interval such that $a, b \in \operatorname{cl} U_{f}$, where $a=\inf J, b=\sup J$. Then we have

$$
\begin{aligned}
g(x) & =g(a)=\lim _{y \rightarrow a^{-}, y \in U_{f}} g(y)=\lim _{y \rightarrow a^{-}, y \in U_{f}} c f(x)+d \\
& =c f(a)+d=c f(x)+d, x \in J .
\end{aligned}
$$

- Assume that $a=\sup U_{f}<\infty$ and let $J=\left[\sup U_{f},+\infty\right)$. Then we have

$$
\begin{aligned}
g(x) & =g(a)=\lim _{y \rightarrow a^{-}, y \in U_{f}} g(y)=\lim _{y \rightarrow a^{-}, y \in U_{f}} c f(x)+d \\
& =c f(a)+d=c f(x)+d, x \in[a,+\infty)
\end{aligned}
$$

- Assume that $a:=\inf I<b:=\inf U_{f}$. Let $x \in(a, b], z \in U_{f}, y:=\frac{z-\alpha x}{1-\alpha}$. Then $z=\alpha x+(1-\alpha) y$ and from the form of g on U_{f} and the above two
cases we have $g(y)=c f(y)+d$. Hence

$$
\begin{aligned}
g(x) f^{\prime}(z)= & {[g(x)-g(y)] f^{\prime}(z)+g(y) f^{\prime}(z)=[f(x)-f(y)] g^{\prime}(z) } \\
& +[c f(y)+d] f^{\prime}(z)=[f(x)-f(y)] c f^{\prime}(z)+[c f(y)+d] f^{\prime}(z) \\
= & {[c f(x)+d] f^{\prime}(z), }
\end{aligned}
$$

which means that $g(x)=c f(x)+d$.
Assume that f is non-constant and $\inf I=-\infty$. Let $F, G:-I \rightarrow \mathbb{R}$ be given by the formulas $F(x)=f(-x), G(x)=g(-x)$ for $x \in-I$. Then we have $F^{\prime}(x)=-f^{\prime}(-x), G^{\prime}(x)=-g^{\prime}(x)$ for $x \in-I$ and F, G satisfy Eq. (1). Since $\sup -I=+\infty$, there exist $c, d \in \mathbb{R}$ such that $G(x)=c F(x)+d$ for $x \in-I$, which means that $g(x)=c f(x)+d$ for $x \in I$.

3. Main result for the asymmetric case

First, we consider the case when $\alpha \neq \frac{1}{2}$. We start with the following.
Lemma 3. Let $J \subset \mathbb{R}$ be an open interval, $f, g, h: J \rightarrow \mathbb{R}$ be continuous functions, f be strictly monotone and the following functional equation hold

$$
\begin{equation*}
g(x)-g(y)=h(\alpha x+(1-\alpha) y)[f(x)-f(y)], x, y \in J \tag{4}
\end{equation*}
$$

Then there exist $c, d \in \mathbb{R}$ such that $g(x)=c f(x)+d, h(x)=c$ for all $x \in J$.
Proof. Let $u \in J$. We define two numbers

$$
\begin{aligned}
& a_{u}:=\max \left\{\frac{1-2 \alpha}{1-\alpha} \inf J+\frac{\alpha}{1-\alpha} u, \frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} \sup J\right\}, \\
& b_{u}:=\min \left\{\frac{1-2 \alpha}{1-\alpha} \sup J+\frac{\alpha}{1-\alpha} u, \frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} \inf J\right\}
\end{aligned}
$$

We observe that

$$
\begin{aligned}
& \frac{1-2 \alpha}{1-\alpha} \inf J+\frac{\alpha}{1-\alpha} u<\frac{1-2 \alpha}{1-\alpha} u+\frac{\alpha}{1-\alpha} u=u \\
& \frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} \sup J<\frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} u=u \\
& \frac{1-2 \alpha}{1-\alpha} \sup J+\frac{\alpha}{1-\alpha} u>\frac{1-2 \alpha}{1-\alpha} u+\frac{\alpha}{1-\alpha} u=u \\
& \frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} \inf J>\frac{1-\alpha}{\alpha} u-\frac{1-2 \alpha}{\alpha} u=u
\end{aligned}
$$

Hence $a_{u}<u<b_{u}$. We define an open interval $I_{u}:=\left(a_{u}, b_{u}\right) \cap J$. Therefore $u \in I_{u}$.

Let $v \in I_{u}$. Then for $x=\frac{1-\alpha}{1-2 \alpha} v-\frac{\alpha}{1-2 \alpha} u, y=\frac{1-\alpha}{1-2 \alpha} u-\frac{\alpha}{1-2 \alpha} v$ we have

$$
\begin{aligned}
& \alpha x+(1-\alpha) y=\frac{\left(\alpha-\alpha^{2}\right) v-\alpha^{2} u+\left(1-2 \alpha+\alpha^{2}\right) u-\left(\alpha-\alpha^{2}\right) v}{1-2 \alpha}=u \\
& \alpha y+(1-\alpha) x=\frac{\left(\alpha-\alpha^{2}\right) u-\alpha^{2} v+\left(1-2 \alpha+\alpha^{2}\right) v-\left(\alpha-\alpha^{2}\right) u}{1-2 \alpha}=v .
\end{aligned}
$$

We also have

$$
\begin{aligned}
x= & \frac{1-\alpha}{1-2 \alpha} v-\frac{\alpha}{1-2 \alpha} u>\frac{(1-\alpha) a_{u}-\alpha u}{1-2 \alpha} \\
& \geq \frac{(1-2 \alpha) \inf J+\alpha u-\alpha u}{1-2 \alpha}=\inf J \\
x= & \frac{1-\alpha}{1-2 \alpha} v-\frac{\alpha}{1-2 \alpha} u<\frac{(1-\alpha) b_{u}-\alpha u}{1-2 \alpha} \\
& \leq \frac{(1-2 \alpha) \sup J+\alpha u-\alpha u}{1-2 \alpha}=\sup J \\
y= & \frac{1-\alpha}{1-2 \alpha} u-\frac{\alpha}{1-2 \alpha} v<\frac{(1-\alpha) u-\alpha a_{u}}{1-2 \alpha} \\
& \leq \frac{(1-\alpha) u-(1-\alpha) u+(1-2 \alpha) \sup J}{1-2 \alpha}=\sup J, \\
y= & \frac{1-\alpha}{1-2 \alpha} u-\frac{\alpha}{1-2 \alpha} v>\frac{(1-\alpha) u-\alpha b_{u}}{1-2 \alpha} \\
& \geq \frac{(1-\alpha) u-(1-\alpha) u+(1-2 \alpha) \inf J}{1-2 \alpha}=\inf J
\end{aligned}
$$

which means that $x, y \in J$.
We observe that

$$
\begin{aligned}
h(u) & =h(\alpha x+(1-\alpha) y)=\frac{g(x)-g(y)}{f(x)-f(y)} \\
& =\frac{g(y)-g(x)}{f(y)-f(x)}=h(\alpha y+(1-\alpha) x)=h(v)
\end{aligned}
$$

Hence we have that h is constant on I_{u}.
Now we show that h is constant. Fix $u, v \in J, u<v$. Let $c_{0}=u, c_{n}=\sup I_{c_{n-1}}$ for $n \in \mathbb{N}$. Since $c_{n-1} \in I_{c_{n-1}},\left(c_{n}\right)_{n \in \mathbb{N}}$ is strictly increasing. We also have $I_{c_{n-1}} \cap I_{c_{n}} \neq \emptyset$, so h is constant on $\left(\inf I_{u}, \lim _{n \rightarrow \infty} c_{n}\right)$. If $\lim _{n \rightarrow \infty} c_{n}=+\infty$, then we get $h(u)=h(v)$. Assume that $\lim _{n \rightarrow \infty} c_{n}<+\infty$. We have

$$
\begin{aligned}
c_{n+1}-c_{n} & \geq \min \left\{\frac{1-2 \alpha}{1-\alpha} \sup J+\frac{\alpha}{1-\alpha} c_{n}, \frac{1-\alpha}{\alpha} c_{n}-\frac{1-2 \alpha}{\alpha} \inf J\right\}-c_{n} \\
& =\min \left\{\frac{1-2 \alpha}{1-\alpha}\left(\sup J-c_{n}\right), \frac{1-2 \alpha}{\alpha}\left(c_{n}-\inf J\right)\right\}, n \in \mathbb{N} .
\end{aligned}
$$

Since $c_{n}-\inf J>c_{1}-\inf J>0$ for $n \in \mathbb{N}$,

$$
0=\lim _{n \rightarrow \infty}\left(c_{n+1}-c_{n}\right)=\lim _{n \rightarrow \infty} \frac{1-2 \alpha}{1-\alpha}\left(\sup J-c_{n}\right)
$$

which means that $\lim _{n \rightarrow \infty} c_{n}=\sup J$ and we get $h(u)=h(v)$.
Let $c:=h(u)$ for $u \in J$. Fix $y \in J$ and let $d:=g(y)-c f(y)$. We observe that

$$
\begin{aligned}
g(x) & =g(x)-g(y)+g(y)=[f(x)-f(y)] h(\alpha x+(1-\alpha) y)+g(y) \\
& =c f(x)-c f(y)+g(y)=c f(x)+d, x \in J,
\end{aligned}
$$

which ends the proof.
Corollary 4. Let $J \subset \mathbb{R}$ be an open interval, $f, g: J \rightarrow \mathbb{R}$ be differentiable functions such that (1) holds and $f^{\prime}(x) \neq 0$ for all $x \in J$. Then there exist $c, d \in \mathbb{R}$ such that $g(x)=c f(x)+d$ for all $x \in J$.

In view of the above corollary we obtain
Corollary 5. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and satisfy Eq. (1). Then $\{1, f, g\}$ are linearly dependent on each $J \in \mathcal{A}_{f}$.

Finally we have the main result for the asymmetric case.
Theorem 6. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and satisfy Eq. (1). Assume that $\inf I=-\infty$ or $\sup I=+\infty$. Then either f is constant and g is an arbitrary function or there exist $c, d \in \mathbb{R}$ such that $g(x)=c f(x)+d$ for $x \in I$.

Proof. In view of Corollary 5 and Lemma 2 we obtain the thesis of this theorem.

Remark 7. It is easy to see that for differentiable functions $f, g: I \rightarrow \mathbb{R}$, if $\{1, f, g\}$ are linearly dependent, then (1) holds.

4. Main result for the symmetric case

Now we consider the case when $\alpha=\frac{1}{2}$.
Lundberg in his papers [4, Table 1], [5, Theorem 1.2] considers the following functional equation

$$
\varphi(x+y)=\frac{F(x) G(y)+H(x) L(y)}{m(x)+n(y)}
$$

on rectangles in \mathbb{R}^{2} for continuous functions $F, G, H, L, m, n, \varphi$, which is a generalization of Eq. (1) on each $J \in \mathcal{A}_{f}$. He presents solutions of this equation but they have indirect forms, so we use only the fact that for differentiable functions $f, g: I \rightarrow \mathbb{R}$ which satisfy Eq. (1) we have two cases on every open interval $J \in \mathcal{A}_{f}$: either $\{1, f, g\}$ are linearly dependent on J or f and g are
infinitely differentiable. Particularly, on every $J \in \mathcal{A}_{f}$, if $\{1, f, g\}$ are linearly independent, then they are three times differentiable and we can use the following two facts from [2].
Remark 8 (see [2, Remark 10]). Let $f, g: I \rightarrow \mathbb{R}$ be differentiable functions which satisfy (1). On every interval $J \in \mathcal{A}_{f}$ one of the following cases holds:
(a) $\{1, f, g\}$ are linearly dependent;
(b) $f, g \in \operatorname{Lin}\left\{1, \mathrm{id}, \mathrm{id}^{2}\right\}$;
(c) $f, g \in \operatorname{Lin}\left\{1, e^{\mu \mathrm{id}}, e^{-\mu \mathrm{id}}\right\}$ for some $\mu>0$;
(d) $f, g \in \operatorname{Lin}\{1, \sin (\mu \mathrm{id}), \cos (\mu \mathrm{id})\}$ for some $\mu>0$;
where id is the identity on J.
Lemma 9 (see [2, Lemma 11]). Let $f, g: I \rightarrow \mathbb{R}$ be differentiable functions which satisfy (1), $J \in \mathcal{A}_{f}$ be such that $g^{\prime}(a)=0$, where $a=\inf J>\inf I$ or $a=\sup J<\sup I$. Then $\{1, f, g\}$ are linearly dependent on J.

This lemma is proved in the case $a=\inf J>\inf I$, but the proof in the case $a=\sup J<\sup I$ is analogous.

Now we are ready to prove the main result.
Theorem 10. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and satisfy Eq. (1). Then one of the following possibilities holds:
(a) $\{1, f, g\}$ are linearly dependent on each $J \in \mathcal{A}_{f}$;
(b) $f, g \in \operatorname{Lin}\left\{1, i d, i d^{2}\right\}$;
(c) $f, g \in \operatorname{Lin}\left\{1, e^{\mu i d}, e^{-\mu i d}\right\}$ for some $\mu>0$;
(d) $f, g \in \operatorname{Lin}\{1, \sin (\mu i d), \cos (\mu i d)\}$ for some $\mu>0$.

Proof. We can split \mathcal{A}_{f} into disjoint subsets $\mathcal{A}_{f}=\mathcal{L}_{f} \cup \mathcal{Q}_{f} \cup \mathcal{E}_{f} \cup \mathcal{T}_{f}$, where

$$
\mathcal{L}_{f}=\left\{J \in \mathcal{A}_{f}:\left\{1,\left.f\right|_{J},\left.g\right|_{J}\right\} \text { are linearly dependent }\right\}
$$

$\mathcal{Q}_{f}=\left\{J \in \mathcal{A}_{f} \backslash \mathcal{L}_{f}:\left.f\right|_{J},\left.g\right|_{J} \in \operatorname{Lin}\left\{1, \mathrm{id}, \mathrm{id}^{2}\right\}\right\}$,
$\mathcal{E}_{f}=\left\{J \in \mathcal{A}_{f} \backslash \mathcal{L}_{f}:\left.f\right|_{J},\left.g\right|_{J} \in \operatorname{Lin}\left\{1, e^{\mu \mathrm{id}}, e^{-\mu \mathrm{id}}\right\}\right.$ for some $\left.\mu>0\right\}$,
$\mathcal{T}_{f}=\left\{J \in \mathcal{A}_{f} \backslash \mathcal{L}_{f}:\left.f\right|_{J},\left.g\right|_{J} \in \operatorname{Lin}\{1, \sin (\mu \mathrm{id}), \cos (\mu \mathrm{id})\}\right.$ for some $\left.\mu>0\right\}$.
We have the same split for \mathcal{A}_{g}.
If $U_{f}=U_{g}=I$, then in view of Remark 8 we have the thesis of this theorem, so we can assume that $U_{f} \neq I$.

Now we consider four cases:

- Assume that $\mathcal{Q}_{f} \neq \emptyset$. Let $I \in \mathcal{Q}_{f}$. We have $f^{\prime}(p)=0$, where $p=\inf J>$ $\inf I$ or $p=\sup J<\sup I$. Since there exist $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$ such that $f(x)=a_{1} x^{2}+a_{2} x+a_{3}, g(x)=b_{1} x^{2}+b_{2} x+b_{3}$ for $x \in J$ and f^{\prime} on $\operatorname{cl} J$ has only one root, we have that $0=f^{\prime}(p)=2 a_{1} p+a_{2}$ and $J=(p, \sup I)$ or $(\inf I, p)$. In view of Lemma 9 we have $g^{\prime}(p) \neq 0$. Hence

$$
\begin{aligned}
0= & {[g(p+h)-g(p-h)] f^{\prime}(p)=[f(p+h)-f(p-h)] g^{\prime}(p), } \\
& h \in \mathbb{R}, p+h, p-h \in I,
\end{aligned}
$$

which means that

$$
\begin{equation*}
f(p+h)=f(p-h), h \in \mathbb{R}, p+h, p-h \in I \tag{5}
\end{equation*}
$$

We have

$$
\begin{aligned}
f(p-h) & =f(p+h)=a_{1}(p+h)^{2}+a_{2}(p+h)+a_{3} \\
& =a_{1}(p-h)^{2}+a_{2}(p-h)+a_{3}+2 h\left(2 a_{1} p+a_{2}\right) \\
& =a_{1}(p-h)^{2}+a_{2}(p-h)+a_{3}, h \in \mathbb{R}, p+h \in J, p-h \in I
\end{aligned}
$$

so the set $(2 p-J) \cap I$ is a subset of some $J_{2} \in \mathcal{Q}_{f}(\{1, f, g\}$ are linearly independent on J so also on $(2 p-J) \cap I)$. Since f^{\prime} on $\mathrm{cl} J_{2}$ has only one root $p, J_{2}=I \backslash J$. Hence $f(x)=a_{1} x^{2}+a_{2} x+a_{3}$ for $x \in I$ and we can also prove in a similar way that $g(x)=b_{1} x^{2}+b_{2} x+b_{3}$ for $x \in I$.

- Assume that $\mathcal{E}_{f} \neq \emptyset$. Let $I \in \mathcal{E}_{f}$. We have $f^{\prime}(p)=0$, where $p=\inf J>\inf I$ or $p=\sup J<\sup I$. Since there exist $\mu>0, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$ such that $f(x)=a_{1} e^{\mu x}+a_{2} e^{-\mu x}+a_{3}, g(x)=b_{1} e^{\mu x}+b_{2} e^{-\mu x}+b_{3}$ for $x \in J$ and f^{\prime} on $\mathrm{cl} J$ has only one root, we have that $0=f^{\prime}(p)=\mu\left(a_{1} e^{\mu p}-a_{2} e^{-\mu p}\right)$ and $J=(p, \sup I)$ or $(\inf I, p)$. Similarly as in the first case we obtain (5). We also have

$$
\begin{aligned}
f(p-h) & =f(p+h)=a_{1} e^{\mu(p+h)}+a_{2} e^{-\mu(p+h)}+a_{3} \\
& =a_{1} e^{\mu(p-h)}+a_{2} e^{-\mu(p-h)}+a_{3}+\left(e^{\mu h}-e^{-\mu h}\right)\left(a_{1} e^{\mu p}-a_{2} e^{-\mu p}\right) \\
& =a_{1} e^{\mu(p-h)}+a_{2} e^{-\mu(p-h)}+a_{3}, h \in \mathbb{R}, p+h \in J, p-h \in I,
\end{aligned}
$$

so the set $(2 p-J) \cap I$ is a subset of some $J_{2} \in \mathcal{E}_{f}(\{1, f, g\}$ are linearly independent on J so also on $(2 p-J) \cap I)$. Since f^{\prime} on $\mathrm{cl} J_{2}$ has only one root $p, J_{2}=I \backslash J$. Hence $f(x)=a_{1} e^{\mu x}+a_{2} e^{-\mu x}+a_{3}$ for $x \in I$ and we can also prove in a similar way that $g(x)=b_{1} e^{\mu x}+b_{2} e^{-\mu x}+b_{3}$ for $x \in I$.

- Assume that $\mathcal{T}_{f} \neq \emptyset$. Let $I \in \mathcal{T}_{f}$. We have $f^{\prime}(p)=0$, where $p=\inf J>\inf I$ or $p=\sup J<\sup I$. Since there exist $\mu>0, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$ such that $f(x)=a_{1} \cos (\mu x)+a_{2} \sin (\mu x)+a_{3}, g(x)=b_{1} \cos (\mu x)+b_{2} \sin (\mu x)+b_{3}$ for $x \in J$, we have that $0=f^{\prime}(p)=\mu\left(a_{2} \cos (\mu p)-a_{1} \sin (\mu p)\right)$. Similarly as in the first case we obtain (5). We also have

$$
\begin{aligned}
& f(p-h)=f(p+h)=a_{1} \cos (\mu(p+h))+a_{2} \sin (\mu(p+h))+a_{3} \\
& =a_{1} \cos (\mu(p-h))+a_{2} \sin (\mu(p-h))+a_{3} \\
& \quad+a_{1}[\cos (\mu(p+h))-\cos (\mu(p-h))]+a_{2}[\sin (\mu(p+h))-\sin (\mu(p-h))] \\
& =a_{1} \cos (\mu(p-h))+a_{2} \sin (\mu(p-h))+a_{3} \\
& \quad+2 a_{2} \sin (\mu p) \sin (-\mu h)+2 a_{1} \sin (\mu h) \cos (\mu p) \\
& =a_{1} \cos (\mu(p-h))+a_{2} \sin (\mu(p-h))+a_{3}
\end{aligned}
$$

$$
\begin{aligned}
& +2 \sin (\mu h)\left[a_{2} \cos (\mu p)-a_{1} \sin (\mu p)\right] \\
= & a_{1} \cos (\mu(p-h))+a_{2} \sin (\mu(p-h))+a_{3}, h \in \mathbb{R}, p+h \in J, p-h \in I,
\end{aligned}
$$

so the set $(2 p-J) \cap I$ is a subset of some $J_{2} \in \mathcal{T}_{f}(\{1, f, g\}$ are linearly independent on J so also on $(2 p-J) \cap I)$. Using this method we obtain that $f(x)=a_{1} \cos (\mu x)+a_{2} \sin (\mu x)+a_{3}$ for $x \in I$ and we can also prove in a similar way that $g(x)=b_{1} e^{\mu x}+b_{2} e^{-\mu x}+b_{3}$ for $x \in I$.

- Assume that $\mathcal{L}_{f} \neq \emptyset$. From the three previous cases we get that $\mathcal{A}_{f}=\mathcal{L}_{f}$.

Theorem 11. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and satisfy Eq. (1) and $\sup I=$ $+\infty$ or $\inf I=-\infty$. Then one of the following possibilities holds:
(a) $\{1, f, g\}$ are linearly dependent;
(b) $f, g \in \operatorname{Lin}\left\{1, i d, i d^{2}\right\}$;
(c) $f, g \in \operatorname{Lin}\left\{1, e^{\mu i d}, e^{-\mu i d}\right\}$ for some $\mu>0$;
(d) $f, g \in \operatorname{Lin}\{1, \sin (\mu i d), \cos (\mu i d)\}$ for some $\mu>0$.

Proof. We have only to show that in the first case we have the linear dependence on the whole I, which follows from Lemma 2.

Remark 12. It is not difficult to check that (1) holds for differentiable functions $f, g: I \rightarrow \mathbb{R}$ which have one of the forms a - d on (arbitrary) I.

5. Final remarks

If we have an arbitrary open interval we cannot obtain the linear dependency of $\{1, f, g\}$ on the whole I as in Theorems 6 and 11. We have some arbitrariness near the ends of the interval (Example 13) or different coefficients of linear dependence between f and g on the intervals from \mathcal{A}_{f} (Example 14).

Example 13. Let $h:(-1, \alpha-1) \rightarrow \mathbb{R}$ be a differentiable function such that $\lim _{x \rightarrow(\alpha-1)^{-}} h(x)=1$ and $\lim _{x \rightarrow(\alpha-1)^{-}} h^{\prime}(x)=0$, functions $f, g:(-1, \alpha) \rightarrow \mathbb{R}$ are given by the formulas

$$
\begin{aligned}
& f(x)= \begin{cases}0, & x \in(-1,0] \\
x^{2}, & x \in(0, \alpha)\end{cases} \\
& g(x)= \begin{cases}h(x), & x \in(-1, \alpha-1) \\
1, & x \in[\alpha-1,0] \\
x^{2}+1, & x \in(0, \alpha)\end{cases}
\end{aligned}
$$

Then f and g satisfy Eq. (1). Indeed, we have

- if $x, y \geq \alpha-1$, then $\alpha x+(1-\alpha) y \geq \alpha-1$ and since $g(z)=f(z)+1$ for $z \geq \alpha-1$, we get $f^{\prime}(\alpha x+(1-\alpha) y)=g^{\prime}(\alpha x+(1-\alpha) y)$ and $f(x)-f(y)=$ $g(x)-g(y)$.
- if $x, y \leq 0$ then $\alpha x+(1-\alpha) y \leq 0$, so we get $f^{\prime}(\alpha x+(1-\alpha) y)=0$ and $f(x)-f(y)=0$.
- if $x<\alpha-1$ and $y>0$, then

$$
\begin{aligned}
& \alpha x+(1-\alpha) y>\alpha x>-\alpha \geq \alpha-1 \\
& \alpha x+(1-\alpha) y<\alpha(\alpha-1)+(1-\alpha) \alpha=0
\end{aligned}
$$

so $\alpha x+(1-\alpha) y \in(\alpha-1,0)$, which give us $f^{\prime}(\alpha x+(1-\alpha) y)=0$ and $g^{\prime}(\alpha x+(1-\alpha) y)=0$.

- if $y<\alpha-1$ and $x>0$, then

$$
\begin{aligned}
& \alpha x+(1-\alpha) y>(1-\alpha) y>1-\alpha \\
& \alpha x+(1-\alpha) y<\alpha \alpha+(1-\alpha)(\alpha-1)=2 \alpha-1 \leq 0
\end{aligned}
$$

so $\alpha x+(1-\alpha) y \in(\alpha-1,0)$, which give us $f^{\prime}(\alpha x+(1-\alpha) y)=0$ and $g^{\prime}(\alpha x+(1-\alpha) y)=0$.

Example 14. Let $c \in \mathbb{R}$, functions $f, g:\left(-\frac{\alpha}{1-\alpha}, \frac{1}{1-\alpha}\right) \rightarrow \mathbb{R}$ be given by the formulas

$$
\begin{aligned}
& f(x)= \begin{cases}-x^{2}, & x \in\left(-\frac{\alpha}{1-\alpha}, 0\right) \\
0, & x \in[0,1] \\
(x-1)^{2}, & x \in\left(1, \frac{1}{1-\alpha}\right)\end{cases} \\
& g(x)= \begin{cases}-c x^{2}, & x \in\left(-\frac{\alpha}{1-\alpha}, 0\right) \\
0, & x \in[0,1] \\
(x-1)^{2}, & x \in\left(1, \frac{1}{1-\alpha}\right)\end{cases}
\end{aligned}
$$

Then f and g satisfy Eq. (1). Indeed, we have

- if $x, y \in\left(-\frac{\alpha}{1-\alpha}, 0\right)$ or $x, y \in[0,1]$ or $x, y \in\left(1, \frac{1}{1-\alpha}\right)$, then it is obvious.
- if $x<0$ and $y>1$, then

$$
\begin{aligned}
& \quad 0 \leq 1-2 \alpha \leq-\alpha+(1-\alpha) \leq \alpha x+(1-\alpha) y \leq(1-\alpha) y \leq 1 \\
& \text { so } f^{\prime}(\alpha x+(1-\alpha) y)=g^{\prime}(\alpha x+(1-\alpha) y)=0
\end{aligned}
$$

- if $y<0$ and $x>1$, then

$$
0=\alpha-(1-\alpha) \frac{\alpha}{1-\alpha} \leq \alpha x+(1-\alpha) y \leq \alpha x \leq \frac{\alpha}{1-\alpha} \leq 1
$$

so $f^{\prime}(\alpha x+(1-\alpha) y)=g^{\prime}(\alpha x+(1-\alpha) y)=0$.

- if $x<0 \leq y \leq 1$ then either $\alpha x+(1-\alpha) y \in[0,1]$ (and we get $f^{\prime}(\alpha x+$ $(1-\alpha) y)=g^{\prime}(\alpha x+(1-\alpha) y)=0$) or $\alpha x+(1-\alpha) y<0$ (and we obtain $\left.f(x) g^{\prime}(\alpha x+(1-\alpha) y)=g(x) f^{\prime}(\alpha x+(1-\alpha) y)\right)$.
Analogously we have the case when $y<0 \leq x \leq 1$.
- if $0 \leq x \leq 1<y$ then either $\alpha x+(1-\alpha) y \in[0,1]$ (and we get $f^{\prime}(\alpha x+$ $(1-\alpha) y)=g^{\prime}(\alpha x+(1-\alpha) y)=0$) or $\alpha x+(1-\alpha) y>1$ (and we obtain $\left.f(x) g^{\prime}(\alpha x+(1-\alpha) y)=g(x) f^{\prime}(\alpha x+(1-\alpha) y)\right)$.
Analogously we have the case when $0 \leq y \leq 1<x$.

Sahoo and Riedel [6, 9, Sect. 2.7] posed the following
Problem 15. Find all functions $f, g, \varphi, \psi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
\begin{equation*}
[f(x)-f(y)] \varphi\left(\frac{x+y}{2}\right)=[g(x)-g(y)] \psi\left(\frac{x+y}{2}\right), x, y \in \mathbb{R} \tag{6}
\end{equation*}
$$

This problem was solved by Balogh et al. [2, Theorem 12] for three times differentiable functions f, g.

Using Theorem 11 we can extend their solutions for differentiable functions (the proof is similar).

Theorem 16. Let $f, g: I \rightarrow \mathbb{R}$ be differentiable and $\varphi, \psi: I \rightarrow \mathbb{R}$ be arbitrary functions satisfying Eq. (6), sup $I=+\infty$ or $\inf I=-\infty$. If $\forall_{x \in I}[\varphi(x) \neq$ $0 \vee \psi(x) \neq 0]$, then one of the following possibilities holds:
(a) there exist constants $A_{0}, A_{1}, A_{2} \in \mathbb{R}$ such that for all $s \in I$ we have $A_{0}+A_{1} f(s)+A_{2} g(s)=0$ and $\left[A_{1} \psi(s)+A_{2} \varphi(s)\right] g^{\prime}(s)=0$;
(b) there exist constants $A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2} \in \mathbb{R}$ such that for all $s \in I$ we have $f(s)=A_{0}+A_{1} s+A_{2} s^{2}, g(s)=B_{0}+B_{1} s+B_{2} s^{2}$ and

$$
\left[A_{1}+2 A_{2} s\right] \varphi(s)=\left[B_{1}+2 B_{2} s\right] \psi(s)
$$

(c) there exist $\mu>0$ and constants $A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2} \in \mathbb{R}$ such that for all $s \in I$ we have $f(s)=A_{0}+A_{1} e^{\mu s}+A_{2} e^{-\mu s}, g(s)=B_{0}+B_{1} e^{\mu s}+$ $B_{2} e^{-\mu s}$ and

$$
\left[A_{1} e^{\mu s}-A_{2} e^{-\mu s}\right] \varphi(s)=\left[B_{1} e^{\mu s}-B_{2} e^{-\mu s}\right] \psi(s)
$$

(d) there exist $\mu>0$ and constants $A_{0}, A_{1}, A_{2}, B_{0}, B_{1}, B_{2} \in \mathbb{R}$ such that for all $s \in I$ we have $f(s)=A_{0}+A_{1} \sin (\mu s)+A_{2} \cos (\mu s), g(s)=$ $B_{0}+B_{1} \sin (\mu s)+B_{2} \cos (\mu s)$ and

$$
\left[A_{1} \cos (\mu s)-A_{2} \sin (\mu s)\right] \varphi(s)=\left[B_{1} \cos (\mu s)-B_{2} \sin (\mu s)\right] \psi(s)
$$

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Aczél, J.: A mean value property of the derivative of quadratic polynomials-without mean values and derivatives. Math. Mag. 58(1), 42-45 (1985)
[2] Balogh, Z.M., Ibrogimov, O.O., Mityagin, B.S.: Functional equations and the Cauchy mean value theorem. Aequ. Math. 90, 683-697 (2016)
[3] Haruki, S.: A property of quadratic polynomials. Am. Math. Monthly 86(7), 577-579 (1979)
[4] Lundberg, A.: A rational Sûto equation. Aequ. Math. 57, 254-277 (1999)
[5] Lundberg, A.: Sequential derivatives and their application to a Sûto equation. Aequ. Math. 61, 48-59 (2001)
[6] Sahoo, P.K., Riedel, T.: Mean Value Theorems and Functional Equations. World Scientific Publishing Co., Inc., River Edge (1998)

Radosław Łukasik
Institute of Mathematics
University of Silesia
ul. Bankowa 14
40-007 Katowice
Poland
e-mail: rlukasik@math.us.edu.pl
Received: August 28, 2017
Revised: May 24, 2018

