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Generalized convolutions and the Levi-Civita functional equation

J. K. Misiewicz

Abstract. In Borowiecka et al. (Bernoulli 21(4):2513–2551, 2015) the authors show that every
generalized convolution can be used to define a Markov process, which can be treated as a
Lévy process in the sense of this convolution. The Bessel process is the best known example
here. In this paper we present new classes of regular generalized convolutions enlarging the
class of such Markov processes. We give here a full characterization of such generalized
convolutions � for which δx � δ1, x ∈ [0, 1], is a convex linear combination of n = 3 fixed
measures and only the coefficients of the linear combination depend on x. For n = 2 it
was shown in Jasiulis-Goldyn and Misiewicz (J Theor Probab 24(3):746–755, 2011) that
such a convolution is unique (up to the scale and power parameters). We show also that
characterizing such convolutions for n � 3 is equivalent to solving the Levi-Civita functional
equation in the class of continuous generalized characteristic functions.
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1. Motivations

Generalized convolutions were invented and studied by K. Urbanik (see [11–
15]). The idea was taken from the paper of Kingman [5], who introduced and
studied special cases of such convolutions now called Kingman convolutions or
Bessel convolutions. In the simplest case Kingman’s work was based on an ob-
vious observation that rotationally invariant distributions in R

n form a convex
weakly closed set with the extreme points {Taωn : a � 0}, where ωn is the uni-
form distribution on the unit sphere Sn−1 ⊂ R

n, Ta is the rescaling operator,
i.e. Taλ is the distribution of aX if λ is the distribution of X (abbreviation:
λ = L(X)).

Kingman was working on one-dimensional projections of ωn and he found
all distributions λ, λ = L(θ) for which

aθ + bθ′ d=
√

a2 + b2 + 2abR θ, a, b > 0,
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for some fixed, but dependent on n, random variable R independent of θ. Here
d= denotes equality of distributions and θ′ is an independent copy of θ. In this
case the generalized convolution � is defined by the formula

δa � δb = L(√
a2 + b2 + 2abR

)
.

Urbanik noticed that the Kingman convolution is a special case of gener-
alized convolutions, i.e. associative, symmetric, weakly continuous linear op-
erators � : P2

+ �→ P+ (here P+ denotes the set of all probability measures on
[0,∞)) for which λ � δ0 = λ, λ � (pλ1 + (1 − p)λ2) = pλ � λ1 + (1 − p)λ � λ2,
Ta(λ1 � λ2) = (Taλ1) � (Taλ2). For some technical reasons Urbanik assumed
also that there exists a sequence of positive numbers (an) such that Tan

δ�n
1

converges weakly to some non-degenerate to δ0 measure. This assumption is
not necessary in most of the results.

We see that generalized convolutions extend in, the language of distribu-
tions, the idea of sums of independent random variables. It was shown in
[1] that if we restrict our attention to generalized sums of independent ran-
dom variables considering ⊕ as an associative, symmetric operation for which
a(X ⊕ Y ) = (aX) ⊕ (aY ), then we have only two possibilities:

• X ⊕ Y =
(
Xα + Y α

)1/α in the case of positive variables,

• X ⊕ Y =
(
X<α> + Y <α>

)<1/α> for variables taking values in R.

Here α can be any number from the set (0,∞] and x<α> := |x|αsign(x).
Even the Kingman convolution cannot be written in this way as it requires
the assistance of an extra variable R. Considering generalized convolutions
instead of generalized sums enrich the theory significantly.

The introduction of generalized convolutions required very laborious and
time consuming introductory studies before the theory was read to define sto-
chastic processes in the sense of generalized convolutions and before they could
be used in stochastic modeling and other applications. This was done in a series
of papers by many authors, see e.g. [9,11–15]

In the paper [1] the authors defined, proved the existence of and studied
properties of stochastic processes with independent increments in the sense of
generalized convolutions and the corresponding stochastic integrals. Some of
these constructions were given earlier by Thu [9,10] in a special case of Bessel
convolutions.

In this paper we focus on constructing new examples of generalized convo-
lutions with the special property

δx � δ1 =
n−1∑

k=0

pk(x)λk, x ∈ [0, 1],
n−1∑

k=0

pk(x) = 1, (∗)

for some fixed choice of probability measures λ0, . . . , λn−1. For n = 2 it was
shown in [3] that the only possible (up to the scale parameter) generalized
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convolution of this type is the Kendall convolution:

δx �α δ1 = xαπ2α + (1 − xα)δ1, x ∈ [0, 1],

where α is a fixed positive number and π2α is the Pareto distribution with
density 2αx−2α−11[1,∞). This convolution, thanks to its connections with the
Williamson transform, turned out to be very convenient in calculations. Similar
properties describe the Kucharczak-Urbanik convolution (see Example 1 in this
paper) which is an example of convolutions with property (∗) with an arbitrary
but fixed n. Using the Levi-Civita functional equation we show here that for
n � 2 we do not have the uniqueness of the convolution with property (∗).
This leads to new classes of generalized convolutions and also, to new classes
of integral transforms uniquely identifying transformed measures.

2. Preliminaries

According to the Urbanik paper (see [11]) a commutative and associative P+-
valued binary operation � defined on P2

+ is called a generalized convolution if
for all λ, λ1, λ2 ∈ P+ and a � 0 we have:

(i) δ0 � λ = λ ;
(ii) (pλ1 + (1 − p)λ2) � λ = p(λ1 � λ) + (1 − p)(λ2 � λ) whenever p ∈ [0, 1];
(iii) Ta(λ1 � λ2) = (Taλ1) � (Taλ2) ;
(iv) if λn → λ, then λn � η → λ � η for all η ∈ P and λn ∈ P+ ,
(v) there exists a sequence (cn)n∈N of positive numbers such that the se-

quence Tcn
δ�n
1 converges to a measure different from δ0;

where → denotes the weak convergence of probability measures.
A pair (P+, �) is called a generalized convolution algebra. It has been proven

in [15] (Theorem 4.1 and Corollary 4.4) that each generalized convolution
admits a weak characteristic function, i.e. a one-to-one correspondence λ ↔ Φλ

between measures λ from P+ and real-valued Borel functions Φλ from L∞(m0),
m0 = δ0 + 	, where 	 is the Lebesgue measure on (0,∞), so that

1. Φpλ+qν = pΦλ + qΦν for p, q � 0, p + q = 1;
2. Φλ�ν = Φλ · Φν ;
3. ΦTaλ(t) = Φλ(at);
4. the uniform convergence of Φλn

on every bounded interval is equivalent
to the weak convergence of λn.

The characteristic function is uniquely determined up to a scale coefficient.
Moreover, if λ is absolutely continuous with respect to the measure m0 then
Φλ is continuous and (see Lemma 3.11, Propositions 3.3 and 3.4 and Theorem
4.1 in [15])

lim
t→∞ Φλ(t) = λ({0}).
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The function ϕ : R+ → R, defined by ϕ(t) = Φδt
(1) = Φδ1(t) is called a

probability kernel of (P+, �). The kernel ϕ is a Borel function, ϕ(0) = 1 and
|ϕ(t)| � 1 for each t ∈ [0,∞). It is evident that

Φλ(t) =
∫ ∞

0

ϕ (ts) λ(ds).

A generalized convolution algebra (P+, �) (and the corresponding generalized
convolution �) is said to be regular if its probability kernel ϕ is a continuous
function. It is known by [11], p.219, that the max-convolution introduced by
the operation max(X,Y ) on independent random variables X and Y is not
regular and its probability kernel is given by ϕ(t) = 1[0,1](t).

The �-generalized characteristic function in a generalized convolution al-
gebra plays the same role as the classical Laplace or Fourier transform for
convolutions defined by addition of independent random elements.

The following proposition shows how we can get a new generalized convo-
lution using an already known one. This result is not especially deep however
it will be useful in further considerations.

Proposition 1. Assume that a non-trivial generalized convolution algebra
(P+, �) admits a characteristic function Φ with the probability kernel ϕ. Then
for every α > 0 there exists a generalized convolution � on P+ with the gen-
eralized characteristic function

ΨL(Y )(t)
def
= ΦL(Y α)(tα),

where L(Y ) denotes the distribution of the random variable Y .

Proof. It is enough to define the generalized convolution on the measures δx, δy

for x, y � 0. Assume that δxα � δyα = L(Z) for some nonnegative random
variable Z. We see that

Ψδx
(t)Ψδy

(t) = Φδxα (tα)Φδyα (tα) =
∫ ∞

0

ϕ(tαz) δxα � δyα(dz)

=
∫ ∞

0

ϕ(tαuα) δxα � δyα(duα) =
∫ ∞

0

Ψδu
(t)L(Z1/α)(du).

Now we are able to define the generalized convolution �:

δx � δy
def
= L(Z1/α) if δxα � δyα = L(Z).

Checking that � is a generalized convolution and that Ψ is the generalized
characteristic function for the algebra (P+,�) is trivial and will be omitted.

�
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3. Main problem

We want to characterize such general convolutions for which the convolution
of two one-point measures δx, δ1 is a convex linear combination of n fixed
measures and only the coefficients of this linear combination depend on x.
More exactly: there exist measures λ0, . . . , λn−1 ∈ P+, λk �= λj for k �= j, such
that for all x ∈ [0, 1]

δx � δ1 =
n−1∑

k=0

pk(x)λk, (∗)

for some functions pk : [0, 1] �→ [0, 1] such that p0(x) + · · · + pn−1(x) = 1 for
all x ∈ [0, 1].

Remark 1. Since the measures λ0, . . . , λn−1 are different, δ1 is an extreme
point in the convex set of probability measures and

δ1 = δ0 � δ1 =
n−1∑

k=0

pk(0)λk,

we see that one of the measures, say λ0, must be equal to δ1 and then p0(0) = 1,
pk(0) = 0 for k � 1.

Let ϕ be the kernel (unknown) of the considered generalized convolution
and

D(ϕ) =
{

Φ: Φ(t) =
∫ ∞

0

ϕ(ts)λ(ds) for some λ ∈ P+

}
.

In the language of generalized characteristic functions our problem leads to
the following functional equation

∃Φ1, . . . ,Φn−1 ∈ D(ϕ)∀x ∈ [0, 1] ∀ t � 0

ϕ(xt)ϕ(t) = p0(x)ϕ(t) +
∑n−1

k=1 pk(x)Φk(t).
(∗∗)

Remark 2. Without loss of generality we can assume that λ1({1}) = · · · =
λn−1({1}) = 0. If this is not the case then we put

λk = qkδ1 + (1 − qk)λ′
k, k = 1, . . . n,

for some qk ∈ [0, 1], k = 1, . . . n, such that λ′
k({1}) = 0 and then we can write

for q0 = 1

δx � δ1 =
n∑

k=0

pk(x)qkδ1 +
n−1∑

k=1

pk(x)(1 − qk)λ′
k =: p′

0(x)δ1 +
n−1∑

k=1

p′
k(x)λ′

k.
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Remark 3. Notice that if the measures λ0, . . . , λn−1 are linearly dependent,
i.e. one or more measures can be obtained as a convex linear combination of
others then equality (∗) can be written as

δx � δ1 =
m∑

k=0

pk(x)λ′
k

for some m < n−1 and some probability measures λ′
1, . . . , λ

′
m. From now on we

will assume that λ0, . . . , λn−1 are linearly independent. It means also that their
generalized characteristic functions ϕ,Φ1, . . . ,Φn−1 are linearly independent.

We will show that under some additional assumptions equation (∗∗) can
be written in the form of the multiplicative Levi-Civita functional equation,
which is described in the following theorem (for details see e.g. [8]).

Theorem 1. Let a complex-valued continuous function ϕ satisfy the equation

ϕ(xy) =
n∑

k=0

pk(x)Ψk(y), for all x, y ∈ (0, 1)

with some functions {pk}, {Ψk}. Then

ϕ(x) = ϕ̃(− ln x) =
m∑

j=1

Pj(− ln x)x−λj ,

m∑

j=1

(degPj + 1) = n + 1,

where Pj are polynomials and λj ∈ C.

Lemma 1. If for a nontrivial, continuous probability kernel ϕ equation (∗∗)
holds then limt→∞ ϕ(t) = 0.

Proof. Let t > 0. If there exists a sequence (an), an → ∞ for n → ∞, such
that limn→∞ ϕ(tan) = c �= 0 then we have

ϕ(t)ϕ(tan) = p0(a−1
n )ϕ(tan) +

n−1∑

k=1

pk(a−1
n )Φk(tan).

We can choose n0 large enough to have |ϕ(tan)| > |c|/2 for n � n0. Then
|Φk(tan)/ϕ(tan)| < 2/|c|. Since

ϕ(t) = p0(a−1
n ) +

n−1∑

k=1

pk(a−1
n )Φk(tan)/ϕ(tan)

and pk(a−1
n ) → 0 for each k � 1, p0(a−1

n ) → 1, we would have ϕ(t) = 1 for
each t > 0 in contradiction to our assumptions. �

Lemma 2. If for a nontrivial, continuous probability kernel ϕ equation (∗∗)
holds then

a := inf {t ≥ 0: ϕ(t) = 0} < ∞.
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Proof. Of course a > 0 since ϕ(0) = 1 and ϕ is a continuous function. Assume
that a = ∞. We have that ϕ(t) > 0, ϕ(xt) > 0 for every t > 0 and x ∈ [0, 1].
In equation (∗∗) we can divide both sides by ϕ(t) and obtain

ϕ(xt) = p0(x) +
n−1∑

k=1

pk(x)
Φk(t)
ϕ(t)

, x ∈ (0, 1), t > 0.

If we restrict the argument t to the interval (0, 1) we get a version of the
Levi-Civita functional equation with Ψ0 = 1, Ψk = Φk/ϕ.

ϕ(xt) = p0(x) +
n−1∑

k=1

pk(x)
Φk(t)
ϕ(t)

, x, t ∈ (0, 1). (∗∗∗)

We can apply now Theorem 1 and obtain that

ϕ|(0,1](t) = 1 +
M∑

j=1

Pj(− ln t)t−λj ,

for some M ∈ N, λj ∈ C, and some polynomials Pj . Since our function ϕ is
real as a generalized characteristic function, we have that λ1, . . . , λM are real.
Considering the function ϕc(·) := ϕ(c·) for c > 0 we see that

ϕc(xt) = p0(x) +
n−1∑

k=1

pk(x)
Φk(ct)
ϕc(t)

, x ∈ [0, 1], t � 0,

thus, using Theorem 1 again, we obtain that

ϕc|(0,1](t) = 1 +
Mc∑

j=1

Pj, c(− ln t)t−λj, c ,

for some Mc ∈ N, λj, c ∈ R, and some polynomials Pj, c. Consequently

ϕ|(0,c−1](t) = 1 +
Mc∑

j=1

Pj, c(− ln(ct))(ct)−λj, c .

The functions ϕ|(0,1] and ϕ|(0,c−1] coincide on the interval (0, 1] for c < 1, thus
for every c < 1

ϕ(t) = 1 +
M∑

j=1

Pj(− ln t)t−λj , t ∈ (0, c−1].

Letting c ↘ 0 we obtain that for some M ∈ N, λj ∈ R, and some polynomials
Pj , j ∈ {1, . . . , M}

ϕ(t) = 1 +
M∑

j=1

Pj(− ln t)t−λj , t > 0.
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In order to discuss the limit behavior of the function ϕ around zero and infinity
we substitute t → e−x and obtain

ϕ(e−x) = 1 +
M∑

j=1

Pj(x)eλjx, x ∈ R.

Let r = max{λj : j � M} and s = min{λj : j � M}. It is easy to see now that
if r > 0 then |ϕ(e−x)| → ∞ if x → ∞, which is impossible since any generalized
characteristic function is bounded. If s < 0 then |ϕ(e−x)| → ∞ if x → −∞,
which is impossible for the same reason. Thus we have that r = s = 0 and
ϕ is a polynomial bounded on (0,∞). This however is possible only if ϕ is a
constant function in contradiction to our assumptions. �

Without loss of generality, rescaling eventually the functions ϕ,Φ1, . . . ,Φn−1,
we can assume that a = 1.

Example 1. The convolutions described in this example were introduced by J.
Kucharczak and K. Urbanik in [6]. If ϕn(t) = (1 − tα)n

+ then for all x ∈ [0, 1]
and t � 0

ϕn(xt)ϕn(t) = ((1 − xα) + xα(1 − tα))n
+ (1 − tα)n

+

=
n∑

k=0

(
n

k

)
xαk(1 − xα)n−k(1 − tα)n+k

+ .

We see that ϕn is a solution of the Levi-Civita equation (∗ ∗ ∗), but in order
to see that it is also a solution of equation (∗∗ ) we need to show that for each
k = 1, . . . , n there exists a measure λk,n with distribution function Fk,n such
that

(1 − tα)n+k
+ =

∫ ∞

0

(1 − sαtα)n
+ dFk,n(ds).

It is easy to see that for λ1,n = πα(n+1), where πc is the Pareto distribution
with density function gc(s) = cs−c−11[1,∞)(s), we have

∫ ∞

0

(1 − sαtα)n
+ πα(n+1)(ds) = (1 − tα)n+1

+ .

Consequently
∫ ∞

0

∫ ∞

0

(1 − sαyαtα)n
+ πα(n+1)(ds) πα(n+2)(dy)

=
∫ ∞

0

(1 − yαtα)n+1
+ πα(n+2)(dy) = (1 − tα)n+2

+ .

We see now that λk,n = L(Z1,n . . . Zn,n) where Z1,n . . . Zn,n are independent
and L(Zk,n) = πα(n+k). It is only a matter of laborious calculations to show
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that λk,n, k � 1 has density function

fk,n(s) = αk

(
n + k

n

)
s−α(n+1)−1

(
1 − s−α

)k−1

+
.

Of course λ0,n = δ1. Consequently ϕn is a solution of equation (∗∗ ). The formal
definition of this convolution for x ∈ [0, 1] can be written in the following form:

δx � δ1(ds) = (1 − xα)nδ1(ds) +
n∑

k=1

(
n

k

)
xαk(1 − xα)n−kfk,n(s)ds.

Example 2. In [16] K. Urbanik gave an example of a not regular generalized
convolution different from the max-convolution. It is called (1, p)-convolution
with p ∈ (0, 1) and defined for p �= 1

2 by

δx �p δ1(ds) = (1 − px)δ1(ds) + px(2p − 1)−1s−3
(
2p − s−q

)
1[1,∞)(s)ds,

and for p = 1
2

δx �p δ1(ds) =
(
1 − 1

2
x
)
δ1(ds) +

1
2
xs−3 (1 + 2 ln s)1[1,∞)(s)ds.

Notice that we have here a solution of equation (∗∗) with n = 2, p0(x) =
(1 − px), p1(x) = px and the probability kernel given by

ϕ(t) = (1 − pt)1[0,1](t).

Notice that ϕ here is not continuous at 1 as a function on the whole [0,∞)
and discontinuity appears only at this point.

4. Applying the solution of the Levi-Civita equation for n = 3

The main aim of this paper is to show that for n > 2 there exist more than
one solution of equation (∗∗) in the set of generalized characteristic functions.
We show this in the case n = 3 under the following additional assumptions:

p1(1) = 1, ϕ(t) = 0 for each t > 1, lim
t→1−

Φ2(t)
ϕ(t)

= 0. (A)

The assumption p1(1) = 1 implies that Φ1(t) = ϕ(t)2. Since ϕ(t) �= 0 for each
t ∈ [0, 1) equation (∗∗) can be written in the following way:

ϕ(xt) = p0(x) + p1(x)ϕ(t) + p2(x)
Φ2(t)
ϕ(t)

.

By the continuity of generalized characteristic functions we see that

ϕ(x) = p1(x) + p2(x) lim
t→1−

Φ2(t)
ϕ(t)

,

thus the limit g = limt→1−
Φ2(t)
ϕ(t) exists anyway, but the additional assumption

g = 0 is equivalent to the condition p0(x) = ϕ(x). Consequently, equation (∗∗)
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restricted to the set [0, 1] under the additional assumptions (A) can be written
as the following version of the Levi-Civita functional equation:

ϕ(xt) = ϕ(x) + p1(x)ϕ(t) +
(
(1 − ϕ(x) − p1(x)

)Φ2(t)
ϕ(t)

, (∗∗∗)

with 1 − ϕ(x) � p1(x) � 0 for x, t ∈ [0, 1].

Proposition 2. In the case n = 3 every continuous function ϕ satisfying (∗∗),
(∗ ∗ ∗) and assumptions (A) has to have one of the forms

ϕ(t) =
(
1 − tα + ctα ln t

)
1[0,1](t), for some α > 0,

or, for some α, β > 0, c � −1, cp � c + 1 and p = β/α > 1

ϕ(t) =
(
1 − (c + 1)tα + ctβ

)
1[0,1](t).

Proof. By the Levi-Civita result we have only 3 possible solutions of equation
(∗ ∗ ∗) for n = 3:

ϕ(t) =
(
a ln2 t + b ln t + c

)
tα1[0,1](t),

ϕ(t)=
(
(a ln t + b)tα + ctβ

)
1[0,1](t),

ϕ(t) =
(
atα + btβ + ctγ

)
1[0,1](t),

for some constants a, b, c, α, β, γ. Applying the information which we already
have: ϕ(0+) = 1, ϕ(1) = 0 we see that only two types of functions can be
considered:

ϕ(t) =
(
1 − tα + ctα ln t

)
1[0,1](t), ϕ(t) =

(
1 − (c + 1)tα + ctβ

)
1[0,1](t),

for some c ∈ R and β > α > 0. The condition inf{t > 0: ϕ(t) = 0} = 1, in
particular ϕ(1−) = 0, implies the final restrictions for c. �

By Proposition 1, without loss of generality, we can assume that α = 1 and
p > 1, thus we shall discuss only the following functions:

ϕ(t) = 1 − t + ct ln t, ϕ(t) = 1 − (c + 1)t + ctp.

It turns out that only one type of such functions is admissible for us.

Proposition 3. If c �= 0 then none of the functions ϕ(t) =
(
1−tα+ctα ln t

)
1[0,1]

(t) can be a solution of equation (∗∗).

Proof. We show that there is no cumulative distribution function F for which

(1 − t + ct ln t)2+ 1[0,1](t) =
∫ ∞

0

(1 − st + cst ln (st))1[0,1](st)dF (s).

Notice first that the function ϕ(st) integrated on the right hand side is positive
if and only if s < 1/t, thus the area of integration is included in [0, 1/t]. The
function ϕ(t)2 on the left hand side of this equation is equal to zero for all
t > 1, thus the integral on the right hand side disappears for all t > 1. This
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implies that F (s) = 0 for all s < 1. We see now that the function F satisfies
the following equation:

(1 − t + ct ln t)2+ 1[0,1](t) =
∫ 1/t

1

(1 − st + cst ln (st))1[0,1](st)dF (s),

where by the Stieltjes integral
∫ b

a
g dF we understand

∫
[a,b)

g dF . Notice now
that for a continuous differentiable function g and a cumulative distribution
function F such that F (1) = 0 < F (1+) we have the following formula for
integration by parts for every continuity (with respect to F ) point b > 1

∫ b

1

g(x)dF (x) = g(1)F (1+) +
∫ b

1

g(x) d(F (x) − F (1+))

= g(b)F (b) −
∫ b

1

g′(x)F (x) dx.

Using this formula, dividing both sides of our equation by t and substituting
t−1 = u we get for almost every u > 1

u
(
1 − u−1 − cu−1 ln u

)2

+
1[1,∞)(u)

= (c ln u + 1 − c)
∫ u

1

F (s)ds − c

∫ u

1

ln sF (s)ds.

The left hand side of this equation is differentiable for each u > 1 thus also
the right hand side is differentiable for u > 1 and we get

(1 − c)F (u) + cu−1

∫ u

1

F (s)ds (B)

= 1 − 2cu−1 − (1 − 2c)u−2 − 2c(1 − c)u−2 ln u − c2u−2 ln2 u.

Case 1. If c = 1 then we obtain

F (u) = 1 − u−2
(
1 − ln2 u + 2 ln u

)
1[1,∞)(u).

We see that F (1+) = 0, lims→∞ F (u) = 1, as it shall be expected, but the
corresponding density function can take negative values:

f(u) = F ′(u) = 2u−3 ln u (3 − ln u)1[1,∞)(u),

thus this function ϕ is not a solution of equation (∗∗).
Let H(u) :=

∫ u

1
F (t)dt. To solve equation (B) we solve first the homogenous

equation (1 − c)H ′(u) + cu−1H(u) = 0 and obtain H(u) = Au−β , where
β = c

1−c . Coming back to the original equation (B) we assume that A = A(u).
Thus for u > 1

(1 − c)A′(u)u−β = 1 − 2cu−1 − (1 − 2c)u−2 − 2c(1 − c)u−2 ln u − c2u−2 ln2 u.

Case 2. If c = 1
2 then we have

1
2
A′(u)u−1 = 1 − u−1 − 1

2
u−2 ln u − 1

4
u−2 ln2 u,
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thus for some constant K

F (u) = 1 − u−2

(
K + lnu − 1

6
ln3 u

)
.

Since F1(1+) = 0, K = 1 and the eventual density function f = F ′ would be
the following:

f(u) = u−3 ln3 u

(
ln−3 u + 2 ln−2 u − 1

2
ln−1 u − 1

3

)
1[1,∞)(u).

This however is impossible since the expression in brackets is negative for u
large enough.
Case 3. If c �∈ {1, 1

2} then for some K we have

H(u) = A(u)u−β = u − 2 + u−1 − 2c(1 − c)
2c − 1

u−1

[
ln u − 1

β − 1

]

+Ku−β − c2

2c − 1
u−1

[
ln2 u − 2

β − 1
ln u +

2
(β − 1)2

]
.

Consequently

F (u) = H ′(u) = 1 − u−2 +
2c(1 − c)
2c − 1

[
ln u − c

2c − 1

]
u−2

−Kβu−β−1 +
c2

2c − 1

[
ln2 u − 2c

2c − 1
ln u +

2c(1 − c)
(2c − 1)2

]
u−2.

By Remark 2 we can assume that F1(1+) = 0, thus K = 2c(1−c)3

(2c−1)3 . Now we see
that the eventual density function would be the following:

f(u) = F ′(u) = u−3 ln2 u

[
Kβ(β + 1)

u1−β

ln2 u
− c2

2c − 1

+
2(1 − c)2(3c − 1)

(2c − 1)3
1

ln2 u
+ 2c

(
1 +

c

(2c − 1)2

)
1

ln u

]
.

If c > 1
2 then 1−β < 0 thus the expression in the brackets is close to − c2

2c−1 < 0
for u large enough, thus f cannot be a density function for any probability
distribution. If c ∈ (0, 1

2 ) then 1 − β > 0 and K < 0, thus the expression in
the brackets has the same limit at infinity as

lim
u→∞ Kβ(β + 1)

u1−β

ln2 u
= −∞,

which is also impossible for any probability density function. �

Considering the probability kernel ϕ(t) = (1− (c+1)t+ ctp)+ we will show
that for n = 3 there exist generalized convolutions defined by equation (∗)
other than the Kucharczak-Urbanik convolutions described in Example 1.
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Lemma 3. Assume that the function ϕ(t) = (1− (c+1)t+ ctp)1[0,1](t) satisfies
both equations (∗∗) and (∗∗∗), i.e. it defines a generalized convolution � on P+.
Then the cumulative distribution function Fx of the measure δx � δ1, x ∈ [0, 1]
satisfies the following equation:

(1 + c − pc)Fx(u) + p(p − 1)cu−p

∫ u

1

sp−1Fx(s)ds

= 1 − c(p − 1)(xp + 1)u−p + c(1 + c)p(xp + x)u−p−1

−(1 + c)2xu−2 − c2(2p − 1)xpu−2p.

Proof. Let x ∈ [0, 1]. We need to calculate the function Fx for which the
following equality holds:

L := ϕ(xt)ϕ(t) =
(
1 − (c + 1)xt + cxptp

)
+

(
1 − (c + 1)t + ctp

)
+

=
∫ 1/t

0

(
1 − (c + 1)st + csptp

)
dFx(s) =: R.

The function L is zero if xt > 1 or t > 1, thus the integral R vanishes if
1/t < 1. This means that the distribution function Fx is supported on [1,∞).
For t < 1 integrating by parts we obtain

R = (1 + c)t
∫ 1/t

1

Fx(s)ds − pctp
∫ 1/t

1

sp−1Fx(s)ds.

Substituting t = u−1 > 1 we have that
(
uR

)′ = (1 + c − pc)Fx(u) + p(p − 1)cu−p

∫ u

1

sp−1Fx(s)ds.

Applying the same operations to the function L we have
(
uL

)′ = 1 − c(p − 1)(xp + 1)u−p + c(1 + c)p(xp + x)u−p−1

−(1 + c)2xu−2 − c2(2p − 1)xpu−2p.

�

Proposition 4. For every p � 2 and c = (p−1)−1 the function ϕ(t) = ϕc,p(t) =
(1−(c+1)t+ctp)1[0,1](t) is the kernel of the generalized characteristic function
for the convolution � on P+ defined for x ∈ [0, 1] by the formula:

δx � δ1 = ϕ(x)δ1 + xpλ1 + (c + 1)(x − xp)λ2,

where λ1, λ2 are probability measures with densities

λ1(du) =
2pu−3

(p − 1)2
[
(p + 1)u1−p + (p − 2) − (2p − 1)u2−2p

]
1[1,∞)(u)du,

and

λ2(du) = c
[
2(p − 2) + (p + 1)u−p+1

]
u−31[1,∞)(u)du.
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If c = (p − 1)−1 and p ∈ (1, 2) then none of the functions ϕc,p can be a
probability kernel of any generalized characteristic function.

Proof. Applying Lemma 3 we see that for c = (p−1)−1 we have 1+c−pc = 0.
Comparing

(
up(uR)′)′ =

(
up(uL)′)′ we obtain

pup−1Fx(u) = pup−1 − p2

(p − 1)2
(xp + x)u−2

−p2(p − 2)
(p − 1)2

xup−3 +
p(2p − 1)
(p − 1)2

xpu−p−1.

Consequently for u � 1

Fx(u) = 1 − p(xp + x)
(p − 1)2

u−p−1 − p(p − 2)x
(p − 1)2

u−2 +
(2p − 1)xp

(p − 1)2
u−2p.

The function Fx is a cumulative distribution function of some measure Λx. We
see that Fx(+∞) = 1 thus Λx([1,∞)) = 1 and

Fx(1+) = 1 − p

p − 1
x +

1
p − 1

xp = ϕ(x) > 0,

which means that the measure Λx has an atom at the point 1 of the weight
ϕ(x). Moreover,

(p − 1)2p−1F ′
x(u)

= (p + 1)(xp + x)u−p−2 + 2(p − 2)xu−3 − 2(2p − 1)xpu−2p−1.

Case 1. If p � 2 it is enough to notice that x > xp, u−p−1 > u−2p and
u−2 > u−2p, and we obtain

(p − 1)2p−1uF ′
x(u) >

[
2(p + 1) + 2(p − 2) − 2(2p − 1)

] xp

u2p
= 0,

which shows that λx is a positive measure. In order to get the final formulation
of Proposition 4 it is enough to notice that for u � 1

Fx(u) = ϕ(x) + xp F1(u) +
(x − xp)
(p − 1)

F2(u),

where

F2(u) =
[
1 − (p − 1)−1

(
(p − 2)u−2 + u−p−1

)]
1[1,∞)(u)

is the cumulative distribution function of the measure

λ2(du) =
1

p − 1

[
2(p − 2)u−3 + (p + 1)u−p−2

]
1[1,∞)(u) du,

and

F1(u) =
[
1 − 2p

(p − 1)2
u−p−1 − p(p − 2)

(p − 1)2
u−2 +

2p − 1
(p − 1)2

u−2p

]
1[1,∞)(u)
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is the cumulative distribution function for the measure

λ1(du) =
2p u−p−3

(p − 1)2
[
(p + 1)u + (p − 2)up − (2p − 1)u2−p

]
1[1,∞)(u) du.

We need to check that λ1 is a positive measure. To see this it is enough to notice
that in the last formula the expression in the brackets for u > 0 is greater than
(p + 1) + (p − 2) − (p − 1) = p > 0. It is evident that F1(+∞) = F2(+∞) = 1
thus λ1, λ2 are probability measures, which ends the proof in the case p � 2.

Case 2. If p ∈ (1, 2) we can write

(p − 1)2p−1u3F ′
x(u)

= (p + 1) (x + xp) u−(p−1) + 2(p − 2)x − 2(2p − 1)xpu−2(p−1).

This means that limu→∞ u3F ′
x(u) = 2p(p−2)x

(p−1)2 < 0 thus F ′
x(u) is negative at

least for u large enough and x �= 0, and it cannot be a density function for any
positive measure. �

Lemma 4. Let c(p − 1) �= 1 and assume that the function ϕ : [0, 1] �→ R,
ϕ(t) = ϕc,p(t) = (1 − (c + 1)t + ctp)1[0,1](t) defines a generalized convolution �
on P+. Then the cumulative distribution function Fx of the measure δx�δ1, x ∈
[0, 1], satisfies the equation H(u) = A(u)u−γ , where H(u) =

∫ u

1
sp−1Fx(s)ds,

γ = cp(p−1)
1+c−cp and

(1 + c − cp)A′(u) = up+γ−1 − c(p − 1)(xp + 1)uγ−1 (C)
+c(c + 1)p(xp + x)uγ−2 − (1 + c)2xup+γ−3 − c2(2p − 1)xpuγ−p−1.

Proof. By Lemma 3 we need to solve the equation
(
uR

)′ =
(
uL

)′. Substi-
tuting H(u) =

∫ u

1
sp−1Fx(s)ds, thus H ′(u) = up−1F (u), we solve first the

homogenous equation
(
uR

)′ = 0 written in the following form:

(1 + c − pc)u1−pH ′(u) + p(p − 1)cu−pH(u) = 0.

The solution is H(u) = Au−γ , where γ = cp(p−1)
1+c−cp . Substituting A = A(u) we

see that the equation
(
uR

)′ =
(
uL

)′ can be reformulated now as equation
(C). �

Now we shall consider a few special cases.

Proposition 5. If γ = 1, i.e. c = (p2 − 1)−1 and p � 2 then the function
ϕ(t) = ϕc,p(x) =

(
1 − (c + 1)x + cxp

)
1[0,1](x) is the probability kernel for a

generalized convolution � given by

δx � δ1 = ϕ(x)δ1 + xp λ1 + (c + 1)(x − xp)λ2, x ∈ [0, 1],
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where λ1, λ2 are absolutely continuous measures supported on [1,∞) with

λ1(du) =
2pu−2p−1 du

(p2 − 1)(p − 1)2

×
[
p(p + 1)up−1 lnup−1 − p(p − 1)up−1 + p2(p − 2)u2(p−1) + (2p − 1)

]
,

and

λ2(du) =
u−p−2

(p − 1)2
[
2(p + 1) ln up−1 + (3 − p) + 2p(p − 2)up−1

]
du.

If γ = 1, c = (p2 − 1)−1 and p ∈ (1, 2) then none of the functions ϕc,p can be
the probability kernel of a generalized convolution.

Proof. If γ = 1 then c = (p2 − 1)−1 and equation (∗) from Lemma 4 takes the
form

p

p + 1
A′(u) = up − 1

p + 1
(xp + 1)

+
p3

(p2 − 1)2
(xp + x)u−1 − p4

(p2 − 1)2
xup−2 − 2p − 1

(p2 − 1)2
xpu−p.

Since H(u) = A(u)u−1 and H ′(u) = up−1Fx(u), we obtain for some constant
K:

Fx(u) = 1− Ku−p−1 − p2(xp + x)

(p2 − 1)(p − 1)
u−p−1 lnu +

p2(xp + x)

(p2 − 1)(p − 1)
u−p−1 − p3(p − 2)x

(p2 − 1)(p − 1)2
u−2 − (2p − 1)xp

(p2 − 1)(p − 1)2
u−2p.

Since Fx(1+) = ϕ(x), we obtain that K = p2(px+(p−2)xp)
(p2−1)(p−1)2 , thus

Fx(u) = 1 − p2(xp + x)
(p2 − 1)(p − 1)

u−p−1 ln u − p2(x − xp)
(p2 − 1)(p − 1)2

u−p−1

− p3(p − 2)x
(p2 − 1)(p − 1)2

u−2 − (2p − 1)xp

(p2 − 1)(p − 1)2
u−2p.

If for every x ∈ [0, 1] the measure λx with the distribution function Fx were a
probability measure then in particular λ1 were a probability measure and its
density function F ′

1 were nonnegative. However

F ′
1(u)

=
2pu−p−2 ln u

(p2 − 1)(p − 1)2
[
p(p2 − 1) − p(p − 1)

ln u
+ p2(p − 2)

up−1

ln u
+

(2p − 1)
up−1 ln u

]
,
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thus for p ∈ (1, 2) the expression in the brackets is negative for u large enough
and in this case λ1 is not a probability measure. If p � 2 then we can write

F ′
1(u) =

2pu−2p−1

(p2 − 1)(p − 1)2

×
[
p(p + 1)up−1 lnup−1 − p(p − 1)up−1 + p2(p − 2)u2(p−1) + (2p − 1)

]
.

Substituting up−1 = et, t > 0, we can write the expression in the brackets as
g(t) = p(p+1)tet−p(p−1)et+p(p−2)e2t+(2p−1). We see that g(0) = p−1 > 1
and g′(t) > 0 for t > 0, thus F ′

1 is a density of some probability measure. Now
we can write for u � 1 and x ∈ [0, 1]

Fx(u) = ϕ(x) + xpF1(u)

+
p2

p2 − 1
(x − xp)

[
1− 2

p − 1
u−p−1 lnu − 1

(p − 1)2
u−p−1 − p(p − 1)

(p − 1)2
u−2

]

=: ϕ(x) + xpF1(u) +
p2

p2 − 1
(x − xp)F2(u).

It remains to show that F2 is the distribution function for some probability
measure. We see that F2(1+) = 0, F2(+∞) = 1 and

F ′
2(u) =

u−p−2

(p − 1)2
[
2(p + 1) ln up−1 + (3 − p) + 2p(p − 2)up−1

]
.

Substituting up−1 = ez, z > 0 we can write the expression in the brackets as
g(z) = 2(p + 1)z + (3 − p) + 2p(p − 2)ez. Since g(0) = (p − 1)(2p − 3), which is
positive for p � 2 and g′(u) > 0 for u > 1, we conclude that λ2 with cumulative
distribution function F2 and density F ′

2 is a probability measure. �

Proposition 6. If γ = 2 − p, then for each p > 2 the function ϕc,p is the
probability kernel of a generalized convolution � defined by

δx � δ1 = ϕc,p(x) δ1 + xp λ1 +
p

2(p − 1)
(x − xp)λ2,

where λ1, λ2 are probability measures supported on (1,∞) and

λ1(du) =
(p − 2)(p2 + 6) + 4

2(p − 1)3
u−3 du

+
p(p − 2)
2(p − 1)3

[
2(p + 1)u−p−2 + 2u−3 ln u + (p − 2)(2p − 1)u−2p−1

]
du,

λ2(du) =
[
(p − 2)(p + 1)

(p − 1)2
u−p−2 +

2(p − 2)(p − 1)
(p − 1)2

u−3 ln u

+
(p − 1)(p − 2) + 2

(p − 1)2
u−3

]
du.

If γ = 2 − p and p ∈ (1, 2) then none of the functions ϕc,p can be a probability
kernel of any generalized convolution.
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Proof. If γ = 2 − p then

c =
2 − p

2(p − 1)
, 1 + c =

p

2(p − 1)
, 1 + c − cp =

p

2
.

Equation (∗) takes the form

A′(u) =
2
p

u − 2 − p

p
(xp + 1)u1−p +

p(2 − p)
2(p − 1)2

(xp + x)u−p

− p

2(p − 1)2
xu−1 − (2p − 1)(2 − p)2

2p(p − 1)2
xpu1−2p.

Since H(u) = A(u)up−2 and H ′(u) = up−1Fx(u), we obtain

Fx(u) = 1 − p(p − 2)
2(p − 1)3

(x + xp)u−p−1 − p(p − 2)
2(p − 1)2

xu−2 ln u

− (p − 2)2(2p − 1)
4(p − 1)3

xpu−2p + Ku−2,

for some constant K, which can be obtained from the relation Fx(1+) =
ϕc,p(x). Finally we can write

Fx(u) = ϕ(x) + xpF1(u) +
p

2(p − 1)
(x − xp)F2(u),

where

F1(u) = 1 − 2p(p2 − 3p + 3) + (p − 2)(p + 4)
4(p − 1)3

u−2

−p(p − 2)
(o − 1)3

u−p−1 − p(p − 2)
2(p − 1)2

u−2 ln u − (p − 2)2(2p − 1)
4(p − 1)3

u−2p,

F ′
1(u) =

(p − 2)(p2 + 6) + 4
2(p − 1)3

u−3 +

p(p − 2)
2(p − 1)3

[
2(p + 1)up−1 + 2u2(p−1) ln u + (p − 2)(2p − 1)

]
u−2p−1,

F2(u) = 1 − p − 2
(p − 1)2

u−p−1 − p − 2
p − 1

u−2 − p2 − 3p + 3
(p − 1)2

u−2,

F ′
2(u) =

u−3

(p − 1)2

[
(p − 2)(p + 1)

up−1
+ 2(p − 2)(p − 1) ln u + (p − 1)(p − 2) + 2

]
.

Evidently F ′
1(u) > 0 for all u > 1 if p > 2. If p ∈ (1, 2) then

F ′
1(u)u3 ∼ (p − 2)(p2 + 6) + 4

2(p − 1)3
+

p(p − 2)
(p − 1)3

ln u,

thus it converges to −∞ if u → ∞, which is impossible. Now it is enough to
notice that for p > 2 we have F ′

2(u) > 0 for all u > 1. �
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Proposition 7. If γ = p � 2 then c = 1
2(p−1) and ϕ = ϕc,p is a probability

kernel for the generalized convolution defined by

δx � δ1 = ϕc,p(x)δ1 + xpλ1 +
2p − 1

2(p − 1)
(x − xp)λ2,

where λ1, λ2 are probability measures supported on [1,∞) and on this set

λ1(du) =
(2p − 1)u−2p−1

2(p − 1)3

[
2p(p + 1)up−1 + (2p − 1)(p − 2)u2(p−1)

−2p2 ln up−1 − p(6p2 − 4p + 1)
(2p − 1)

]
du,

λ2(du) =
u−2p−1

(p − 1)2
[
p(p + 1)up−1 + (2p − 1)(p − 2)u2(p−1) − p2

]
du.

If γ = p and p ∈ (1, 2) then none of the functions ϕc,p can be a probability
kernel of a generalized convolution.

Proof. Since γ = p then c = 1
2(p−1) and equation (∗) takes the form

A′(u) = 2u2p−1 − (xp + 1)up−1

+
p(2p − 1)
2(p − 1)2

(xp + x)up−2 − (2p − 1)2

2(p − 1)2
xu2p−3 − 2p − 1

2(p − 1)2
xpu−1.

Using the relations H(u) = A(u)u−p, H ′(u) = up−1Fx(u) and Fx(1+) = ϕ(x),
after laborious calculations we obtain

Fx(u) = ϕc,p(x) + xpF1(u) +
2p − 1

2(p − 1)
(x − xp)F2(u),

where for u > 1

F1(u) = 1 − p(2p − 1)
(p − 1)3

u−p−1 − (2p − 1)2(p − 2)
4(p − 1)3

u−2

+
p(2p − 1)
2(p − 1)2

u−2p ln u +
3p(2p − 1) + 2(p − 1)2

4(p − 1)3
u−2p,

and

F2(u) = 1 − p

(p − 1)2
u−p−1 − (2p − 1)(p − 2)

2(p − 1)2
u−2 +

p

2(p − 1)2
u−2p.

For u > 1 we have

F ′
1(u) =

(2p − 1)u−2p−1

2(p − 1)3

[
2p(p + 1)up−1 + (2p − 1)(p − 2)u2(p−1)

−2p2 ln up−1 +
p(4p2 − 3p − 3)

(2p − 1)

]
.
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Substituting ez = up−1, z > 0, the expression in the brackets can be written in
the form g(z) = 2p(p+1)ez+(2p−1)(p−2)e2z−2p2z+p(4p2−3p−3)(2p−1)−1.
If p > 2 we have g(0) > 0 and

g′(z) = 2p(p + 1)ez + 2(2p − 1)(p − 2)e2z − 2p2

> 2pez + (2p − 1)(p − 2)e2z > 0,

thus F ′
1(u)1[1,∞)(u) is the density of a probability measure λ1. If p ∈ (1, 2)

then limz→∞ g′(z) = −∞ thus g(z) must be negative for z large enough, which
is impossible.

Now we shall consider

F ′
2(u) =

u−2p−1

(p − 1)2
[
p(p + 1)up−1 + 2(2p − 1)(p − 2)u2(p−1) − p2

]
,

for u > 1 and p > 2. Substituting z = up−1 > 1 the expression in the brackets
can be written in the form h(z) = 2(2p − 1)(p − 2)z2 + p(p + 1)z − p2. For
p > 2 we have h(1+) = p + 2(2p − 1)(p − 2) > 0 and h′(z) > 0 for z > 1 thus
F2 is the cumulative distribution function of the probability measure λ2 with
density F ′

2. �

Proposition 8. If γ �∈ {1, 2−p, p}, c �= (p−1)−1 and c ∈ ((p2−1)−1, (2(p−1))−1)
then the function ϕ = ϕc,p is the probability kernel of a generalized convolution
defined by

δx � δ1 = ϕ(x) δ1 + xp λ1 + (c + 1)(x − xp)λ2,

where λ1 has the distribution function F1(u) = G1(u) − G1(1)u−p−γ , for

G1(u) = 1 − 2γ(c + 1)
(p − 1)(γ − 1)

u−p−1 − γ(p − 2)(c + 1)2

cp(p − 1)(p + γ − 2)
u−2

+
cγ(2p − 1)(p + 1)
p(p − 1)(γ − p)

u−2p,

and λ2 has the distribution function F2(u) = G2(u) − G2(1)u−p−γ , for

G2(u) = 1 − γ

(p − 1)(γ − 1)
u−p−1 − γ(p − 2)(c + 1)

cp(p − 1)(p + γ − 2)
u−2.

Proof. If γ �∈ {1, 2 − p, p} and c �= (p − 1)−1 then coming back to equation (∗)
we can calculate the function Fx for u > 1:

Fx(u) = 1 − Ku−p−γ − γ(c + 1)
(p − 1)(γ − 1)

(xp + x)u−p−1

− γ(p − 2)(c + 1)2

cp(p − 1)(p + γ − 2)
xu−2 +

cγ(2p − 1)(p + 1)
p(p − 1)(γ − p)

xpu−2p.
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Since Fx(1+) = ϕc,p(x), we can calculate the missing constant K:

K = (c + 1)x
[
1 − γ

(p − 1)(γ − 1)
− (c + 1)(p − 2)γ

c(p − 1)(p + γ − 2)

]

+cxp

[
−1 − (c + 1)γ

c(p − 1)(γ − 1)
+

γ(2p − 1)(p + 1)
p(p − 1)(γ − p)

]
.

Finally we obtain

Fx(u) =
[
ϕ(x) + xpF1(u) + (c + 1)(x − xp)F2(u)

]
1(1,∞)(u),

where

F1(u) = G1(u) − G1(1)u−p−γ ,

G1(u) = 1 − 2γ(c + 1)
(p − 1)(γ − 1)

u−p−1 − γ(p − 2)(c + 1)2

cp(p − 1)(p + γ − 2)
u−2

+
cγ(2p − 1)(p + 1)
p(p − 1)(γ − p)

u−2p,

and

F2(u) = G2(u) − G2(1)u−p−γ ,

G2(u) = 1 − γ

(p − 1)(γ − 1)
u−p−1 − γ(p − 2)(c + 1)

cp(p − 1)(p + γ − 2)
u−2.

Now it is enough to notice that Fx is a distribution function of a probability
measure if γ − 1 > 0, γ − p < 0 and (p − 2)(p + γ − 2) > 0. This gives
c ∈ ((p2 − 1)−1, (2(p − 1))−1). �

The next remark can be easily derived from the previous results:

Remark 4. For every c ∈ [13 , 1
2 ] ∪ {1} (and only for such c) the function

ϕ(t) = (1 − (c + 1)t + ct2)1[0,1](t) is the probability kernel for some gener-
alized convolution.

Proof. The classical Kucharczak-Urbanik generalized convolution with the
probability kernel

ϕ(t) = (1 − 2t + t2)1[0,1](t)

is a special case in Proposition 4 since in this case c = 1. By Proposition 5 for
c = 1

3 we obtain that the function

ϕ(t) =
(

1 − 4
3

t +
1
3

t2
)
1[0,1](t)
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is the probability kernel for the generalized convolution defined by δx � δ1 =
ϕ(x)δ1 + x2λ1 + 4

3 (x − x2)λ2, where

λ1(du) =
4
3

(6u ln u − 2u + 3) u−41[1,∞)(u) du;

λ2(du) = (6 ln u + 1) u−41[1,∞)(u) du.

By Proposition 7 we have that for c = 1
2 the function

ϕ(t) =
(

1 − 3
2

t +
1
2

t2
)
1[0,1](t)

is the probability kernel for the generalized convolution defined by δx � δ1 =
ϕ(x)δ1 + x2λ1 + 3

2 (x − x2)λ2, where

λ1(du) = (18u + 12 ln u + 7) u−51[1,∞)(u) du;

λ2(du) = 2 (3u − 2) u−51[1,∞)(u) du.

Finally, by Proposition 8 for every c ∈ ( 1
3 , 1

2 ) the function

ϕ(t) =
(
1 − (c + 1) t + c t2

)
1[0,1](t)

is the probability kernel for the generalized convolution defined by δx � δ1 =
ϕ(x)δ1 + x2λ1 + (c + 1)(x − x2)λ2, where λ1, λ2 are probability measures on
[1,∞) with distribution functions

F1(u) = G1(u) − G1(1+)u−p−γ , F2(u) = G2(u) − G2(1)u−p−γ ,

for γ = 2c
1−c and

G1(u) =
(

1 − 4c(c + 1)
3c − 1

u−3 − 9c2

2(1 − 2c)
u−4

)
1[1,∞)(u);

G2(u) =
(

1 − 2c

3c − 1
u−3

)
u−5 1[1,∞)(u) du.

�
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