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Remarks on solutions to a generalization of the radical functional
equations

Janusz Brzdęk and Jens Schwaiger

Abstract. During the 16th International Conference on Functional Equations and Inequal-
ities a talk was given concerning the stability of the so-called radical functional equation

f(
√

x2 + y2 ) = f(x)+f(y). The second author’s question about the general solution of the
equation itself was answered later by the first one. Contrary to some assertions in the liter-
ature the general solution is not an arbitrary quadratic function, but of the form x �→ a(x2)
with additive a. Here we present far reaching generalizations of this result.
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1. Introduction and preliminaries

Let S be a nonempty set, (Y, �) and (W, ∗) be groupoids (i.e., Y and W are
nonempty sets endowed with binary operations � : Y 2 → Y and ∗ : W 2 → W ),
Π : S → Y , and P0 := Π(S). Let p : P0 → S be a selection of Π, i.e.,

Π(p(x)) = x, x ∈ P0.

We consider some versions of the conditional functional equation

f(p(Π(x) � Π(y))) = f(x) ∗ f(y), x, y ∈ S,Π(x) � Π(y) ∈ P0, (1.1)

for functions f : S → W .
Clearly, if S = R (the set of reals), (Y, �) is the additive group of real

numbers, n ∈ N (positive integers), Π(x) := xn for x ∈ S and p(u) := n
√

u for
u ∈ P0, then (1.1) takes the form

f
(

n
√

xn + yn
)

= f(x) ∗ f(y).

Particular cases of that equation have been considered in [2,3,7,11,12,15,20]
(see also [19, p. 196]), and some descriptions of solutions to them have been
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proposed (not always correct). Moreover, the solutions and stability of the
equation

f
(√

ax2 + by2
)

= af(x) + bf(y) (1.2)

have been considered in [16], for functions f mapping R into a real linear
space X, with real a, b > 0 such that a + b �= 1. The authors have proved that
every such solution to (1.2) must be a quadratic function [i.e., a solution to
the quadratic functional Eq. (4.22)]. We present far reaching generalizations
of all those results mentioned above (see [5] for some recent related results).

Another case of (1.1) is the Pythagorean mean functional equation

f
(√

x2 + y2
)

=
f(x)f(y)

f(x) + f(y)
, (1.3)

considered in [18] for f : (0,∞) → R. Certainly, we have somehow to exclude
in (1.3) the cases when f(x) + f(y) = 0 (which was not explicitly done by the
authors in [18]).

Below we provide two more natural simple examples of (1.1) for real func-
tions. The first one, for S ⊂ R, is the equation

f(	x
 + 	y
) = f(x) ∗ f(y), x, y ∈ S, 	x
 + 	y
 ∈ Π(S), (1.4)

where Π : S → Z is the floor function, i.e., Π(x) := 	x
 for x ∈ S (	x
 denotes
the largest integer not greater than a real number x), S is such that Π(S) ⊂ S
and p(n) = n for n ∈ Π(S).

The second one, also for S ⊂ R, has the form

f({x} + {y}) = f(x) ∗ f(y), x, y ∈ S, {x} + {y} ∈ Π(S), (1.5)

where Π : S → [0, 1) is given by Π(x) = {x} := x − 	x
 for x ∈ S, S is such
that Π(S) ⊂ S and p(x) = x for x ∈ Π(S).

At the end of the paper we give three corollaries with some results on
solutions to functional Eqs. (1.3)–(1.5).

Let us recall that (W, ∗) is right cancellative provided

x ∗ z �= y ∗ z, x, y, z ∈ W,x �= y.

Analogously, (W, ∗) is left cancellative if

z ∗ x �= z ∗ y, x, y, z ∈ W,x �= y.

Next, we say that e ∈ W is a left (right) neutral element in (W, ∗) if e ∗ v = v
(v ∗ e = v, resp.) for each v ∈ W . We write

Nl : = {e ∈ W : e is a left neutral element in (W, ∗)},

Nr : = {e ∈ W : e is a right neutral element in (W, ∗)}.
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We say that ζ ∈ W is a left (right) zero element in (W, ∗) if ζ ∗ v = ζ
(v ∗ ζ = ζ, resp.) for each v ∈ W . We write

Zl : = {ζ ∈ W : ζ is a left zero element in (W, ∗)},

Zr : = {ζ ∈ W : ζ is a right zero element in (W, ∗)}.

Let us also recall that u ∈ W is an idempotent element if u ∗ u = u. Write

I := {ι ∈ W : ι is an idempotent element in (W, ∗)}.

Clearly, Nl ∪ Nr ∪ Zl ∪ Zr ⊂ I.

2. Main results

To simplify some reasonings, we assume in the sequel that W has at least two
elements (the case where W has only one element is trivial). Moreover, given
nonempty D ⊂ Y and x ∈ Y , we write

x � D := {x � d : d ∈ D}, D � x := {d � x : d ∈ D}.

We have the following.

Theorem 2.1. Let P ⊂ P0 be nonempty. Assume that one of the following four
conditions is valid.

(i) (W, ∗) is right cancellative and

P ∩ (x � P ) �= ∅, x ∈ P0. (2.1)

(ii) (W, ∗) is left cancellative and

P ∩ (P � x) �= ∅, x ∈ P0. (2.2)

(iii) P = P0, (Y, �) has a left neutral element e ∈ P0, I ⊂ Nl ∪ Nr ∪ Zl and

w ∗ w �∈ Zl, w ∈ W\Zl. (2.3)

(iv) P = P0, (Y, �) has a right neutral element e ∈ P0, I ⊂ Nl ∪ Nr ∪ Zr and

w ∗ w �∈ Zr, w ∈ W\Zr. (2.4)

Then f : S → W satisfies the conditional equation

f(p(Π(s) � Π(t))) = f(s) ∗ f(t), s, t ∈ S,Π(s) � Π(t) ∈ P, (2.5)

if and only if there exists a solution A : P0 → W of the conditional equation

A(u � v) = A(u) ∗ A(v), u, v ∈ P0, u � v ∈ P, (2.6)

such that f = A ◦ Π. Moreover, such A is unique and A = f ◦ p.
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Proof. Assume that f fulfils (2.5). Let A = f ◦ p. We show that (2.6) holds.
To this end take u, v ∈ P0 with u � v ∈ P . Then

A(u � v) = f(p(u � v)) = f(p(Π(p(u)) � Π(p(v))))

= f(p(u)) ∗ f(p(v)) = A(u) ∗ A(v).

Suppose first that (W, ∗) is right cancellative and (2.1) is fulfilled. Fix s, t ∈
S with Π(s) = Π(t). Then, by (2.1), there is u ∈ P with Π(s) � u ∈ P . Clearly,
u = Π(r) for some r ∈ S. Hence, by (2.5),

f(s) ∗ f(r) = f(p(Π(s) � Π(r))) = f(p(Π(t) � Π(r)))

= f(t) ∗ f(r)

and consequently f(s) = f(t). In this way we have shown that

f(s) = f(t), s, t ∈ S,Π(s) = Π(t), (2.7)

whence

f(s) = f(p(Π(s))) = A(Π(s)), s ∈ S. (2.8)

We argue analogously if (ii) is valid.
Now, assume that (iii) holds. Let r0 = p(e). Then, for every s ∈ S,

f(p(Π(s))) = f(p(e � Π(s))) = f(p(Π(r0) � Π(s))) = f(r0) ∗ f(s). (2.9)

This (with s = r0) yields that ι := f(r0) is an idempotent element of (W, ∗)
and therefore ι ∈ Nl ∪ Nr ∪ Zl.

Clearly, if ι ∈ Zl, then (2.9) implies that f(p(Π(s))) = ι for s ∈ S. Conse-
quently,

f(s) ∗ f(s) = f(p(Π(s) � Π(s))) = f(p(Π(p(Π(s))) � Π(p(Π(s)))))

= f(p(Π(s)) ∗ f(p(Π(s))) = ι, s ∈ S,

whence f(S) = {ι} in view of (2.3). It is easily seen that in such situations we
can write that f = A ◦ Π with A(x) = ι for every x ∈ P0. Note that such A
satisfies the equation

A(u � v) = A(u) ∗ A(v), u, v ∈ P0, u � v ∈ P0.

So, consider the situation when ι is a left neutral element of (W, ∗). Take
s, t ∈ S with Π(s) = Π(t). Then

f(s) = ι ∗ f(s) = f(p(Π(r0) � Π(s)))

= f(p(Π(r0) � Π(t))) = ι ∗ f(t) = f(t).

Thus we have shown that (2.7) holds, which yields (2.8).
If ι is a right neutral element of (W, ∗), then

f(s) = f(s) ∗ ι = f(s) ∗ f(r0) = f(p(Π(s) � Π(r0)))

= f(p(Π(t) � Π(r0))) = f(t) ∗ ι = f(t)

for every s, t ∈ S with Π(s) = Π(t), which again yields (2.8).
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If (iv) holds, then we argue analogously as in the case of (iii), replacing
(2.9) by the condition

f(p(Π(s))) = f(p(Π(s) � e)) = f(p(Π(s) � Π(r0))) = f(s) ∗ f(r0), (2.10)
s ∈ S,

where r0 = p(e).
Finally assume that A : P → W is a solution to (2.6) and f := A ◦ Π. Let

x, y ∈ S and Π(x) � Π(y) ∈ P . Then

f(p(Π(x) � Π(y))) = A ◦ Π(p(Π(x) � Π(x))) = A(Π(x) � Π(y))

= A(Π(x)) ∗ A(Π(y)) = f(x) ∗ f(y).

Thus we have shown that f fulfils Eq. (2.5). Note yet that

A(x) = A(Π(p(x)) = f(p(x)), x ∈ P0,

which yields the form and uniqueness of A. �
Remark 2.2. The following three examples show the independence of some of
the conditions (i)–(iv) in the theorem.

1. Let W ∈ {[0,∞),R} and

x ∗ y := x(y + 1), x, y ∈ W.

Then it is easily seen that Nl = Zr = ∅, Zl = Nr = {0} and I = {0}.
Consequently I ⊂ Nr and (2.4) holds. In this way, we obtain a very
simple example of a groupoid (W, ∗) satisfying the assumptions of (iv)
concerning it, which is not left cancellative (because Zl = ∅).

Further, if W = R, then (−1) ∗ (−1) = 0 ∈ Zl and −1 �∈ Zl,
which means that (2.3) is not valid and therefore (iii) is not fulfilled.
Note yet that x ∗ (−1) = 0 for each x ∈ R, whence (R, ∗) is neither right
cancellative.

2. Let (S , ◦) be the semigroup of all surjective mappings u : N → N. For
u, v, w ∈ S assume v ◦ u = w ◦ u. For arbitrary n choose m such that
u(m) = n. Then v(n) = v(u(m)) = w(u(m)) = w(n). Thus we have
shown that (S , ◦) is right cancellative (see (i)). But S is not left can-
cellative (see (ii)). In fact, let u be defined by u(1) = 1 and u(n) = n − 1
for n > 1. If v = id, w(1) = 2, w(2) = 1, and w(n) = n for n > 2, then it
is immediately seen that u ◦ v = u ◦ w (and v �= w).

Moreover, (iii) holds (for (W, ∗) = (S , ◦)), which can be seen as
follows. Let u ∈ S be idempotent: u ◦ u = u. Then, given any n ∈ N

there is some m with u(m) = n. Thus n = u(m) = u(u(m)) = u(n), i.e.,
u = id. Accordingly (iii) is satisfied (with suitable (Y, �) and P0), since
the set Zl is empty. The same concerns (iv).

3. Let now (M, �) be a groupoid with a neutral element, which is not left
cancellative. Assume that (M, �) has only one idempotent element and
possesses neither left nor right zero elements. Define a binary operation �
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in M ′ := M×M by (x, y)�(x′, y′) := (x�x′, y′�y). Then (W, ∗) := (M ′, �)
satisfies the assumptions of (iii), concerning it, and it is neither left nor
right cancellative.

Remark 2.3. Clearly, (2.1) holds with P = P0 when P0 is a subgroupoid of
Y (i.e., x � y ∈ P0 for every x, y ∈ P0); but we also have the following simple
observation.

Let P ⊂ Y be nonempty and J ⊂ 2Y be an ideal, that is A ∪ B ∈ J and
2A ⊂ J for every A,B ∈ J . Write P1 := Y \P ,

YJ := {z ∈ Y : z � Y �∈ J }, Y0 := {x ∈ Y : x � P1 ∈ J }. (2.11)

Take y ∈ YJ ∩ Y0 and assume that P1 ∈ J . Then

(y � Y )\(P ∩ (y � P )) = [P1 ∩ (y � Y ) ∪ P ∩ (y � Y )]\[P ∩ (y � P )]

⊂ P1 ∪ (y � P1) ∈ J .

Consequently, P ∩ (y � P ) �= ∅, because y � Y �∈ J . Thus we have proved the
following simple observation.

Proposition 2.4. If P1 ∈ J , then

P ∩ (y � P ) �= ∅, y ∈ YJ ∩ Y0.

Proposition 2.4 implies that (2.1) holds in particular when there is an ideal
J ⊂ 2Y such that P1 ∈ J and

P0 ⊂ YJ ∩ Y0. (2.12)

Remark 2.5. Note that the following two conditions:

x � Y �∈ J , x ∈ Y, (2.13)

x � T ∈ J , x ∈ Y, T ∈ J , (2.14)

imply that YJ ∩ Y0 = Y (provided P1 ∈ J ).
Below we describe several natural examples of ideals J ⊂ 2Y satisfying

(2.13) and (2.14).

(a) Y is left cancellative and not of finite cardinality and

J = {B ∈ 2Y : cardB < card Y }.

(b) d is a metric in Y that is left invariant (i.e., d(y � x, y � z) = d(x, z) for
x, y, z ∈ Y ), supx,y∈Y d(x, y) = ∞ and J is the family of all sets B ∈ 2Y

that are bounded (i.e., supx,y∈B d(x, y) < ∞).
(c) Y is a subsemigroup of a topological group G, Y is of the second category

of Baire in G, and J is the family of all subsets of Y that are of the first
category in G.
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(d) Y is a subsemigroup of a locally compact topological group G, with the
left Haar measure μ (see, e.g., [14]), such that there does not exist any
Borel set D ∈ 2G with μ(D) < ∞ and Y ⊂ D, and

J = {B ∈ 2Y : there is a Borel set D ∈ 2G with μ(D) < ∞ and B ⊂ D}.

(e) Y is a subsemigroup of a locally compact topological group G, with the
left Haar measure μ, such that there is no Borel set D ∈ 2G with μ(D) = 0
and Y ⊂ D, and

J = {B ∈ 2Y : there is a Borel set D ∈ 2G with μ(D) = 0 and B ⊂ D}.

(f) Y is a subsemigroup of a Polish abelian group G, Y is not a Christensen
zero set in G, and J is the family of all subsets of Y that are Christensen
zero sets in G (see [8,13]).

(g) Y is a subsemigroup of a Polish abelian group G, Y is not a Haar meager
set in G, and J is the family of all subsets of Y that are Haar meager in
G (see [9]).

It is easily seen that similar reasonings are also true for (2.2).

3. Extensions of conditional homomorphisms

Now, there arises a natural question when a function A : P0 → W satisfying
the conditional Eq. (2.6) can be extended to a solution h : Y → W of the
functional equation

h(u � v) = h(u) ∗ h(v). (3.1)

We have in particular the following result that can be derived from, e.g., [4,
Lemma 2].

Proposition 3.1. Assume that (W, ∗) is an abelian group, (Y, �) is an abelian
semigroup, J ⊂ 2Y is an ideal satisfying (2.14) such that Y �∈ J and

x � U �∈ J , x ∈ Y,U �∈ J , (3.2)

D ∈ 2Y , Y \D ∈ J , and A : D → W satisfies

A(u � v) = A(u) ∗ A(v), u, v ∈ D,u � v ∈ D. (3.3)

Then there exists a unique solution h : Y → W of the equation

h(x � y) = h(x) ∗ h(y) (3.4)

such that h(x) = A(x) for x ∈ D.

For analogous results on possible extensions of A, in the case where (Y, �)
is a group and D = P0 is a subsemigroup of it (see Remark 2.3), we refer to,
e.g., [1]. We also have the subsequent simple observation.
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Proposition 3.2. Assume that (W, ∗) is a group, (Y, �) is a semigroup, P0 ⊂ Y ,
P is a subsemigroup of Y with P ⊂ P0,

u � x = x � u, x ∈ P, u ∈ Y, (3.5)

P ∩ (u � P ) �= ∅, u ∈ Y, (3.6)

and A : P0 → W satisfies (2.6). Then there is a unique solution h : Y → W
of Eq. (3.4) such that

h(x) = A(x), x ∈ P0. (3.7)

Proof. Clearly, (2.6) implies that

A(u � v) = A(u) ∗ A(v), u, v ∈ P, (3.8)

and next, by (3.5), A(z) ∗ A(y) = A(y) ∗ A(z) for y, z ∈ P . Consequently

A(z) ∗ A(y)−1 = A(y)−1 ∗ (
A(y) ∗ A(z)

) ∗ A(y)−1 (3.9)

= A(y)−1 ∗ A(z), z, y ∈ P.

Take u ∈ Y . In view of (3.6), there are x, y ∈ P with x = u � y. Next, if
also z, w ∈ P and z = u � w, then we have

A(x) ∗ A(w) = A(x � w) = A(u � y � w) = A(u � w � y)

= A(z � y) = A(z) ∗ A(y),

whence (3.9) yields A(x) ∗ A(y)−1 = A(z) ∗ A(w)−1.
Therefore, we can define h : Y → W by

h(u) = A(x) ∗ A(y)−1

for every u ∈ Y and x, y ∈ P such that x = u � y; since A(u) = A(x) ∗ A(y)−1

when u ∈ P0, we have (3.7).
Now, we prove that h is a solution to Eq. (3.4). To this end, take u, v ∈ Y .

There exist x, y, z, w ∈ P with x = u � y and z = v � w. Clearly, by (3.5),
x � z = (u � y) � (v � w) = (u � v) � (w � y), whence (3.9) implies that

h(u � v) = A(x) ∗ A(z) ∗ A(y)−1 ∗ A(w)−1 = h(u) ∗ h(v).

It remains to show the uniqueness of h. So, let h0 : Y → W also be a
solution to Eq. (3.4) with h0(z) = A(z) for z ∈ P0. Take u ∈ Y and x, y ∈ P
with x = u � y. Then h0(u) ∗ h0(y) = h0(u � y) = h0(x), whence

h(u) = A(x) ∗ A(y)−1 = h0(x) ∗ h0(y)−1 = h0(u).

�
Note that in the case when (Y, �) is a group, condition (3.6) means that

Y = {x � y−1 : x, y ∈ P}.
Finally, let us yet consider a similar issue (of extending A) in the case

depicted in assumption (iii) of Theorem 2.1, when (Y, �) has a neutral element
e ∈ P . Then we can use for instance the outcomes in [10, Theorem 4.1], [17,
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Theorem 1.1, Ch. XVIII, p. 468] and [6, Lemma 2]. We present below a result
that can be derived from the latter one.

In the next proposition we assume that (Y, �) is a commutative semigroup
which is uniquely divisible by 2, i.e., for each y ∈ Y there is a unique z ∈ Y with
2z := z � z = y. Next, given D ⊂ Y and n ∈ N we write 2nD := {2nz : z ∈ D},
where 20z = z and 2k+1z = 2(2kz) for k ∈ N0 := N ∪ {0}. From [6, Lemma 2]
we can easily deduce the following.

Proposition 3.3. Assume that (W, ∗) is a group, {z ∈ Y : 2z ∈ P0} ⊂ P0 and

Y =
⋃

n∈N0

2nP0.

If A : P0 → W satisfies (2.6) with P = P0, then there exists a unique solution
h : Y → W of Eq. (3.4) such that h(x) = A(x) for x ∈ P0.

Clearly, if Y is a linear topological space and we take (Y, �) = (Y,+), then
every balanced neighbourhood U of the origin fulfils the conditions

{z ∈ Y : 2z ∈ U} ⊂ U, Y =
⋃

n∈N0

2nU.

4. Applications

In this section we assume that R+ := [0,∞), J1 denotes the family of all first
category subsets of R and J0 stands for the family of all subsets of R that are
of the finite outer Lebesgue measure (see, e.g., [17]). The following theorem is
a simple consequence of the results from the previous sections.

Theorem 4.1. Let n ∈ N, T := {xn : x ∈ R}, S ⊂ R, P0 := {xn : x ∈ S}, and
P ⊂ P0. Assume that (W, ∗) is an abelian group,

T\P ∈ J1 ∪ J0,

and, in the case of even n, |x| ∈ S for x ∈ S. Then a function f : S → W
satisfies the conditional functional equation

f
(

n
√

xn + yn
)

= f(x) ∗ f(y), x, y ∈ S, xn + yn ∈ P, (4.1)

if and only if there exists a function h0 : R → W such that

h0(x + y) = h0(x) ∗ h0(y), x, y ∈ R, (4.2)

f(x) = h0

(
xn

)
, x ∈ S. (4.3)

Moreover, such a function h0 is unique.

Proof. According to Proposition 2.4 and Remark 2.5, with (Y, �) = (T,+) and
J being either J1 ∩ 2T or J0 ∩ 2T , respectively,

P ∩ (u + P ) �= ∅, u ∈ T. (4.4)
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Consequently, by Theorem 2.1, there exists a unique solution A : P0 → W of
the conditional equation

A(u + v) = A(u) ∗ A(v), u, v ∈ P0, u + v ∈ P, (4.5)

such that f(x) = A(xn) for x ∈ S.
Clearly, (4.5) yields

A(u + v) = A(u) ∗ A(v), u, v ∈ P, u + v ∈ P, (4.6)

whence Proposition 3.1, with D = P , implies that there exists a unique solution
h : T → W of the equation

h(x + y) = h(x) ∗ h(y), x, y ∈ T, (4.7)

such that h(x) = A(x) for x ∈ P .
Take u ∈ P0. Since P0 ⊂ T , there exist x, y ∈ P with u + x = y (see (4.4)).

Clearly, h(y) = h(u + x) = h(u) ∗ h(x) and

h(y) = A(y) = A(u + x) = A(u) ∗ A(x) = A(u) ∗ h(x).

Consequently

A(u) = h(y) ∗ h(x)−1 = h(u).

Thus we have proved that A(u) = h(u) for each u ∈ P0, which means that

f(x) = A(xn) = h
(
xn

)
, x ∈ S. (4.8)

This completes the proof in the case T = R (i.e., when n is odd).
If n is even (i.e., T = R+), then it is enough to notice that, in view of

Proposition 3.2 (with Y = R and P = P0 = T ), there exists a unique solution
h0 : R → W of the equation

h0(x + y) = h0(x) ∗ h0(y) (4.9)

with h(x) = h0(x) for each x ∈ T . �

In the case of odd n we can obtain even a bit stronger condition than (4.3).
Namely, we have the following:

Corollary 4.2. Let (W, ∗) be an abelian group, n ∈ N be odd, S ⊂ R and

R\S ∈ J1 ∪ J0.

Then a function f : R → W satisfies the functional equation

f
(

n
√

xn + yn
)

= f(x) ∗ f(y), x, y ∈ S, (4.10)

if and only if there exists a solution h0 : R → W to (4.2) such that

f(x) = h0

(
xn

)
, x ∈ R. (4.11)

Moreover, such a function h0 is unique.
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Proof. On account of Theorem 4.1 (with P = P0), there exists a unique so-
lution h0 : R → W to (4.2) such that (4.3) holds. Take z ∈ R. Let S0 :=
{−x : x ∈ S} and Sn := {xn : x ∈ S ∩ S0}. Clearly, R\S0 ∈ J1 ∪ J0, whence
R\Sn ∈ J1 ∪ J0 and therefore, by Proposition 2.4 and Remark 2.5,

(zn + Sn) ∩ Sn �= ∅.

Hence, there exist x, y ∈ S with zn + xn = yn and −x ∈ S. Consequently,

f(z) = f
(

n
√

(−x)n + yn
)

= f(−x) ∗ f(y) = h0((−x)n) ∗ h0(yn)

= h0((−x)n + yn) = h0(zn).

�

In the sequel we assume additionally that X is a normed space, ρ ≥ 0,
Ĵ ∈ {J1,J0}, R is a subsemigroup of the semigroup (R+,+) with

[ρ,∞)\R ∈ Ĵ , (4.12)

q : R+ → X is a function with

‖q(a)‖ = a, a ∈ R+, (4.13)

α > 0, and S ⊂ X is nonempty and has the property

P0 = {‖x‖α : x ∈ S} ⊂ R.

Moreover, P ⊂ P0 is such that R\P ∈ Ĵ (this means in particular that also
R\P0 ∈ Ĵ ).

Theorem 4.3. Let (W, ∗) be an abelian group. A function f : S → W satisfies
the conditional functional equation

f
(
q
((‖x‖α + ‖y‖α

)1/α ))
= f(x) ∗ f(y), (4.14)

x, y ∈ S, ‖x‖α + ‖y‖α ∈ P,

if and only if there exists a function h : R → W such that

h(x + y) = h(x) ∗ h(y), x, y ∈ R, (4.15)

f(x) = h
(‖x‖α

)
, x ∈ S. (4.16)

Moreover, such a function h is unique.

Proof. Let f be a solution to (4.14). Note that (4.14) is Eq. (2.5) with (Y, �) =
(R,+), Π(x) = ‖x‖α for x ∈ S, and p(a) = q

(
a1/α

)
for a ∈ P0. Next, by

Proposition 2.4 and Remark 2.5 (with (Y, �) = (R,+) and J = Ĵ ∩ 2R),

P ∩ (x + P ) �= ∅, x ∈ R. (4.17)

Hence, in view of Theorem 2.1, there exists a unique solution A : P0 → W of
the conditional equation

A(u + v) = A(u) ∗ A(v), u, v ∈ P0, u + v ∈ P, (4.18)
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such that f = A ◦ Π. The remaining reasonings are analogous as in the proof
of Theorem 4.1, but for the convenience of the reader we present them below.

Clearly, we have

A(u + v) = A(u) ∗ A(v), u, v ∈ P, u + v ∈ P. (4.19)

Consequently, according to Proposition 3.1 (with D = P , (Y, �) = (R,+) and
J = {B ⊂ R : B\(−∞, ν) ∈ Ĵ for some ν ∈ R}), there exists a unique
solution h : R → W of the equation

h(u + v) = h(u) ∗ h(v), u, v ∈ R, (4.20)

such that A(x) = h(x) for x ∈ P .
Take u ∈ P0. By (4.17), there is x, y ∈ P with x = u + y, whence

A(u) ∗ A(y) = A(u + y) = A(x) = h(x) = h(u + y)

= h(u) ∗ h(y) = h(u) ∗ A(y)

and consequently A(u) = h(u). Thus we have shown that A(v) = h(v) for each
v ∈ P0, which yields (4.16).

It remains to show the uniqueness of h. So, let h1 : R → W be a solution
of (4.15) with f(x) = h1

(‖x‖α
)

for x ∈ S. Clearly, h1(u) = h(u) = A(u) for
u ∈ P , whence we obtain h1 = h.

Since it is easy to check that (4.15) and (4.16) imply (4.14), this completes
the proof. �

Note that if a function f : S → W has form (4.16), then it fulfils Eq. (4.14)
with every function q : R+ → X such that (4.13) holds.

Remark 4.4. Theorem 4.1 shows that the general solution f : R → R of

f
(√

x2 + y2
)

= f(x) + f(y) (4.21)

is of the form f(x) = A(x2) with A : R → R additive.
Clearly this f is quadratic, i.e., f satisfies

f(x + y) + f(x − y) = 2f(x) + 2f(y), x, y ∈ R. (4.22)

It seems worthwhile to note that there are quadratic functions which are not
solutions of (4.21): Let B : R → R be additive. Then x �→ B(x)2 is of the
form x �→ A(x2), with additive A, only if B is continuous, thus of the form
x �→ B(x) = cx for some real c.

Proof. If A(x2) = B(x)2 for all x ∈ R, then A is nonnegative for positive
arguments and thus (see, e.g., [17, ch. IX]) there is some real d ≥ 0 such that
A(x) = dx for all x ∈ R. Hence |B(x)| =

√
d|x| for x ∈ R, which again (see

[17, ch. IX]) implies that B(x) = cx for all x ∈ R, where c2 = d.
Therefore, if B is a discontinuous additive function and f(x) = B(x)2 for

x ∈ R, then f is quadratic and does not satisfy (4.21). �
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The following remark concerns generalizations of functional equations of
the form

f
(

n
√

xn + yn
)

= f(x) ∗ f(y), (4.23)

with odd n ∈ N.

Remark 4.5. Let X be a nonempty set and N : X → R, q : R → X be such
that N ◦ q = idR. For α > 0 let pα : R → R be defined by pα(a) := sgn(a)|a|α
where sgn denotes the sign-function. Then a function f : X → W satisfies the
equation

f(q ◦ p1/α(pα(N(x)) + pα(N(y)))) = f(x) ∗ f(y), x, y ∈ X, (4.24)

if and only if there is some h : R → W satisfying (4.15) such that

f(x) = h(pα(N(x))), x ∈ X. (4.25)

Proof. Observe that (4.24) reads as

f(p(Π(x) + Π(y))) = f(x) ∗ f(y), x, y ∈ X (4.26)

with p = q ◦ p1/α, Π = pα ◦ N and that Π(p(a)) = a for a ∈ R, because
N ◦q = idR and pα ◦p1/α = idR. So, it is enough to use Theorem 2.1 (iii) (with
S = X, P = P0 = R, and (Y, �) = (R,+)). �

Let us yet present an example of results connected with Eq. (1.2). We use
a bit simpler approach than before. Namely, we have the following:

Corollary 4.6. Let n ∈ N, n > 1, X be a linear space over a field F, φ ∈ X,
α, β ∈ F, and a, b, c ∈ R+. Assume that α �= 0 or β �= 0. Then a function
f : R → X satisfies the functional equation

f
(

n
√

axn + byn + c
)

= αf(x) + βf(y) + φ (4.27)

if and only if there is a solution A : P0 → X of the functional equation

A(ax + by + c) = αA(x) + βA(y) + φ (4.28)

such that f(x) = A(xn) for x ∈ R, where P0 := {xn : x ∈ R}.
Proof. Write

x � y := ax + by + c, x, y ∈ P0,

u ∗ v := αu + βv + φ, u, v ∈ W,

where W := X. Then one of conditions (i) and (ii) of Theorem 2.1 is valid (with
Π(x) ≡ xn, p(u) ≡ n

√
u, and Y = P = P0). So, f : R → X satisfies (4.27) if and

only if there is a solution A : P0 → X of (4.28) such that f(x) ≡ A(xn). �
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For some information and further references on solutions to (4.28) we refer
to [17, ch. XIII, §10].

We end the paper with three simple corollaries concerning solutions to
functional Eqs. (1.3)–(1.5).

Corollary 4.7. A function f : (0,∞) → (0,∞) satisfies Eq. (1.3) if and only if
there exists c ∈ (0,∞) such that

f(x) =
c

x2
, x ∈ (0,∞). (4.29)

Proof. Let f : (0,∞) → (0,∞) be a solution to Eq. (1.3) and ∗ : (0,∞)2 →
(0,∞) be given by

x ∗ y =
xy

x + y
, x, y ∈ (0,∞).

It is easy to check that ∗ is cancellative. Hence, by Theorem 2.1 (with P0 =
P = (0,∞)), there exists a solution h : (0,∞) → (0,∞) to the functional
equation

h(x + y) = h(x) ∗ h(y) =
h(x)h(y)

h(x) + h(y)
(4.30)

with f(x) = h(x2) for x ∈ (0,∞). Next, note that g(x) = 1/h(x) for x ∈ (0,∞)
fulfils

g(x + y) =
h(x) + h(y)
h(x)h(y)

=
(

1
g(x)

+
1

g(y)

)
g(x)g(y)

= g(x) + g(y), x, y ∈ (0,∞).

Consequently, by Proposition 3.2 (with (W, ∗) = (Y, �) = (R,+), P0 = P =
(0,∞)), there exists a unique function A : R → R such that

A(x + y) = A(x) + A(y), x, y ∈ R, (4.31)

and g(x) = A(x) for x ∈ (0,∞). Clearly, A((0,∞)) ⊂ (0,∞), whence there
is c0 > 0 with A(x) = c0x for x ∈ R (see, e.g., [17]). This yields (4.29) with
c := 1/c0.

The converse is easy to check. �

Corollary 4.8. Assume that W is left cancellative and S = [1,∞). Then f :
S → W satisfies Eq. (1.4) if and only if there exists α ∈ W with αm+n =
αm ∗ αn for m,n ∈ N and f(x) = α�x� for x ∈ [1,∞), where α1 := α and
αm+1 := αm ∗ α for m ∈ N.
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Proof. Let f be a solution to Eq. (1.4). Theorem 2.1 (with P0 = N) implies
that there exists a solution h : N → W to the functional equation

h(x + y) = h(x) ∗ h(y) (4.32)

with f(x) = h(	x
) for x ∈ [1,∞). Let α := h(1). Then it is easy to show
by induction that h(n) = αn for n ∈ N, whence f(x) = α�x� for x ∈ [1,∞).
Moreover,

αm+n = f(m + n) = f(m) ∗ f(m) = αm ∗ αn, m, n ∈ N.

The converse is easy to check. �

Corollary 4.9. Let W be a commutative group and S = (0,∞)\N. Then f :
S → W satisfies Eq. (1.5) if and only if there exists a solution h : R → W to
Eq. (4.32) such that f(x) = h({x}) for x ∈ (0,∞)\N.
Proof. Let f be a solution to Eq. (1.5). Then, by Theorem 2.1, there exists a
function g : (0, 1) → W such that

g(x + y) = g(x) ∗ g(y), x, y ∈ (0, 1), x + y ∈ (0, 1), (4.33)

and f(x) = g({x}) for x ∈ (0,∞)\N. Next, by Proposition 3.3, there is g0 :
(0,∞) → W with

g0(x + y) = g0(x) ∗ g(y), x, y ∈ (0,∞),

and g(x) = g0(x) for x ∈ (0, 1). Finally, we deduce from Proposition 3.2 (with
(Y, �) = (R,+) and P = P0 = (0,∞)) that there exists a unique solution
h : R → W to (4.32) with g0(x) = h(x) for x ∈ (0,∞). This yields the form of
f .

The converse is easy to check. �
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[5] Brzdęk, J.: Remarks on solutions to the functional equations of the radical type. Adv.
Theory Nonlinear Anal. Appl. 1, 125–135 (2017)
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