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Abstract. We give a survey of results dealing with the problem of invariance of means which,
for means of two variables, is expressed by the equality K ◦ (M, N) = K. At the very
beginning the Gauss composition of means and its strict connection with the invariance
problem is presented. Most of the reported research was done during the last two decades,
when means theory became one of the most engaging and influential topics of the theory of
functional equations. The main attention has been focused on quasi-arithmetic and weighted
quasi-arithmetic means, also on some of their surroundings. Among other means of great
importance Bajraktarević means and Cauchy means are discussed.
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3.2. The Matkowski-Sutô problem . . . . . . . . . . . . . . . . . . 809
3.3. Some supplementary remarks . . . . . . . . . . . . . . . . . . 814
3.4. Solution in the class of weighted quasi-arithmetic means . . . 816
3.5. Generalized weighted quasi-arithmetic means in the sense of

Matkowski . . . . . . . . . . . . . . . . . . . . . . . . . 822
3.6. Around weighted quasi-arithmetic means . . . . . . . . . . . . 824
3.7. Close to invariance . . . . . . . . . . . . . . . . . . . . . . . . 830
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1. Introduction

The idea of a mean is as old in human cognition as that one of a number. Given
quantities x1, . . . , xp one can intuitively look for a mean of them as any number
M(x1, . . . , xp) lying somewhere between the extreme values of x1, . . . , xp:

min {x1, . . . , xp} ≤ M (x1, . . . , xp) ≤ max {x1, . . . , xp} . (1.1)

This is, in fact, probably the first formal definition of a mean, proposed by
Cauchy [28] in 1821. Inequalities (1.1) are known today as the internality
Cauchy condition. Three classical examples, well known already in the antiq-
uity, are (in what follows R denotes the set of real numbers and R

n is the
cartesian product of p copies of R) the arithmetic mean A : Rp → R:

A (x1, . . . , xp) =
x1 + . . . + xp

p
,

the geometric mean G : (0,+∞)p → (0,+∞):

G (x1, . . . , xp) = p
√

x1 . . . xp,

the harmonic mean H : (0,+∞)p → (0,+∞):

H (x1, . . . , xp) =
p

1
x1

+ . . . 1
xp

.

So, given an interval I, any function M : Ip → I satisfying inequalities (1.1) for
all x1, . . . , xp ∈ I is called a mean (more precisely: a mean of p numbers) on I.
A mean M : Ip → I is said to be strict if inequalities (1.1) are sharp whenever
min {x1, . . . , xp} < max {x1, . . . , xp}. In general, a mean on I is any function
M :
⋃∞

p=1 Ip → I such that condition (1.1) holds for all numbers x1, . . . , xp ∈ I
and p ∈ N. For some variants of the notion of a mean, definitions of various
families of means and relationships between them see the monograph [21] and
its previous versions [135,136] and [22]. A wealth of further information on
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means can be found also in Hardy, Littlewood and Pólya [74], in the book
[20] by Borweins and the survey [52] by Daróczy and Páles; see also the quite
recent book [153] by Gh. Toader and Costin.

For any x, y ∈ (0,+∞) we have

x + y

2
· 2

1
x + 1

y

= (x + y)
xy

x + y
= xy,

whence

G (A (x, y) ,H (x, y)) = G(x, y). (1.2)

This is the celebrated equality expressing the invariance of the geometric mean
with respect to the pair (A,H) of the arithmetic and harmonic means. This
is a good starting point to study the main problem of the paper which can be
formulated as follows:

Given an interval I and a positive integer p we are interested in means
K : Ip → I and M1, . . . ,Mp : Ip → I satisfying the invariance equation

K (M1 (x1, . . . , xp) , . . . ,Mp (x1, . . . , xp)) = K (x1, . . . , xp) . (1.3)

Considering that question we can try to solve two problems in fact. Namely,
given means M1, . . . ,Mp we are looking for a mean K satisfying Eq. (1.3) for
all x1, . . . , xp ∈ I. Another possibility is to fix K and then to ask about means
M1, . . . ,Mp such that (1.3) holds for x1, . . . , xp running through I. In both
tasks we say that the mean K is invariant with respect to the mean-type map-
ping (M1, . . . ,Mp) or, simply, (M1, . . . ,Mp)-invariant. Most often the invari-
ance problem is studied in classes of means described with the aid of function
generators and some parameters. This causes that the invariance Eq. (1.3)
takes different forms and becomes a functional equation in several variables,
with a number of unknown functions (the generators of the means) and pa-
rameters to be determined. Since those equations contain superpositions of
unknown functions, as a rule they are hard to solve. For that reason the au-
thors of the results presented here studied mostly the case p = 2. Then the
invariance Eq. (1.3) takes the form

K (M (x, y) , N (x, y)) = K (x, y) (1.4)

where K,M and N are means in two variables, defined on the same interval.
Equality (1.4) can also be considered from another point of view. Namely,
given means K and M on I one can ask about a mean N : I2 → I such that
(1.4) holds for all x, y ∈ I. A positive answer to that question was given by
Matkowski [108, Remark 1]:

Theorem 1.1. Let I be an interval and K be a symmetric mean on I, that is

K(x, y) = K(y, x), x, y ∈ I,
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which is continuous and strictly increasing in each variable. Then for every
mean M on I there exists a unique function N : I2 → I such that equality
(1.4) holds for every x, y ∈ I; moreover, N is a mean on I.

The (unique) mean N described by Theorem 1.1 is called the K-
complementary mean to M and is denoted by M (K). Note that

(
M (K)
)(K)

=
M and the mean K is

(
M,M (K)

)
-invariant. For these and some other basic

properties of the operation M �−→ M (K) the reader is referred to [108, Sec. 1].
The notion of complementary means is not a main focus of our attention in
this survey. However, it has pretty rich literature; the reader can consult the
recent paper [134] by Matkowski, Nowicka and Witkowski and the references
therein.

In what follows the term interval always refers to a nonempty connected
set of reals which is not a singleton. This convention will not be repeated in
the sequel.

We would like to pay attention mainly to three classes of means, namely
weighted quasi-arithmetic means, Bajrakterević means and Cauchy means. Of
course, the selection we made reflects our personal preference only and no
doubt this survey does not pretend to be comprehensive in any way.

2. Gauss composition

Equality (1.2) is, in fact, only an excuse to deal with the invariance Eq. (1.3)
or simply (1.4). Now we present a more grave reason for it, going 2 or even 3
centuries back.

It was Gauss (see [64] or [65]) who, following or rediscovering some ideas of
Lagrange [99], came to the following observation. Taking any x, y ∈ (0,+∞)
and putting x1 = x, y1 = y and then

xn+1 = A (xn, yn) , yn+1 = G (xn, yn) (2.1)

for all n ∈ N, one can check that both sequences converge to a common limit,
say A ⊗ G(x, y). The function A ⊗ G is a mean on (0,+∞). Gauss named it
the arithmetic-geometric mean (medium arithmeticum-geometricum). It turns
out that

A ⊗ G (A (x, y) , G (x, y)) = A ⊗ G(x, y), x, y ∈ (0,+∞),

that is the limit mean A⊗G is invariant with respect to the pair (A,G) which
defines the sequences (xn)n∈N

and (yn)n∈N
tending to A ⊗ G(x, y) (see (2.1)).

It was also observed by Gauss, and probably even sooner by Lagrange [99],
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that

A ⊗ G (x, y) =

⎛

⎜
⎝

2
π

π/2∫

0

1
√

x2 cos2 t + y2 sin2 t
dt

⎞

⎟
⎠

−1

,

for all x, y ∈ (0,+∞) (cf. [20,64,65] and [52]). The above equality shows a
rather surprising connection of invariant means and mean iterations to elliptic
integrals.

Using iterates of the map (A,G) : (0,+∞)2 → (0,+∞)2 we can rewrite the
convergence of Gaussian recurrences (2.1) in the form

(A,G)n −→ (A ⊗ G,A ⊗ G).

During the last 50 years this procedure was considerably generalized by a
number of mathematicians. Some important steps to this aim were made by
Lehmer [100] in 1971, Schoenberg [147] in 1982, and Foster and Phillips [63]
in 1984. Their ideas were followed and extended by Borweins in the book [20]
three years later. A percipient reader can find the following result there.

Theorem 2.1. (Generalized Gaussian Algorithm). Let I be an interval and let
M1, . . .Mp : Ip → I be continuous means such that

min {M1 (x1, . . . , xp) , . . . ,Mp (x1, . . . , xp)} = min {x1, . . . , xp} (2.2)

and

max {M1 (x1, . . . , xp) , . . . ,Mp (x1, . . . , xp)} = max {x1, . . . , xp} (2.3)

imply x1 = . . . = xp for all x1, . . . , xp ∈ I. Then there exists a continuous
mean K : Ip → I such that

lim
n→∞ (M1, . . . ,Mp)

n = (K, . . . ,K)

uniformly on every compact subset of Ip; moreover, K is the unique continuous
(M1, . . . ,Mp)-invariant mean:

K ◦ (M1, . . . ,Mp) = K.

The mean K uniquely determined in Theorem 2.1 is called the Gauss com-
position of the means M1, . . . ,Mp denoted by M1 ⊗ . . . ⊗ Mp. Observe that
now equality (1.3) assumed for all x1, . . . , xp ∈ I can be rewritten in the form

(M1 ⊗ . . . ⊗ Mp) ◦ (M1, . . . ,Mp) = M1 ⊗ . . . ⊗ Mp,

or simply
(M1 ⊗ M2) ◦ (M1,M2) = M1 ⊗ M2,

if p = 2. The reader looking for the proof in Borweins’ book [20] should compile
it combining some particular results, viz. [20, Theorems 8.2 and 8.3 jointly with
two sentences just before Theorem 8.2, Example 1 on p. 247, Theorem 8.8, the
paragraph just before Comments and Exercises on p. 269 and Example 7 on
p. 272].
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The Generalized Gaussian Algorithm, in its consolidated form, was redis-
covered by Matkowski [111]: firstly in 1999 for p = 2, under slightly stronger
assumptions (see Remark 1.2 below), and in the form presented in Theorem 2.1
in 2009 (see [118]). Notice that an important argument for the equality of some
basic limits in the proof presented in [111] was missing. That gap was filled in
[117, Proof of part 2, pp. 186-188]. However, already in 1988 Páles used the
Gauss iterates for two arbitrary strict means in two variables to solve a problem
dealing with some functional inequalities (see [140, proof of the Theorem]). In
1996 his reasoning was repeated by Matkowski and Wróbel in the paper [133]
to prove a generalization of Páles’ result. But none of them indicated that the
common limit of the mixed iterates is a mean that is invariant with respect
to the given pair of means (cf. also [35, Lemma 1]). In 2013 Matkowski gen-
eralized the “moreover” part of Theorem 2.1 proving the uniqueness of the
(M1, . . . ,Mp)-invariant mean in the class of all, not necessarily continuous,
means on I (see [127]). A lot of information about the Gaussian procedure as
well as some examples of Gauss compositions are provided in the survey article
[52] by Daróczy and Páles, published in 2002. The reader is also referred to the
paper [37] by Daróczy where a nice elementary proof of the existence of

√
2 is

presented making use of the Gaussian iteration built with the harmonic and
arithmetic means. This is, in fact, a classical Babylonian method of approx-
imately extracting the square root of 2. For that procedure as well as some
other iterative algorithms involving the arithmetic, geometric and harmonic
means the reader is referred to [27] by Carlson, published in 1971.

A version of Theorem 2.1 for semigroups of pairs of means and the invari-
ance with respect to such semigroups was proved by Matkowski [112, Theorem
2].

Remark 2.2. Matkowski (cf. also [52, Theorem 1.5]) proving in [111] his version
of Theorem 2.1, assumed that p = 2 and at least one of the means M1 and M2

is strict. For an arbitrary p that assumption can be reformulated as follows: at
most one of the means M1, . . . ,Mp is not strict. Observe that this implies the
property of M1, . . . ,Mp postulated in Theorem 2.1. This is obvious if p = 1
as the unique mean on I in one variable is the identity function. So consider
the case p ≥ 2. Without loss of generality we may assume that the means
M1, . . . ,Mp−1 are strict. Fix any x1, . . . , xp ∈ I such that equalities (2.2) and
(2.3) hold and suppose that x1 = . . . = xp is not true. Then min {x1, . . . , xp} <
max {x1, . . . , xp} whence

min {x1, . . . , xp} < Mi (x1, . . . , xp) < max {x1, . . . , xp}
for all i = 1, . . . , p − 1. Thus (2.2) and (2.3) imply

Mp(x1, . . . , xp) = min {x1, . . . , xp}
and

Mp(x1, . . . , xp) = max {x1, . . . , xp} ,
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respectively, which is impossible. Consequently, x1 = . . . = xp and we are
done.

Recently, the Generalized Gauss Algorithm has been extended to means
depending on parameter (see [84]). Given an interval I, a positive integer p and
a non-void set Ω, a function M : Ip × Ω → I is called a parametrized mean on
I if M (·, ω) is a mean for all ω ∈ Ω. The main result of [84], viz. Theorem 3.5,
makes use of iterates (M1, . . . ,Mp)

n of the mapping (M1, . . . ,Mp) : Ip × Ω →
Ip. They are defined according to the following definition coming from the
paper [14] by Baron and Kuczma (see also [60] by Diamond for a parallel
notion introduced independently).

For a fixed set Ω put Ω∞ : = ΩN. Given a set X and a function f : X×Ω →
X, define the iterates fn : X × Ω∞ → X, n ∈ N, by the equality

f1 (x, ω1, ω2, . . .) : = f (x, ω1)

and the recurrence

fn+1 (x, ω1, ω2, . . .) : = f
(
f1 (x, ω1, ω2, . . .) , ωn+1

)

postulated for all x ∈ X, (ω1, ω2, . . .) ∈ Ω∞ and n ∈ N. Observe that the n-th
iterate fn (·, ω1, ω2, . . .) depends, in fact, on the first parameters ω1, . . . , ωn

only.
Theorem 3.5 of [84] generalizes Theorem 2.1 to the case when the set Ω of

parameters is a compact topological space. That assumption is essential for
the validity of Theorem 3.5 as follows from Example 3.4 presented in [84].

3. Invariance in the class of weighted quasi-arithmetic means

3.1. Quasi-arithmetic means

They as well as more general weighted quasi-arithmetic means constitute
classes naturally extending the arithmetic mean A. It seems that the idea
of a quasi-arithmetic mean was formed in [94] by Knopp already in 1928.
Then the notion was formally introduced independently and almost simulta-
neously by Kolmogoroff [97], Nagumo [137] in 1930 and by de Finetti [62] a
year later. Given an interval I we denote by CM(I) the class of continuous
strictly monotonic functions mapping I into R. A mean M :

⋃∞
n=1 In → I is

called quasi-arithmetic if there is a ϕ ∈ CM(I) such that

M (x1, . . . , xn) = ϕ−1

(
ϕ (x1) + . . . + ϕ (xn)

n

)

for all x1, . . . , xn ∈ I and n ∈ N. Any such ϕ is called a generator of the mean
M . In what follows the quasi-arithmetic mean generated by ϕ will be denoted
by Aϕ. Observe that the mean Aϕ is conjugated to the arithmetic mean by
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ϕ. Namely, if n ∈ R is fixed and we consider Aϕ as a mean in n variables:
Aϕ : In → I, then

Aϕ = ϕ−1 ◦ A ◦ (ϕ, . . . , ϕ)
where we take n copies of ϕ in the parentheses. There is at least one name
more, namely that of Chisini, when thinking about the origins of the notion of
quasi-arithmetic mean; de Finetti based his paper [62] mainly on some ideas of
Chisini [29] presented in 1929, that is still a year before papers [97] and [137]
by Kolmogoroff and Nagumo, respectively. Nowadays quasi-arithmetic means
are sometimes also called Kolmogoroff means.

The classical means of the ancient world: the arithmetic mean A, the geo-
metric mean G and the harmonic mean H are quasi-arithmetic. Indeed, since

A(x, y) =
x + y

2
, x, y ∈ R,

G(x, y) =
√

xy = exp
(

log x + log y

2

)

, x, y ∈ (0 + ∞),

and

H(x, y) =
2xy

x + y
=

1
1
x+ 1

y

2

, x, y ∈ (0 + ∞),

their generators ϕ are given by ϕ(x) = x, ϕ(x) = log x and ϕ(x) = 1/x,
respectively.

There is a vast literature dealing with quasi-arithmetic means. First of all,
chronologically, we mention the paper [74] by Hardy, Littlewood and Pólya.
Next, the late forties has a rich bibliography relating to quasi-arithmetic
means: [1,5,76,86–88,93,146,152] (see also [30] and [31]). Some newer results
have been described for instance in [96,107,142–145]. The last one deals with
the speed of convergence of Gauss iterations for a class of mean-type mappings
built with some quasi-arithmetic means. Also some books deal with this kind
of means: [2] by Aczél, [22] by Bullen, Mitrinović and Vasić, [4] by Aczél and
Dhombres, finally [21] due to P.S. Bullen.

The quasi-arithmetic means considered in the present paper are in two
variables. The below famous characterization of quasi-arithmetic means was
proved by Aczél (cf. [1] and [2, 6.4.1]):

Theorem 3.1. Let I be an interval and let M : I2 → I. The function M is a
quasi-arithmetic mean on I if and only if M is a continuous, strictly increasing
in each variable, reflexive

M(x, x) = x, x ∈ I,

and symmetric
M(x, y) = M(y, x), x, y ∈ I,

solution of the bisymmetry equation

M (M(x, y),M(u, v)) = M (M(x, u),M(y, v)) .
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The following useful notion us allows to simplify formulations and proofs
of results dealing with means having function generators, so, in particular,
concerning the problem of invariance in the class of quasi-arithmetic means.
Given a set X we say that functions ϕ : X → R and ψ : X → R are equivalent
or ϕ is equivalent to ψ if there are numbers a ∈ R \ {0} and b ∈ R such that

ψ(x) = aϕ(x) + b, x ∈ X;

then we write

ϕ(x) ∼ ψ(x), x ∈ X,

or, simply, ϕ ∼ ψ. Clearly, ∼ is an equivalence relation in the set R
X of

real-valued functions defined on X.
Using this notion one can give the below answer to the equality problem for

quasi-arithmetic means (see [74,95] and [2, Sec. 6.4, Theorem 2] also [89,90],
[35, Theorem 2] and [52, Theorem 2.3]).

Theorem 3.2. Let I be an interval and ϕ,ψ ∈ CM(I). Then Aϕ = Aψ if and
only if ϕ ∼ ψ.

We will refer to this result while studying the invariance problem in the class
of quasi-arithmetic means.

3.2. The Matkowski-Sutô problem

Fix a non-trivial interval I ⊂ R. During the 5th International Conference on
Functional Equations and Inequalities held in Muszyna-Z�lockie (Poland) in
1995 Matkowski asked about all functions ϕ,ψ ∈ CM(I) such that the pair
(ϕ,ψ) satisfies the functional equation

ϕ−1

(
ϕ(x) + ϕ(y)

2

)

+ ψ−1

(
ψ(x) + ψ(y)

2

)

= x + y. (3.1)

This problem was published in [108] but only in 1998. A year later he gave the
following partial answer (see [109, Theorem 1]).

Theorem 3.3. Let at least one of functions ϕ,ψ ∈ CM(I) be twice continuously
differentiable. Then the pair (ϕ,ψ) satisfies Eq. (3.1) if and only if either

ϕ(x) ∼ x, x ∈ I, and ψ(x) ∼ x, x ∈ I, (3.2)

or

ϕ(x) ∼ eax, x ∈ I, and ψ(x) ∼ e−ax, x ∈ I, (3.3)

with some a ∈ R \ {0}.
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Observe that Eq. (3.1) can be rewritten in the equivalent form

A ◦ (Aϕ, Aψ
)

= A,

which expresses the invariance of the arithmetic mean A with respect to the
pair
(
Aϕ, Aψ

)
of quasi-arithmetic means. So Theorem 3.3 can be reformulated

as follows (cf. also Theorem 3.2).

Theorem 3.4. Let at least one of functions ϕ,ψ ∈ CM(I) be twice continuously
differentiable. Then the arithmetic mean A is invariant with respect to the pair(
Aϕ, Aψ

)
if and only if either Aϕ = Aψ = A, or

Aϕ(x, y) =
1
a

log
(

eax + eay

2

)

and Aψ(x, y) = −1
a

log
(

e−ax + e−ay

2

)

(3.4)

for every x, y ∈ I, with some a ∈ R \ {0}.
The regularity assumption about the generators ϕ and ψ is not quite natural
since the formulation of the original problem does not involve regularity con-
ditions at all. But it was very useful in Matkowski’s proof. The crucial tool in
his reasoning is the following fact.

Lemma 3.5. If ϕ,ψ ∈ CM(I) are twice differentiable functions and the pair
(ϕ,ψ) satisfies Eq. (3.1), then

ϕ′(x)ψ′(x) = c, x ∈ I,

with some c ∈ R \ {0}.
Simultaneously, Hungarian colleagues were also working on Matkowski’s

problem. First of all they discovered the elderly and forgotten two-part pa-
per [149,150] written by Sutô and published in the Tôhoku Mathematical
Journal in 1914. It deals with a number of functional equations, in partic-
ular with Eq. (3.1). Sutô’s result (see [150]) requires stronger regularity as-
sumptions than those made by Matkowski in Theorem 3.3; it reads as fol-
lows.

Theorem 3.6. Let ϕ,ψ ∈ CM(I) be analytic. Then the pair (ϕ,ψ) satisfies
Eq. (3.1) if and only if either condition (3.2), or (3.3) with some a ∈ R \ {0},
holds.

A little bit after the paper [108] was accepted for publication, viz. at the
end of 1998, Daróczy and Páles substantially weakened the assumptions of
Theorem 3.3 by omitting the word twice and achieved the below generaliza-
tion.

Theorem 3.7. Let at least one of functions ϕ,ψ ∈ CM(I) be continuously
differentiable. Then the pair (ϕ,ψ) satisfies Eq. (3.1) if and only if either
condition (3.2), or (3.3) with some a ∈ R \ {0}, holds.
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It was published only in 2001 in their paper [49], where the so-called conjugate
arithmetic means, that is means on I of the form

ϕ−1

(

ϕ(x) + ϕ(y) − ϕ

(
x + y

2

))

with ϕ ∈ CM(I), have been studied (see also subsection 2.5.b). The main
result of [49], that is Theorem 1, provides all continuously differentiable func-
tions ϕ generating conjugate arithmetic means which are simultaneously quasi-
arithmetic. Making use of this the authors deduced Theorem 3.7. Its immedi-
ate proof was presented by Daróczy and Páles in the article [52] a year later.
The following extension theorem, proved by Daróczy, Maksa and Páles in [47]
turned out to be a useful tool there (see also [52, Theorem 3.14]), and in the
subsequent research which finally solved the Matkowski-Sutô problem (see [52,
Sec. 4]).

Proposition 3.8. (Extension theorem) Let ϕ,ψ ∈ CM(I). If the pair (ϕ,ψ)
satisfies Eq. (3.1) and there is a non-trivial interval K ⊂ I such that

ϕ(x) ∼ x, x ∈ K, and ψ(x) ∼ x, x ∈ K, (3.5)

or

ϕ(x) ∼ eax, x ∈ K, and ψ(x) ∼ e−ax, x ∈ K, (3.6)

with some a ∈ R \ {0}, then either condition (3.2) or (3.3) holds.

Making some simple calculations one can show that when proving Theo-
rem 3.7 we can confine ourselves to the case when both functions ϕ,ψ are
continuously differentiable. The next step is to observe that ϕ′(x) 
= 0 and
ψ′(x) 
= 0 for x’s running through a non-trivial subinterval of I. In fact the
following much more general fact holds true (see [52, Theorem 4.8]).

Proposition 3.9. Let ϕ,ψ ∈ CM(I) and assume that the pair (ϕ,ψ) satisfies
Eq. (3.1). Then there exists a non-trivial interval K ⊂ I on which ϕ and ψ
are differentiable and ϕ′(x) 
= 0 and ψ′(x) 
= 0 for all x ∈ K.

The above theorem was an important tool while solving the Matkowski-Sutô
problem in the general form. It allows us to make the step from the continuity of
a solution to its differentiability on a subinterval. We postpone the description
of next steps in proving Theorem 3.7 for a moment to point out main facts
resulting in a proof of Proposition 3.9.

First of all, making use of Lebesgue’s theorem on differentiating monotonic
functions almost everywhere (with respect to the Lebesgue measure) and the
fact that the Lebesgue integral of the derivative of an absolutely continuous
function over an interval is the increment of the given function, one can come
to the following important fact (see [52, Theorems 4.1 and 4.3]).

Proposition 3.10. Let ϕ,ψ ∈ CM(I) and assume that the pair (ϕ,ψ) satisfies
Eq. (3.1). Then the functions ϕ,ψ, ϕ−1, ψ−1 are locally Lipschitz.
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Using this result and again Lebesgue’s theorem we can prove the next crucial
fact providing points of differentiability of ϕ and ψ (see [52, Theorem 4.7].

Proposition 3.11. Let ϕ,ψ ∈ CM(I) and t0 ∈ J : = ϕ(I). If the pair (ϕ,ψ)
satisfies Eq. (3.1), then either

ϕ−1 (t0 + t) + ϕ−1 (t0 − t) = 2ϕ−1 (t0) , t ∈ (J − t0) ∩ (t0 − J) , (3.7)

or the function ϕ−1 is differentiable at t0.

Since the set of all t’s from J satisfying condition (3.7) is a closed subset of J
it can be deduced from Proposition 3.11 that both ϕ and ψ are differentiable
on a non-trivial interval K ⊂ I. Moreover, it follows from Proposition 3.10
that ϕ′(x) 
= 0 and ψ′(x) 
= 0 whenever x ∈ K. This gives the assertion of
Proposition 3.9.

Now coming back to the sketch of the proof of Theorem 3.7, we may assume
that the functions ϕ and ψ are continuously differentiable and, in addition,
their derivatives do not vanish in the interval K. Since the derivative of any
function defined on an interval has the Darboux property, we may assume that,
in fact, ϕ′(x) > 0 and ψ′(x) > 0 for all x ∈ K. By virtue of Proposition 3.8 it
is enough to prove that either condition (3.5), or (3.6) with some a ∈ R \ {0},
holds. This, however, can be easily obtained having the following series of
lemmas (see [52, Theorem 3.7, and Lemmas 3.8 and 3.9], also [49, Lemma 3]).

Lemma 3.12. Let ϕ,ψ ∈ CM(I) be differentiable functions with positive deriva-
tives. If the pair (ϕ,ψ) satisfies Eq. (3.1), then (f, g), where f = ϕ′ ◦ ϕ−1 and
g = ψ′ ◦ ϕ−1, is a solution of the equation

2f

(
u + v

2

)

(g(v) − g(u)) = f(u)g(v) − f(v)g(u). (3.8)

Actually this results was formulated under the additional assumption of the
continuity of ϕ′ and ψ′ which, however, was not used in its proof (cf. [52,
Theorem 3.7]).

Lemma 3.13. If f and g are functions mapping continuously an interval J into
(0,+∞) and the pair (f, g) satisfies Eq. (3.8), then there exists a c ∈ (0,+∞)
such that

f(u)g(u) = c, u ∈ J.

The last lemma deals with the equation
(

f

(
u + v

2

)

− f(u) + f(v)
2

)

(f(u) − f(v)) = 0 (3.9)

containing only one unknown function.

Lemma 3.14. If f is a continuous real-valued solution of Eq. (3.9), defined on
an interval J , then there exist a, b ∈ R such that

f(u) = au + b, u ∈ J.
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A little bit earlier the Hungarian group, working hard to remove the regu-
larity assumption in Theorem 3.7, also tried to steer the research in a different
direction. This other approach was connected with the notion of strict com-
parability of means (cf. [74] also [98, Sec. VIII. 3]. Two means M and N on I
are said to be strictly comparable if

M(x, y) � N(x, y), x, y ∈ I, x 
= y,

where � is one of the relations =, <,>. Making use of this notion, already
at the beginning of 1999, Daróczy and Maksa proved what follows (see [46,
Theorem 3]).

Theorem 3.15. Let ϕ,ψ ∈ CM(I) be functions generating strictly comparable
means Aϕ and Aψ. Then the pair (ϕ,ψ) satisfies Eq. (3.1) if and only if either
condition (3.2), or (3.3) with some a ∈ R \ {0}, holds.

Now we briefly report on the ultimate answer to the Matkowski-Sutô prob-
lem that was given by Daróczy and Páles in 2002 and reads as follows (see [52,
Theorem 4.12]).

Theorem 3.16. Let ϕ,ψ ∈ CM(I). Then the pair (ϕ,ψ) satisfies Eq. (3.1) if
and only if either condition (3.2), or (3.3) with some a ∈ R \ {0}, holds.
First of all observe that, according to Propositions 3.9 and 3.8 , we may assume
that the functions ϕ and ψ are differentiable and have nonvanishing derivatives.
The derivative of any function defined on an interval has the Darboux property.
Thus, replacing if necessary ϕ by −ϕ and/or ψ by −ψ (cf. Theorem 3.2), we
may additionally assume that ϕ′(x) > 0 and ψ′(x) > 0 for all x ∈ I. Then,
putting f = ϕ′ ◦ ϕ−1, g = ψ′ ◦ ϕ−1 and applying Lemma 3.12, we see that the
pair (f, g) is a solution of Eq. (3.8). Let J = ϕ(I) and notice that f and g
are elements of the set D(J) of all the compositions d ◦ χ, where χ ∈ CM(J)
and d is the positive derivative of a function defined on the interval χ(J). The
crucial role, in the next argument leading to the assertion of Theorem 3.16, is
played by the following result (see [52, Theorem 4.10]).

Proposition 3.17. If f, g ∈ D(J) and the pair (f, g) satisfies Eq. (3.8), then
the function f is continuous in a non-trivial subinterval of the interval J .

While proving this result one may assume that both f and g are constant on
no non-trivial subinterval of J . Since derivatives are of Baire class 1, so are
elements of the class D(J). Thus, by virtue of Baire’s theorem (cf. for instance,
[138, Theorem 7.3], the set of all points of continuity of the function g is a dense
Gδ subset of the interval J . Using this fact one can show the existence of such
u0, v0 ∈ J that g is continuous at u0, v0 and g (u0) 
= g (v0). Therefore, since
the pair (f, g) satisfies Eq. (3.8), we see that

f

(
u + v

2

)

=
1
2

f(u)g(v) − f(v)g(u)
g(v) − g(u)
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for u and v running through neighbourhoods U and V of u0 and v0, respec-
tively. Now, using one of the results of Járai, viz. [77, Theorem 8.6], important
in proving regularity, one can prove the continuity of f on a non-trivial interval.
Now, making use of Proposition 3.17 we see that the function ϕ′ ◦ ϕ−1 is
continuous on a non-trivial subinterval of ϕ(I). Consequently, ϕ is continu-
ously differentiable on a non-trivial subinterval of I, and thus the assertion of
Theorem 3.16 follows from Theorem 3.7.

We complete this subsection with the below reformulation of Theorem 3.16
in the language of the invariance of means. It also generalizes Theorem 3.4.

Theorem 3.18. Let ϕ,ψ ∈ CM(I). Then the arithmetic mean A is invariant
with respect to the pair

(
Aϕ, Aψ

)
if and only if either Aϕ = Aψ = A, or the

means Aϕ and Aψ are given by condition (3.4) with some a ∈ R \ {0}.

3.3. Some supplementary remarks

At the very beginning we solve the problem of invariance in the class of quasi-
arithmetic means. The below result is an almost immediate consequence of
Theorem 3.18.

Theorem 3.19. Let ϕ,ψ, χ ∈ CM(I). The mean Aχ is invariant with respect
to the pair

(
Aϕ, Aψ

)
, that is

Aχ = Aϕ ⊗ Aψ, (3.10)

if and only if either Aϕ = Aψ = Aχ, or

Aϕ(x, y) = χ−1

(
1
a

log
(

eaχ(x) + eaχ(y)

2

))

and

Aψ(x, y) = χ−1

(

−1
a

log
(

e−aχ(x) + e−aχ(y)

2

))

for every x, y ∈ I, with some a ∈ R \ {0}.
Equation (3.10) can be seen as that expressing the generalized Matkowski-

Sutô problem in the class of quasi-arithmetic means. Clearly, in different classes
of means the answer to this problem can vary. Among quasi-arithmetic means
especially important are power means or Hölder means which, in fact, con-
stitute the class of all homogeneous quasi-arithmetic means (see [74]). Given
a real number p we denote by Hp the power mean on the interval (0,+∞),
defined by

Hp(x, y) =

⎧
⎨

⎩

(
xp+yp

2

) 1
p

, if p 
= 0,√
xy, if p = 0.
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So Hp = Ahp , where hp : (0,+∞) → R is given by

hp(x) =
{

xp, if p 
= 0,
log x, if p = 0,

(3.11)

for each p ∈ R. The invariance problem (the generalized Matkowski-Sutô prob-
lem) in the class of power means was solved in [100] by Lehmer. There one
can find the following result (see also [52, Theorem 2.9]).

Theorem 3.20. Let p, q, s ∈ R. Then mean Hs is invariant with respect to the
pair (Hp,Hq), that is

Hs = Hp ⊗ Hq, (3.12)

if and only if either s 
= 0 and p = q = s, or s = 0 and p + q = 0.

This was rediscovered by Kahlig and Matkowski (see [91, Theorem 1] in 1997.
In fact, in Theorem 1 from [91] one can find more. In fact, instead of the
equation

Hs ◦ (Hp,Hq) = Hs,

which is actually (3.12), the equation

Hs ◦ (Hp,Hq) = Hr

with unknown real numbers p, q, r, s was solved there.
Among papers connected with the Matkowski-Sutô problem there is [71] by

G�lazowska, the second present author and Matkowski, which should be also
mentioned. There the authors determined all quasi-arithmetic means Aϕ, Aψ

generated by twice continuously differentiable ϕ,ψ, and the real numbers r, s
such that

rAϕ + sAψ = A.

Actually we may assume that r + s = 1. Indeed, even more generally: if M
and N are means on a common non-trivial interval I and rM + sN is a mean
with some r, s ∈ R, then, by the reflexivity of the means, we have

rx + sx = rM(x, x) + sN(x, x) = (rM + sN)(x, x) = x

for all x ∈ I, whence r + s = 1 as I is non-trivial. So, in fact, we deal with the
equation

rAϕ + (1 − r)Aψ = A

or, equivalently,

rϕ−1

(
ϕ(x) + ϕ(y)

2

)

+ (1 − r)ψ−1

(
ψ(x) + ψ(y)

2

)

=
x + y

2
(3.13)

for all x, y running through the given interval. Observe that putting here r =
1/2 we come to Eq. (3.1) completely solved in the present section.
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For some applications of the results presented in Section 3.3, both in the
theory of means and in economy, as well as for some further facts and open
problems concerning invariance in the class of quasi-arithmetic means, the
reader is referred to [52, Chap. 5].

3.4. Solution in the class of weighted quasi-arithmetic means

Given an interval I, a function ϕ ∈ CM(I) and positive numbers p1, . . . , pn

summing up to 1 we define the weighted quasi-arithmetic mean Aϕ
(p1,...,pn) : In

→ I putting

Aϕ
(p1,...,pn) (x1, . . . , xn) = ϕ−1 (p1ϕ (x1) + . . . + pnϕ (xn))

for all x1, . . . , xn ∈ I. The function ϕ is called its generator and p1, . . . , pn

are the weights of the mean. Clearly, the arithmetic mean Aϕ in n variables
is weighted with p1 = . . . = pn = 1/n. In what follows we focus on weighted
quasi-arithmetic means in two variables. Then instead of Aϕ

p,1−p we write Aϕ
p ,

so given ϕ ∈ CM(I) and p ∈ (0, 1) we have

Aϕ
p (x, y) = ϕ−1 (pϕ (x) + (1 − p)ϕ (y))

for all x, y ∈ I.
The below extension of Theorem 3.2 to weighted quasi-arithmetic means

will be useful in the next discussion (see [2, Sec. 6.4, Theorem 2], also [106]).

Theorem 3.21. Let I be an interval, ϕ,ψ ∈ CM(I) and p, q ∈ (0, 1). Then
Aϕ

p = Aψ
q if and only if ϕ ∼ ψ and p = q.

The problem of invariance in the class of weighted quasi-arithmetic means
on the given interval I is to look for all functions ϕ,ψ, χ ∈ CM(I) and numbers
p, q, r ∈ (0, 1) such that the mean Aχ

r is the Gauss composition of Aϕ
p and Aψ

q :

Aχ
r = Aϕ

p ⊗ Aψ
q . (3.14)

Considering the definition of Gauss composition and the form of weighted
quasi-arithmetic means one can write Eq. (3.14) in the following equivalent
form:

rχ
(
ϕ−1 (pϕ(x) + (1 − p)ϕ(y))

)
+ (1 − r)χ

(
ψ−1 (qψ(x) + (1 − q)ψ(y))

)

= rχ(x) + (1 − r)χ(y). (3.15)

Observe that putting here χ = id|I and p = q = r = 1/2 we come to Eq. (3.1).
It seems that it was paper [53] by Daróczy and Páles where a first step in

solving the general form of (3.15) was made. There the authors determined
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all continuously differentiable, with nonvanishing derivatives functions ϕ,ψ ∈
CM(I), satisfying the equation

rϕ−1 (rϕ(x) + (1 − r)ϕ(y)) + (1 − r)ψ−1 (rψ(x) + (1 − r)ψ(y))

= rx + (1 − r)y
(3.16)

in the case when r ∈ (0, 1)\{1/2} (see [53, Theorem]). Since (3.16) for r = 1/2
is simply (3.1), it follows from Theorem 3.16 that in the case r ∈ (0, 1) we are
done in the considered class of functions. Clearly, Eq. (3.16) is a particular
case of (3.15) with χ = idI and p = q = r.

In the same year, 2003, Daróczy and Páles gave the complete solution of
Eq. (3.16) in the class CM(I), proving the following result in [54]. The set of
solutions in this class is exactly the same as that described in [53].

Theorem 3.22. Let ϕ,ψ ∈ CM(I) and r ∈ (0, 1) \ {1/2}. Then the pair (ϕ,ψ)
satisfies Eq. (3.16) if and only if condition (3.2) holds.

Consequently, it follows from Theorems 3.16 and 3.22 that Eq. (3.16), al-
though formally more general than (3.1), admits the same solutions (ϕ,ψ).
One of the tools allowing us to pass from the result of [53] to Theorem 3.22
was an extension theorem for solutions of Eq. (3.16) obtained by Daróczy,
Hajdu and Ng [43] in 2003.

Another particular case of Eq. (3.15) different from (3.16), viz. the equation

ϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + ϕ−1 ((1 − p)ϕ(x) + pϕ(y)) = x + y, (3.17)

was investigated by Burai in [23]. Clearly, we come to (3.17) putting χ = id|I ,
q = 1 − p and r = 1/2 in Eq. (3.15). On the other hand (3.17) with p = 1/2
becomes Eq. (3.1). It turns out that also this problem has the same set of
solutions as the cases considered previously. Its detailed description is given in
the following result (see [23, Theorem 6]).

Theorem 3.23. Let ϕ,ψ ∈ CM(I) be continuously differentiable on a non-
trivial subinterval of the interval I and let p ∈ (0, 1). Then the pair (ϕ,ψ)
satisfies Eq. (3.17) if and only if either condition (3.2), or (3.3) with some
a ∈ R \ {0}, holds.
Among the tools, useful in proving this result, there is an extension theorem
(see [23, Theorem 2]) generalizing the one formulated here as Proposition 3.8.

After a short break, the investigations came back to Poland. In 2006 the
first present author and Matkowski published the following result dealing with
the equation

rϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + (1 − r)ψ−1 (qψ(x) + (1 − q)ψ(y))

= rx + (1 − r)y,
(3.18)

which is (3.15) with χ = idI (see [85, Theorem 1]).
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Theorem 3.24. Let ϕ,ψ ∈ CM(I) be twice continuously differentiable and
p, q, r ∈ (0, 1). Then the pair (ϕ,ψ) and the triple (p, q, r) satisfy Eq. (3.18) if
and only if
(i) r = q

1−p+q

and
(ii) condition (3.2) holds or r = 1/2, p + q = 1 and condition (3.3) with some
a ∈ R \ {0} holds.

A key role in the proof of Theorem 3.24 is played by the below description
of conditionally homogeneous weighted quasi-arithmetic means (see [44], also
[85, Proposition 1]).

Proposition 3.25. Assume that I ⊂ (0,+∞). Let σ ∈ CM(I) and s ∈ (0, 1).
The mean Aσ

s is conditionally homogeneous:

Aσ
s (tx, ty) = tAσ

s (x, y)

for all x, y ∈ I and t ∈ (0,+∞) with tx, ty ∈ I if and only if either

σ(x) ∼ xp, x ∈ I,

for some p ∈ R \ {0}, or
σ(x) ∼ log x, x ∈ I,

that is Aσ
s is the weighted power mean: either

Aσ
s (x, y) = (sxp + (1 − s)yp)

1
p , x, y ∈ I,

for some p ∈ R \ {0}, or
Aσ

s (x, y) = xsy1−s, x, y ∈ I.

This result generalizes the classical theorem stating that power means Hp,
where p ∈ R, are the only homogeneous quasi-arithmetic means on (0,+∞)
(see [74]). For further generalizations the reader is referred to paper [25] by
Burai and the first author, where the conditional homogeneity of Makó–Páles
means of the form

I2 � (x, y) �−→ ϕ−1

(∫ 1

0

ϕ (tx + (1 − t)y) dμ(t)
)

,

where ϕ ∈ CM(I) and μ is a probability Borel measure on [0, 1], is examined
(see [25, Theorem 3.1]). This class is a common extension of the classes of
weighted quasi-arithmetic means and Lagrangian means. For more information
on Makó–Páles means the reader is referred to Subsection 6.1, which is devoted
mainly to the invariance of the arithmetic mean A as well as the geometric
mean G with respect to a pair of Makó–Páles means.

Besides Proposition 3.25 the below three analogues of Lemmas 3.12–3.14
play a crucial role while proving Theorem 3.24 (see [85, Lemmas 2–4]).
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Lemma 3.26. Let ϕ,ψ ∈ CM(I) be differentiable functions with positive deriva-
tives and let p, q, r ∈ (0, 1). If the pair (ϕ,ψ) satisfies Eq. (3.18), then (f, g)
where f = ϕ′ ◦ ϕ−1 and g = ψ′ ◦ ϕ−1, is a solution of the equation

f (pu + (1 − p)v) [(1 − q)g(v) − (1 − p)g(u)]

= p(1 − q)f(u)g(v) − q(1 − p)f(v)g(u).
(3.19)

In the case when p = q = 1/2 Eq. (3.19) becomes (3.8), so Lemma 3.26
generalizes Lemma 3.12. The authors of [85] assumed in Lemma 2 there that ϕ′

and ψ′ are continuous but this is superfluous (cf. also the comment just after
Lemma 3.12). The next result, although deals with solutions of Eq. (3.19),
which is more general than Eq. (3.8), does not extend Lemma 3.13. This is
because of the stronger assumption imposed on solutions here.

Lemma 3.27. Let p, q ∈ (0, 1). If f and g are continuously differentiable func-
tions mapping an interval J into (0,+∞) and the pair (f, g) satisfies equation
(3.19), then there exists a c ∈ (0,+∞) such that

f(u)pg(u)1−q = c, u ∈ J. (3.20)

No doubt the last lemma, originating from paper [85], has the most involved
argument. It deals with the equation

f (pu + (1 − p)v)
[
(1 − q)f(v)−p/(1−q) − (1 − p)f(u)−p/(1−q)

]

= p(1 − q)f(u)f(v)−p/(1−q) − q(1 − p)f(v)f(u)−p/(1−q),

(3.21)
which, after setting p = q = 1/2, reduces to Eq. (3.9). Therefore the below
lemma generalizes Lemma 3.14.

Lemma 3.28. Let p, q ∈ (0, 1). If f is a continuous real-valued solution of
Eq. (3.21), defined on an interval J , then there exists a, b ∈ R such that

f(u) = au + b, u ∈ J ;

if, in addition, p + q 
= 1, then a = 0.

Finally the problem of invariance in the class of weighted quasi-
arithmetic means, i.e. Eq. (3.14), was completely solved in [78] by the first
present author, in 2007. It turned out that if we impose no regularity as-
sumptions on functions ϕ,ψ ∈ CM(I), then the set of solutions of the crucial
Eq. (3.18) does not extend at all. The suitable counterpart of Theorem 3.24
reads as follows (see [78, Theorem 1]).

Theorem 3.29. Let ϕ,ψ ∈ CM(I) and p, q, r ∈ (0, 1). Then the pair (ϕ,ψ) and
the triple (p, q, r) satisfy Eq. (3.18) if and only if
(i) r = q

1−p+q

and
(ii) condition (3.2) holds or r = 1/2, p + q = 1 and condition (3.3) with
a ∈ R \ {0} holds.
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To prove this result the argument used by Daróczy and Páles in validating
Theorem 3.16 has been extended substantially. Below we formulate Propo-
sition 3.30, Lemma 3.31 and Proposition 3.32, the main tools of [78]. They
are generalizations of Proposition 3.17, Lemma 3.13 and Proposition 3.8, re-
spectively (cf. [78, Lemmas 3–5]). The form of Eq. (3.18) is significantly more
complicated than that of Eq. (3.1), and thus the proofs are now essentially
longer and more involved. Also methods elaborated by Járai in monograph
[77] are used to a larger extent than in the proof of Theorem 3.16.

Proposition 3.30. Let f, g be positive functions defined on a non-trivial inter-
val J . If f is Lebesgue measurable, g is of Baire class 1 and the pair (f, g)
satisfies Eq. (3.19), then the functions f and g are continuous in a non-trivial
subinterval of the interval J .

This result (see [78, Lemma 3]) essentially extends Proposition 3.17 in two
directions. First of all it deals with Eq. (3.19) instead of its particular case
(3.8). Secondly, it admits a larger class of solutions (f, g). Its rather long proof
is an enhancement of that of Proposition 3.17 given by Daróczy and Páles in
[52] (cf. also the sketch of its proof given in the present section).

Lemma 3.31. Let p, q ∈ (0, 1). If f and g are functions mapping continuously
an interval J into (0,+∞) and the pair (f, g) satisfies Eq. (3.19), then there
exists a c ∈ (0,+∞) such that condition (3.20) holds.

Also here one can observe two aspects of generalizing previous results. On the
one hand the above lemma (see [78, Lemma 4]) extends Lemma 3.13 dealing
with Eq. (3.8) to the more general Eq. (3.19). On the other hand it generalizes
Lemma 3.27 weakening regularity assumptions imposed on the solution (f, g)
there. The proof of Lemma 3.31 given in [78] runs in another way than that
of Lemma 3.13 presented in [52]. If p = q then Eq. (3.19) takes the form

f (pu + (1 − p)v) (g(v) − g(u)) = p (f(u)g(v) − f(v)g(u))

(which is (3.8) when we put p = 1/2) and the assertion follows from Theorem 2
by Daróczy and Páles as published in their paper [55] in 2003. In the case when
p 
= q we may argue as follows. At first, making use of Theorem 11.6 from the
monograph [77], one can show that the function f is locally Lipschitzian, and
thus, on account of Rademacher’s theorem, it is differentiable almost every-
where (with respect to the Lebesgue measure) in J . Now, according to another
result by Járai (see [77, Theorem 14.2]), f is continuously differentiable and,
by Lemma 3.27, we are done.

Finally we formulate an extension theorem (see [78, Lemma 5]) generalizing
some earlier results of this type, among others Proposition 3.8 as well as the
theorem published in [43] dealing with solutions of Eq. (3.16).

Proposition 3.32. (Extension theorem) Let ϕ,ψ ∈ CM(I) and p, q, r ∈ (0, 1).
If the pair (ϕ,ψ) satisfies Eq. (3.18) and there is a non-trivial interval K ⊂ I
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such that either condition (3.5), or (3.6) with some a ∈ R \ {0} is true, then
either condition (3.2), or (3.3), holds.

In the special case when p = q = r in Eq. (3.18) the assertion of Proposi-
tion 3.32 follows immediately from [42, Theorem 4] where the extension theo-
rem was proved for the equation

rϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + (1 − r)ψ−1 (pψ(x) + (1 − p)ψ(y))

= px + (1 − p)y.
(3.22)

The proof of Theorem 3.29 presented in [78] starts with showing that the
functions ϕ,ϕ−1, ψ, ψ−1 are locally Lipschitzian and their derivatives do not
vanish wherever they exist. Since they have the Darboux property we may
assume without loss of generality that they take positive values only. The
next step is to prove that ϕ,ψ are differentiable on a non-trivial interval I0 ⊂
I. This initial part of the proof takes the pattern of the argument used by
Daróczy and Páles while proving Theorem 3.16. It requires only a bit of care
as the complexity of Eq. (3.18) is higher than that of Eq. (3.1). Now, defining
f : J0 → (0,+∞) and g : J0 → (0,+∞) by f = ϕ′ ◦ ϕ−1 and g = ψ′ ◦ ϕ−1,
respectively, where J0 = ϕ (I0), we come to a solution (f, g) of Eq. (3.19). By
virtue of Proposition 3.30 and Lemma 3.31 there exists a positive number c
such that condition (3.20) holds. Taking into account condition (3.20) we can
rewrite Eq. (3.19) in the form of (3.21). Then, making use of Lemma 3.28 and
the definition of f , we obtain the desired form of the function ϕ, and then
also ψ, on a non-trivial subinterval of I. To complete the proof it is enough to
apply Proposition 3.32.

We complete this Subsection with the following corollary from Theorem 3.29
providing the form of all weighted quasi-arithmetic means satisfying Eq. (3.14).
This gives the full answer to the problem of invariance in the class of these
means and generalizes Theorem 3.19.

Theorem 3.33. Let ϕ,ψ, χ ∈ CM(I) and p, q, r ∈ (0, 1). The mean Aχ
r is

invariant with respect to the pair
(
Aϕ

p , Aψ
q

)
, that is the triplet (ϕ,ψ, χ) satisfies

Eq. (3.14) if and only if
(i) r = q

1−p+q

and
(ii) either Aϕ

p = Aχ
p and Aψ

q = Aχ
q , or r = 1/2, p + q = 1,

Aϕ
p (x, y) = χ−1

(
1
a

log
(
peaχ(x) + (1 − p)eaχ(y)

))

and

Aψ
q (x, y) = χ−1

(

−1
a

log
(
qe−aχ(x) + (1 − q)e−aχ(y)

))

for every x, y ∈ I, with some a ∈ R \ {0}.
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3.5. Generalized weighted quasi-arithmetic means in the sense of Matkowski

This generalization seems to be especially important and promising for further
research. Given an interval I and strictly increasing (or strictly decreasing)
functions ϕ,ψ ∈ CM(I) we define the mean A[ϕ,ψ] : I2 → I by the formula

A[ϕ,ψ](x, y) = (ϕ + ψ)−1 (ϕ(x) + ψ(y)) .

It was introduced by Matkowski [114] in 2003. The first invariance results were
obtained six years later by Matkowski and Volkmann in the paper [132] and
by Baják and Páles in [6] (cf. also [124]). Taking any ϕ ∈ CM(I) and p ∈ (0, 1)
we see that

A[pϕ,(1−p)ϕ](x, y) = ϕ−1 (pϕ(x) + (1 − p)ϕ(y)) = Aϕ
p (x, y),

that is the considered notion extends that of weighted quasi-arithmetic mean.
For this reason A[ϕ,ψ] is called generalized weighted quasi-arithmetic mean with
the generators ϕ and ψ. In fact, while defining the mean A[ϕ,ψ], it is enough to
assume less, namely that the functions ϕ,ψ : I → R are such that ϕ(I)+ψ(I) ⊂
(ϕ + ψ) (I) and ϕ + ψ ∈ CM(I).

Many different properties of generalized weighted quasi-arithmetic means
have been extensively studied by Matkowski in his papers [119,128,130] and
[131]. Most of them deal with a natural generalization of A[ϕ,ψ] to the mean
A[ϕ1,...,ϕn] in n variables, where n ≥ 2 is a fixed integer. Given functions
ϕ1, . . . , ϕn ∈ CM(I) of the same type of monotonicity we put

A[ϕ1,...,ϕn] (x1, . . . , xn) = (ϕ1 + . . . + ϕn)−1 (ϕ1 (x1) + . . . + ϕn (xn))

whenever x1, . . . , xn ∈ I. To formulate a result solving the equality problem for
generalized weighted quasi-arithmetic means we extend the notion of equiv-
alence of functions described in Subsection 3.1. Given a set X we say that
n-tuples (ϕ1, . . . , ϕn) and (ψ1, . . . , ψn) of real-valued functions defined on X
are equivalent or (ϕ1, . . . , ϕn) is equivalent to (ψ1, . . . , ψn) if there are numbers
a ∈ R \ {0} and b1, . . . , bn ∈ R such that

ψi (x) = aϕi (x) + bi, x ∈ X;

then we write

(ϕ1 (x1) , . . . , ϕn (xn)) ∼ (ψ1 (x1) , . . . , ψn (xn)) , x ∈ X,

or, simply, (ϕ1, . . . , ϕn) ∼ (ψ1, . . . , ψn). Observe that ∼ is an equivalence re-
lation in the set of functions mapping X into R

n.

Theorem 3.34. Let I be an interval and ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ CM(I), where
n ≥ 2. Assume that ϕ1, . . . , ϕn are of the same type of monotonicity and so
are ψ1, . . . , ψn. Then A[ϕ1,...,ϕn] = A[ψ1,...,ψn] if and only if (ϕ1, . . . ,
ϕn) ∼ (ψ1, . . . , ψn).
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This result (see [119, Theorem 2] for n = 2 and [128, Theorem 3] for the general
case) extends Theorems 3.2 and 3.21 solving the equality problem for quasi-
arithmetic and weighted quasi-arithmetic means, respectively, as well as similar
results dealing with the equality of conjugate means proved in [13,35,41,50].

What concerns invariance problems the list of results is so far rather short.
The first attempt was made by Matkowski and Volkmann [132] in 2008. It
answers the question on the invariance of the arithmetic mean A with respect
to the pair

(
A[ϕ,ψ], A[ψ,ϕ]

)
considered on a fixed interval I.

Theorem 3.35. Let ϕ,ψ ∈ CM(I) be functions of the same type of monotonic-
ity. Then the pair (ϕ,ψ) satisfies the equation

(ϕ + ψ)−1 (ϕ(x) + ψ(y)) + (ϕ + ψ)−1 (ϕ(y) + ψ(x)) = x + y (3.23)

if and only if

ϕ(x) + ψ(x) ∼ x, x ∈ I.

The proof is quite elementary and consists in verifying that the Gauss iteration
of the mean-type mapping

(
A[ϕ,ψ], A[ψ,ϕ]

)
starting from an arbitrary point

(x, y) ∈ I2 converges to A(x, y). Of course Eq. (3.23) is a particular case of
the equation

(ϕ1 + ψ1)
−1 (ϕ1(x) + ψ1(y)) + (ϕ2 + ψ2)

−1 (ϕ2(x) + ψ2(y)) = x + y (3.24)

expressing the invariance of the mean A with respect to the mean-type map-
ping
(
A[ϕ1,ψ1], A[ϕ2,ψ2]

)
; to see this it is enough to put ϕ1 = ψ2 = ϕ and

ϕ2 = ψ1 = ψ. The study of Eq. (3.24), unlike its special case (3.23), has
turned out to be more complicated. The following result was proved by Baják
and Páles in the paper [6].

Theorem 3.36. Let ϕ1, ϕ2, ψ1, ψ2 ∈ CM(I) be four times continuously dif-
ferentiable functions with nonvanishing first derivatives. Assume that ϕ1, ϕ2

are of the same type of monotonicity and so are ψ1, ψ2. Then the quadruple
(ϕ1, ϕ2, ψ1, ψ2) satisfies Eq. (3.24) if and only if either

ϕ1(x) + ϕ2(x) ∼ x, x ∈ I,

and

(ϕ1(x), ϕ2(x)) ∼ (ψ2(x), ψ1(x)) , x ∈ I,

or

ϕ1(x) ∼ eax, x ∈ I, ϕ2(x) ∼ eax, x ∈ I,

ψ1(x) ∼ e−ax, x ∈ I, ψ2(x) ∼ e−ax, x ∈ I,

with some a ∈ R \ {0} and

(ϕ1(x) − ϕ1(y)) (ψ1(x) − ψ1(y)) = (ϕ2(x) − ϕ2(y)) (ψ2(x) − ψ2(y))

for all x, y ∈ I.
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The problem of relaxing the regularity assumption in Theorem 3.36 is still
open.

The next result, proved by Matkowski in [130], provides an interesting
invariance formula in the class of generalized weighted quasi-arithmetic means
(see [130, Theorem 2]).

Theorem 3.37. Let n ≥ 2 and ϕ1, . . . , ϕ2n−1 ∈ CM(I) be of the same type of
monotonicity. Then the mean A[φ1,...,φn], where

φi : = ϕi + . . . + φn+i−1, i = 1, . . . , n,

is invariant with respect to the mean-type mapping
(
A[ϕ1,...,ϕn], A[ϕ2,...,ϕn+1],

. . . , A[ϕn,...,ϕ2n−1]
)
, that is

A[φ1,...,φn] ◦
(
A[ϕ1,...,ϕn], A[ϕ2,...,ϕn+1], . . . , A[ϕn,...,ϕ2n−1]

)
= A[φ1,...,φn].

As an immediate consequence, taking ϕn+i = ϕi for i = 1, . . . , n − 1, one can
obtain another invariance equality (see [130, Corollary 3] also [128, Remark 4]
and [131, Theorem 4]).

Corollary 3.38. Let n ≥ 2 and ϕ1, . . . , ϕn ∈ CM(I) be of the same type of
monotonicity. Then the mean Aϕ1+...+ϕn is invariant with respect to the cyclic
mean-type mapping

(
A[ϕ1,...,ϕn], A[ϕ2,...,ϕn+1,ϕ1], . . . , A[ϕn,ϕ1...,ϕn−1]

)
,

that is

Aϕ1+...+ϕn ◦
(
A[ϕ1,...,ϕn], A[ϕ2,...,ϕn+1,ϕ1], . . . , A[ϕn,ϕ1...,ϕn−1]

)
= Aϕ1+...+ϕn .

In other words, the quasi-arithmetic mean Aϕ1+...+ϕn is the Gauss composition
of the means A[ϕ1,...,ϕn], A[ϕ2,...,ϕn,ϕ1], . . ., A[ϕn,ϕ1...,ϕn−1]:

Aϕ1+...+ϕn = A[ϕ1,...,ϕn] ⊗ A[ϕ2,...,ϕn,ϕ1] ⊗ . . . ⊗ A[ϕn,ϕ1...,ϕn−1].

In 2015, Matkowski and Páles gave a characterization of generalized quasi-
arithmetic means which involves this fact and a generalized bisymmetry equa-
tion (see [131, Theorem 5]).

3.6. Around weighted quasi-arithmetic means

a. We begin with a recent paper [92] by Kahlig and Matkowski where the
weighted arithmetic, geometric and harmonic means (but not only this one) are
the main heros. Given a number p ∈ (0, 1) we define the means Ap : R2 → R,
Gp : (0,+∞)2 → (0,+∞) and Hp : (0,+∞)2 → (0,+∞) by

Ap(x, y) = px + (1 − p)y,

Gp(x, y) = xpy1−p

and

Hp(x, y) =
1

p 1
x + (1 − p) 1

y

,
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respectively. Clearly A1/2 = A, G1/2 = G and H1/2 = H. In paper [92] Kahlig
and Matkowski solved the following problem: taking any pair (p, q) ∈ (0, 1)2

and means Kp ∈ {Ap, Gp,Hp} and Mq ∈ {Aq, Gq,Hq} determine all func-
tions N : (0,+∞)2 → (0,+∞) such that equality (1.4) holds for every x, y ∈
(0,+∞). It turned out that there is exactly one such function, i.e. the unique
Np,q : (0,+∞)2 → (0,+∞) satisfying

Kp ◦ (Mq, Np,q) = Kp.

Moreover, they characterized those (p, q)’s for which Np,q is a mean. In other
words, we know all pairs (p, q) for which the mean Mp has a Kp-complementary
mean, that is Np,q, and the form Np,q.

In the rest of Subsection 3.6 we deal with some generalizations of weighted
quasi-arithmetic means. Some others will be discussed later. In particular, in
Subsection 6.1 the so-called Makó–Páles means, which are a common general-
ization of both weighted quasi-arithmetic means as well as Lagrangian means,
are considered.
b. It seems that the notion of a conjugate mean was originally introduced in
paper [35] by Daróczy in 1999 who was inspired by Matkowski [108] (see also
[50] by Daróczy and Páles). Given a mean L on an interval I a mean M : I2 → I
was called by him L-conjugate if there exists a function ϕ ∈ CM(I) such that

M(x, y) = ϕ−1 (ϕ(x) + ϕ(y) − ϕ (L(x, y))) , x, y ∈ I.

Later, in 2001, Daróczy and Páles generalized it setting parameters into the
above equality (see [49], also [56] and [39]). Namely, M is said by them to be
L-conjugate, if

M(x, y) = ϕ−1 (pϕ(x) + qϕ(y) + (1 − p − q)ϕ (L(x, y))) , x, y ∈ I,

with some function ϕ ∈ CM(I) and numbers p, q ∈ [0, 1]. Putting here p =
q = 1 we come to the previous version of the definition. The mean M of the
above form is denoted by L

(p,q)
ϕ . The function ϕ is called its generator and the

numbers p, q are its weights. Observe that L
(0,0)
ϕ = L and L

(p,1−p)
ϕ = Aϕ

p for an
arbitrary mean L and all ϕ ∈ CM(I), p ∈ (0, 1). Notice also that the equation
L
(p,q)
ϕ = Aψ

ν with L = Aϕ
μ was completely solved in [83] with no regularity

assumption imposed on the generators ϕ and ψ.

The invariance of the arithmetic mean A with respect to the pair
(
A

(1,1)
ϕ ,

A
(1,1)
ψ

)
of two A-conjugated means, that is the equation

A(1,1)
ϕ (x, y) + A

(1,1)
ψ (x, y) = x + y,
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or

ϕ−1

(

ϕ(x) + ϕ(y) − ϕ

(
x + y

2

))

+ ψ−1

(

ψ(x) + ψ(y) − ψ

(
x + y

2

))

= x + y,

(3.25)

was considered by Daróczy [36] in 2000. He found all pairs (ϕ,ψ) of twice con-
tinuously differentiable functions satisfying Eq. (3.25). An extension theorem
for solutions of Eq. (3.25) was proved by Hajdu [73] in 2002. She showed that
each solution (ϕ,ψ) of (3.25) can be uniquely extended from any non-trivial
interval K ⊂ I to the whole I. Fifteen years later, in 2015, Sonubon and
Orankitjaroen [148] proved the following result trying to make a progress in
this research.

Theorem 3.39. Let ϕ,ψ ∈ CM(I) be three times continuously differentiable
and p, q, r, s, t ∈ (0, 1). Assume that p 
= q, p + q 
= 1, r 
= s, r + s 
= 1,
ts = (1 − t)r, and either p + q = r + s, or p + q = 2(r + s). If the pair (ϕ,ψ)
satisfies the equation

ϕ−1 (pϕ(x) + qϕ(y) + (1 − p − q)ϕ (tx + (1 − t)y))

+ ψ−1 (rψ(x) + sψ(y) + (1 − r − s)ψ (tx + (1 − t)y)) = x + y,
(3.26)

then condition (3.2) holds.

Unfortunately, the assumption p 
= q and r 
= s made in Theorem 3.39 implies
that this result does not generalize Daróczy’s one dealing with Eq. (3.25).
Moreover, the implication stated in Theorem 3.39 cannot be reversed, as the
pair of identity functions defined on the interval I does not satisfy Eq. (3.26)
with p = s = 1/3, q = r = 1/2 and t = 3/5. Therefore the problem of
invariance of the arithmetic mean A with respect to pairs of parametrized
At-conjugated means is still open, even in the class of pairs of three times
continuously differentiable functions. By the way, it is a curio that Theorem 2.1
from [148], which is the main tool of the proof of Theorem 3.39, is apparently
recalled as Theorem 8 from [105] but it is cited improperly, in an incomplete
form.

It is worth noting that some invariance problems for means are particular
cases of the equality problem for conjugate means which is widely studied in
the literature (cf., for example, [13,35,39,41,50,126]). If, for instance, ϕ,ψ ∈
CM(I) and (p, q) ∈ (0, 1)2 satisfy the equation

ϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + ψ−1 (qψ(x) + (1 − q)ψ(y)) = x + y,

expressing the invariance of the arithmetic mean A with respect to the pair(
Aϕ

p , Aψ
q

)
of weighted quasi-arithmetic means, then, putting

L(u, v) = qu + (1 − q)v, u, v ∈ ψ(I),
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and α = ψ−1, β = ϕ ◦ ψ−1, we see that

α−1 (α(u) + α(v) − α (L(u, v))) = β−1 (pβ(u) + (1 − p)β(v)) ,

that is L
(1,1)
α = Aβ

p = L
(p,1−p)
β or L

(1,1)
ψ−1 = L

(p,1−p)
ϕ◦ψ−1 .

c. In 2002 Daróczy and Páles [51] introduced the following other generalization
of the notion of quasi-arithmetic mean. Given an interval I and a real number
α ≥ −1, a mean M : I2 → I is called quasi-arithmetic of order α if there exists
a function ϕ ∈ CM(I) such that

M(x, y) = ϕ−1

(
ϕ(x) + ϕ(y) + αϕ

(
x+y
2

)

2 + α

)

, x, y ∈ I.

In such a case the mean M is denoted by A
(α)
ϕ , the function ϕ is called its

generator and α its order. Observe that

A(0)
ϕ (x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)

= Aϕ(x, y), x, y ∈ I,

and

A(−1)
ϕ (x, y) = ϕ−1

(

ϕ(x) + ϕ(y) − ϕ

(
x + y

2

))

= A(1,1)
ϕ (x, y), x, y ∈ I,

so means of order 0 coincide with quasi-arithmetic means and means of order
−1 are conjugate quasi-arithmetic means. In [51] the authors studied the in-
variance of the arithmetic mean with respect to the pair of quasi-arithmetic
means of fixed order α, that is the equation

A(α)
ϕ (x, y) + A

(α)
ψ (x, y) = x + y (3.27)

or

ϕ−1

(
ϕ(x) + ϕ(y) + αϕ

(
x+y
2

)

2 + α

)

+ ψ−1

(
ψ(x) + ψ(y) + αψ

(
x+y
2

)

2 + α

)

= x + y.

(3.28)
Theorems 1 and 2 from [51] provide the form of solutions of Eq. (3.27) which
are regular enough. The result reads as follows.

Theorem 3.40. Let at least one of functions ϕ,ψ ∈ CM(I) be continuously
differentiable and α ∈ [−1,+∞). Then the pair (ϕ,ψ) satisfies Eq. (3.28) if
and only if either condition (3.2), or (3.3) with some a ∈ R \ {0}, holds.
As an almost immediate consequence we obtain the following description of
all pairs

(
A

(α)
ϕ , A

(α)
ψ

)
of quasi-arithmetic means of order α such that the in-

variance Eq. (3.27) is satisfied, that is the arithmetic mean A is the Gauss
composition of A

(α)
ϕ and A

(α)
ψ .
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Theorem 3.41. Let at least one of functions ϕ,ψ ∈ CM(I) be continuously
differentiable and α ∈ [−1,+∞). Then the arithmetic mean A is invariant
with respect to the pair

(
A

(α)
ϕ , A

(α)
ψ

)
if and only if either A

(α)
ϕ = A

(α)
ψ = A, or

A(α)
ϕ (x, y) =

1
a

log

(
eax + eay + αea x+y

2

2 + α

)

and

A
(α)
ψ (x, y) = −1

a
log

(
e−ax + e−ay + αe−a x+y

2

2 + α

)

for every x, y ∈ I, with some a ∈ R \ {0}.
Originally Theorems 1 and 2 in [51] were formulated as implications. However,
one can easily check that, in fact, their converses are also true. The set of
invariance means described in Theorem 3.41 is larger than that in Subsection
3.2. Nevertheless, as it follows from Theorem 3.40, Eq. (3.28) is equivalent to
its special case (3.1). Notice also that Theorem 3.40 extends the result obtained
by Daróczy in [36] (the case α = −1) as well as Theorem 3.7 dealing with the
classical Matkowski-Sutô problem (the case α = 0).
d. We complete this Subsection with an invariance result concerning the so-
called symmetrized weighted quasi-arithmetic mean. This notion was intro-
duced by Daróczy and Páles in 2006 (see [57] and [58]). Let I be a non-trivial
interval. Given a function ϕ ∈ CM(I) and a parameter p ∈ (0, 1) we define
the mean A∗ϕ

p : I2 → I by

A∗ϕ
p =

Aϕ
p + Aϕ

1−p

2
;

in other words

A∗ϕ
p (x, y) =

1
2
(
ϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + ϕ−1 ((1 − p)ϕ(x) + pϕ(y))

)

for all x, y ∈ I. Some fundamental properties of symmetrized quasi-arithmetic
means were proved in another paper [58] by Daróczy and Páles. There the
authors gave necessary and sufficient conditions for the comparison, equality
and homogeneity of means of the form

M
(
Aϕ

ω1
(x, y), . . . , Aϕ

ωn
(x, y)
)
, (3.29)

where M : In → I is an arbitrary mean, ϕ ∈ CM(I) and ω1, . . . , ωn : I2 →
(0, 1); here Aϕ

ωi
is the weighted quasi-arithmetic mean generated by ϕ with

function weight ωi:

Aϕ
ωi

(x, y) = ϕ−1 (ωi(x, y)ϕ(x) + (1 − ωi(x, y))ϕ(y)) , x, y ∈ I.

Putting here n = 2, M = A, and taking the constant weights ω1 = p and
ω2 = 1 − p we come to the symmetrized weighted quasi-arithmetic mean A∗ϕ

p .
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The equality problem for means of form (3.29) has the following solution (see
[58, Theorem 3.3]).

Theorem 3.42. Let M : In → I be a mean and assume that it is strictly increas-
ing in each variable. Let ϕ,ψ ∈ CM(I) and ω1, . . . , ωn : I2 → (0, 1). Then

M
(
Aϕ

ω1
(x, y), . . . , Aϕ

ωn
(x, y)
)

= M
(
Aψ

ω1
(x, y), . . . , Aψ

ωn
(x, y)
)

for all x, y ∈ I if and only if ϕ ∼ ψ.

The detailed discussion of invariance for weighted quasi-arithmetic means is
postponed to Section 3.

It seems that invariance problems for means of form (3.29) are, in gen-
eral, complex. However, in the particular case of symmetrized weighted quasi-
arithmetic means the situation is much easier. In 2013 Burai proved what
follows (see [24, Theorem 2]).

Theorem 3.43. Let ϕ,ψ ∈ CM(I) be two times continuously differentiable.
Assume that at least one of ϕ,ψ is four times continuously differentiable and

∣
∣
∣
∣p − 1

2

∣
∣
∣
∣ 
=

√
21

14
. (3.30)

Then the pair (ϕ,ψ) satisfies the equation

A∗ϕ
p (x, y) + A∗ψ

p (x, y) = x + y (3.31)

if and only if either condition (3.2), or (3.3) with some a ∈ R \ {0}, holds.
The assumption (3.30) looks rather strange and it is not known if it is essential
for the validity of Theorem 3.43. The proof is technical, tedious and comes
down to solving some complicated differential equations derived on a non-
trivial subinterval of I. Condition (3.30) allows us to exclude a hopeless case
while studying one of these equations. To omit the exclusion (3.30) Burai
needed to presume higher order regularity of the generators ϕ,ψ (see [24,
Theorem 3]).

Theorem 3.44. Let ϕ,ψ ∈ CM(I) be two times continuously differentiable.
Assume that at least one of ϕ,ψ is six times differentiable. Then the pair
(ϕ,ψ) satisfies Eq. (3.31) if and only if either condition (3.2), or (3.3) with
some a ∈ R \ {0}, holds.
Another tool while proving both results is an extension theorem for solutions
of Eq. (3.31) (see [24, Theorem 4]). On the one hand it allows us to spread the
information obtained on the generators when solving the derived differential
equations to the whole interval I. On the other hand, using this extension
theorem, one can formulate Theorems 3.43 and 3.44 in a more general form
where the regularity assumptions are imposed on the generators only on a
subinterval of I.
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3.7. Close to invariance

Some natural generalizations of the invariance of the Matkowski-Sutô problem
lead to equations not expressing the invariance of the mean. Such is, for in-
stance, the problem described by Eq. (3.13) studied in [71] by G�lazowska, the
second present author and Matkowski. The below result (see [71, Theorem]),
published in 2002, provides all solutions (ϕ,ψ) of (3.13), consisting of func-
tions which are regular enough. In what follows I denotes a fixed non-trivial
real interval.

Theorem 3.45. Let ϕ,ψ ∈ CM(I) be twice continuously differentiable and r ∈
R. Then the pair (ϕ,ψ) satisfies Eq. (3.13) if and only if one of the following
cases occurs:

(i) either r = 1 and ϕ(x) ∼ x, x ∈ I, or r = 0 and ψ(x) ∼ x, x ∈ I;
(ii) condition (3.2) holds;
(iii) r = 1/2 and condition (3.3) with some a ∈ R \ {0} holds;
(iv) either r = −1 and

ϕ(x) ∼ log |x − x0|, x ∈ I, and ϕ(x) ∼
√

|x − x0|, x ∈ I,

or r = 2 and

ϕ(x) ∼
√

|x − x0|, x ∈ I, and ϕ(x) ∼ log |x − x0|, x ∈ I,

with some x0 ∈ R \ I.

A year later Daróczy and Páles [55] extended the research to the equation

rϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + (1 − r)ψ−1 (pψ(x) + (1 − p)ψ(y))

= px + (1 − p)y.
(3.32)

Clearly, Eq. (3.13) is a particular case of (3.32) where p = 1/2. The authors
of [55] also relaxed the regularity assumptions imposed on the solutions and
proved what follows (see [55, Theorem 6]).

Theorem 3.46. Let ϕ,ψ ∈ CM(I) be continuously differentiable with nonvan-
ishing derivatives and p ∈ (0, 1), r ∈ R. Then the pair (ϕ,ψ) satisfies Eq. (3.32)
if and only if one of the conditions (i)-(iv) holds.

It is interesting that in spite of adding a parameter to Eq. (3.13) and weak-
ening the regularity assumptions the set of solutions does not enlarge. When
proving Theorem 3.46 Daróczy and Páles patterned after their argument used
in [52] to solve the Matkowski-Sutô problem under the assumption of contin-
uous differentiability (see Theorem 3.7 and the sketch of its proof presented
in Subsection 3.2). Roughly speaking the procedure runs according to the fol-
lowing schedule:
1. The pair (f, g), where f = ϕ′ ◦ϕ−1 and g = ψ′ ◦ϕ−1, satisfies the equation

f(pu + (1 − p)v)(g(v) − g(u)) = r(f(u)g(v) − f(v)g(u)) (3.33)
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(see [55, Theorem 4]). Fix an interval J .
2. If f, g : J → (0,+∞) are continuous, r ∈ R \ {0, 1} and the pair (f, g)
satisfies Eq. (3.33), then there exists c ∈ (0,+∞) such that

f(u)rg(u)1−r = c, u ∈ J,

and f is a solution of the equation

f(pu + (1 − p)v)
(
f(u)

r
1−r − f(v)

r
1−r
)

= r(f(u)
1

1−r − f(v)
1

1−r ) (3.34)

(see [55, Theorem 2 and Corollary 1]).
3. If f : J → (0,+∞) is a continuous solution of Eq. (3.34) with r ∈ (0,+∞) \
{1}, then either

p = 1/2, r = 1/2 and f(u) ∼ u, u ∈ J,

or

p = 1/2, r = 2 and 1/f(u) ∼ u, u ∈ J,

or f is constant
(see [55, Theorems 3 and 5]). Notice that the weighted arithmetic mean Ap,
occuring on the left-hand side of equalities (3.33) and (3.34), is replaced by
an arbitrary strict mean in the above quoted Theorems 2, 3 and Corollary 1
from [55]. Observe also that taking p = r = 1/2 in equalities (3.33) and (3.34)
we come to equations (3.8) and (3.9), respectively, so the argument described
above generalizes that provided by Lemmas 3.12–3.14 used in the proof of
Theorem 3.7.

After a few years break, in 2009, Daróczy and Dascăl reactivated the re-
search and studied another extension of Eq. (3.31), viz.

rϕ−1

(
ϕ(x) + ϕ(y)

2

)

+ (1 − r)ψ−1 (qψ(x) + (1 − q)ψ(y))

= sx + (1 − s)y.

(3.35)

Clearly, putting q = s = 1/2 in (3.35) we come to Eq. (3.31). The papers
[40] and [59] provide the form of all solutions (ϕ,ψ) of Eq. (3.35) under the
assumptions that the functions ϕ,ψ ∈ CM(I) are differentiable with nonvan-
ishing derivatives and the parameters q, r, s are assumed to satisfy the following
conditions:

q ∈ (0, 1) \
{

1
2

}

, r ∈ R \ {0, 1}, s ∈ (0, 1), s 
= q, and r =
2(s − q)
1 − 2q

.

The invariance results of both papers have been generalized by Daróczy in
[38] by relaxing both the regularity assumption and the conditions imposed on
the parameters. Namely, he determined all functions ϕ,ψ ∈ CM(I) such that
(ϕ,ψ) satisfies Eq. (3.35) assuming only that

q ∈ (0, 1) \
{

1
2

}

and r, s ∈ R \ {0, 1}.
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It is interesting that the method, applied by him to solve the problem there,
essentially differs from those used before. Roughly speaking it relies on The-
orems 1 and 2 from [38] providing complete answers to the following two
questions.
Given a nonsymmetric weighted quasi-arithmetic mean M on I and nonzero
real numbers α, β, γ, α 
= β, find necessary and sufficient conditions for the
function N : I2 → R defined by

N(x, y) = αx + βy + γM(x, y)

to be
(a) symmetric:

N(x, y) = N(y, x), x, y ∈ I;

(b) reflexive:

N(x, x) = x, x ∈ I,

symmetric, and bisymmetric:

N(N(x, y), N(u, v)) = N(N(x, u), N(y, v)), x, y, u, v ∈ I

(cf. also Aczél’s characterization of quasi-arithmetic means contained in The-
orem 3.1). When answering these questions Daróczy made use of results of
paper [45] by him and Maksa.

In 2010 the first author of the present paper completed her research con-
cerning the equation

rϕ−1 (pϕ(x) + (1 − p)ϕ(y)) + (1 − r)ψ−1 (qψ(x) + (1 − q)ψ(y))

= sx + (1 − s)y
(3.36)

which is a common extension of equations (3.32) and (3.35): putting p = q = s
in (3.36) we obtain (3.32), wheras taking p = 1/2 we come to (3.35). Observe
that Eq. (3.36) can be rewritten in the form

rAϕ
p + (1 − r)Aψ

q = As. (3.37)

Solving this equation (treating ϕ,ψ as unknown functions and p, q, r, s as un-
known parameters) we answer the question when a linear combination of two
weighted quasi-arithmetic means is a weighted arithmetic mean (cf. also the
last but one paragraph of Subsection 3.3.).

The main result of paper [81] allows the full spectrum of possible functions
ϕ,ψ and parameters p, q, r, s, practically with no restrictions, and reads as
follows (cf. [81, Theorem 1]).

Theorem 3.47. Let ϕ,ψ ∈ CM(I) and r, s ∈ R, p, q ∈ (0, 1). Then the pair
(ϕ,ψ) satisfies Eq. (3.36) if and only if s = r(p−q)+q and one of the following
cases occurs:
(a) either r = 1 and ϕ(x) ∼ x, x ∈ I, or r = 0 and ψ(x) ∼ x, x ∈ I;
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(b) condition (3.2) holds;
(c) p + q = 1, r = s = 1/2 and condition (3.3) with some a ∈ R \ {0} holds;
(d) either p = 1

2 , r = −2q(1−q)
q2+(1−q)2 , s = q2

q2+(1−q)2 and

ϕ(x) ∼ log |x − x0|, x ∈ I, and ψ(x) ∼
√

|x − x0|, x ∈ I.

or q = 1
2 , r = 1

p2+(1−p)2 , s = p2

p2+(1−p)2 and

ϕ(x) ∼
√

|x − x0|, x ∈ I, and ψ(x) ∼ log |x − x0|, x ∈ I,

with some x0 ∈ R \ I;
(e) p 
= q, p + q 
= 1, r = s−q

p−q , s = pq
p+q−1 and

ϕ(x) ∼
√

|x − x0|, x ∈ I, and ψ(x) ∼
√

|x − x0|, x ∈ I,

with some x0 ∈ R \ I.

Observe that if I = R, i.e. there is no x0 ∈ R \ I, then only cases (a), (b), (c)
are possible.

Briefly speaking Theorem 3.47 can be easily obtained using two crucial
results. The first of them (see [81, Theorem 2]) provides all the possible forms of
local solutions of (3.36). One of the main tools used in its proof is the following
regularity theorem published in paper [80] by the first present author.

Theorem 3.48. Let ϕ,ψ ∈ CM(I) and r, s ∈ R, p, q ∈ (0,+∞). If the pair
(ϕ,ψ) satisfies Eq. (3.36), then there exists a non-trivial interval K ⊂ I such
that the functions ϕ|K , ψ|K are infinitely many times differentiable with non-
vanishing first derivatives.

Its proof follows ideas used by Daróczy and Páles while giving the ultimate
answer to the Matkowski-Sutô problem in [52] (see Theorem 2.16 herein and
the sketch of its proof) and their amplification applied in [78] to solving the
problem of invariance in the class of weighted quasi-arithmetic means (see
theorem 3.29 and part of Subsection 3.4 following it). As previously a key role
is played by regularity improving results due to Járai (see [77, Theorems 8.6
and 11.6]).

Having determined all the local solutions of Eq. (3.36) the next problem is
how to propagate the information about their forms to the whole interval I.
The below extension result solves that problem. It generalizes Proposition 3.32,
so consequently also 3.8.

Theorem 3.49. (Extension Theorem) Let ϕ,ψ ∈ CM(I) and r, s ∈ R, p, q ∈
(0, 1). If the pair (ϕ,ψ) satisfies Eq. (3.36) and one of conditions (a)-(e) holds
in a non-trivial interval K ⊂ I (with x0 ∈ R \K in (d) and (e)), then it holds
in I (with x0 in (d) and (e)).
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The following schedule of the procedure of determining local solutions of
(3.36) is a further expansion of that applied by Daróczy and Páles in the
proof of Theorem 3.46 (see [55]) and, originally, in solving the Matkowski-Sutô
problem in [52], or by the first present author while proving Theorem 3.29 (see
[78]).
1. The pair (f, g), where f = ϕ′ ◦ ϕ−1 and g = ψ′ ◦ ϕ−1, satisfies the equation

f(pu + (1 − p)v) [(1 − q)sg(v) − q(1 − s)g(u)]

= r [p(1 − q)f(u)g(v) − (1 − p)qf(v)g(u)]
(3.38)

(see [81, Lemma 2]). Fix an interval J .
2. If f, g : J → (0,+∞) are continuous, r ∈ R \ {0, 1}, p, q ∈ (0, 1) and the
pair (f, g) satisfies Eq. (3.38), then there exists c ∈ (0,+∞) such that

f(u)p(s−q)−p(1−q)rg(u)(1−p)qr−q(1−s) = c, u ∈ J ;

moreover, either p = q = s and f is a solution of Eq. (3.34), or p 
= q, p 
= s
and f satisfies the equation

f(pu + (1 − p)v)
[
(1 − q)sf(u)

p(1−p)(s−q)
q(1−q)(s−p) − q(1 − s)f(v)

p(1−p)(s−q)
q(1−q)(s−p)

]

= r
[
p(1 − q)f(u)f(v)

p(1−p)(s−q)
q(1−q)(s−p) − (1 − p)qf(v)f(u)

p(1−p)(s−q)
q(1−q)(s−p)

] (3.39)

(see [81, Lemma 3]).
3. If f : J → (0,+∞) is a continuous solution of Eq. (3.39) with r, s ∈ (0,+∞)\
{0, 1}, p, q ∈ (0, 1), p 
= q, p 
= s, then either

p =
1
2
, s =

q2

q2 + (1 − q)2
and f(u) ∼ eau, u ∈ J,

with some a ∈ R \ {0}, or

q =
1
2
, s =

p2

p2 + (1 − p)2
and 1/f(u) ∼ u, u ∈ J,

or p + q = 1, s = 1
2 and f(u) ∼ u, u ∈ J ,

or p + q 
= 1, s = pq
p+q−1 and 1/f(u) ∼ u, u ∈ J ,

or f is constant
(cf. [81, Theorem 4]. Observe that putting p = q = s in (3.39) we come to
Eq. (3.33).

Now we can give all solutions of Eq. (3.37). To list them we introduce some
notations. Given a real number ξ we write ξ < I and ξ > I for

ξ < x, x ∈ I, and ξ > x, x ∈ I,

respectively. We put

Sa
p (x, y) =

1
a

log (peax + (1 − p)eay)
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with a ∈ R \ {0},

H+
p,ξ(x, y) = ξ +

(
p
√

|x − ξ| + (1 − p)
√

|y − ξ|
)2

and

H−
p,ξ(x, y) = ξ −

(
p
√

|ξ − x| + (1 − p)
√

|ξ − y|
)2

with ξ < I and ξ > I, respectively (weighted power means centered at ξ),

G+
p,ξ(x, y) = ξ + (x − ξ)p (y − ξ)1−p

and

G−
p,ξ(x, y) = ξ − (ξ − x)p (ξ − y)1−p

with ξ < I and ξ > I, respectively (weighted geometric means centered at ξ).
The result below is an immediate consequence of Theorem 3.47.

Theorem 3.50. Let ϕ,ψ ∈ CM(I) and r, s ∈ R, p, q ∈ (0, 1). Then the pair
(ϕ,ψ) and the quadruple (p, q, r, s) satisfy Eq. (3.37) if and only if s 
= 0, s 
= 1
and one of the following cases occurs:
(a) either r = 1, p = s and Aϕ

p = As, or r = 0, q = s and Aψ
q = As;

(b) rp + (1 − r)q = s and Aϕ
p = Ap, Aψ

q = Aq;
(c) p + q = 1, r = s = 1/2 and Aϕ

p = Sa
p , Aψ

q = S−a
1−p with some a ∈ R \ {0};

(d) either p = 1
2 , r = −2q(1−q)

q2+(1−q)2 , s = q2

q2+(1−q)2 and

Aϕ
p = Hε

p,ξ, Aψ
q = Gε

q,ξ,

or q = 1
2 , r = 1

p2+(1−p)2 , s = p2

p2+(1−p)2 and

Aϕ
p = Gε

p,ξ, Aψ
q = Hε

q,ξ

with ε ∈ {+,−} and some real ξ < I if ε = + and ξ > I if ε = −;
(e) p 
= q, p + q 
= 1, r = s−q

p−q , s = pq
p+q−1 and

Aϕ
p = Hε

p,ξ, Aψ
q = Hε

q,ξ

with ε ∈ {+,−} and some real ξ < I if ε = + and ξ > I if ε = −.

Remark 3.51. Recently, rather unexpectedly, Theorem 3.50 (or 3.47) has en-
abled us to solve the following problem which came from iteration theory.

Given a non-trivial interval I and a mean-type mapping
(
AF

p , AG
q

)
: I2 →

I2 find all pairs
(
Aϕ

λ , Aψ
μ

)
that are square iterative roots of

(
AF

p , AG
q

)
, that is

satisfy the equation
(
Aϕ

λ , Aψ
μ

) ◦ (Aϕ
λ , Aψ

μ

)
=
(
AF

p , AG
q

)
.

A complete answer to this problem was given in [70] by G�lazowska and the
authors of this survey.
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4. Invariance and Bajraktarević means

4.1. Generalities

Among the numerous extensions of the notion of weighted quasi-arithmetic
mean one of the most important is that of the Bajraktarević mean (see [10]-
[12]). Given an integer n ≥ 2, an interval I, functions ϕ ∈ CM(I) and
ω : I → (0,+∞), and positive numbers p1, . . . , pn we define the weighted mean
Bϕ,ω

(p1,...,pn) : In → I by

Bϕ,ω
(p1,...,pn) (x1, . . . , xn) = ϕ−1

(
p1ω (x1) ϕ (x1) + . . . + pnω (xn) ϕ (xn)

p1ω (x1) + . . . + pnω (xn)

)

.

Observe that, in the case when ω is a constant function: ω(x) = c ∈ (0,+∞)
for all x ∈ I, and p1 + . . . + pn = 1 we have actually Bϕ,c

(p1,...,pn) = Aϕ
(p1,...,pn).

Most of the research has been made here for the case when p1 = . . . = pn =: p;
then we write Bϕ,ω instead of Bϕ,ω

(p,...,p). In the general case, putting f := ωϕ

and g := ω, we have

Bϕ,ω
(p1,...,pn) (x1, . . . xn) = ϕ−1

(
p1ω (x1) ϕ (x1) + . . . + pnω (xn) ϕ (xn)

p1ω (x1) + . . . + pnω (xn)

)

=
(

f

g

)−1(
p1f1 (x1) + . . . + pnfn (xn)
p1g1 (x1) + . . . + pngn (xn)

)

=: B
[f,g]
(p1,...,pn) (x1, . . . xn)

for all (x1, . . . xn) ∈ In, which provides another form of the Bajraktarević
mean. As previously we omit here the lower index (p, . . . , p). In what follows
we focus mainly on the case n = 2.

The equality problem for Bajraktarević means with p1 = . . . = pn, postu-
lated for all n ≥ 2, was solved by Aczél and Daróczy in [3] already in 1963
(there Bajraktarević means are called generalized quasi-linear means). The
comparison, and thus also the equality problem, in the general case was solved
in [106] by Maksa and Páles. For some other rather partial results the reader
is referred to [10,44,101,103] and [48]. The following result can be deduced
from [106, Theorem 3].

Theorem 4.1. Let I be an interval, ϕ,ψ ∈ CM(I), ω : I → (0,+∞) and p, q ∈
(0, 1). Assume that ω is continuous at a point x0 ∈ I and the function ψ ◦ϕ−1

is differentiable at ϕ (x0) with non-zero derivative. Then Bϕ,ω
(p,1−p) = Bψ,ω

(q,1−q)

if and only if ϕ ∼ ψ and p = q.

It seems that it is still an open problem if the regularity assumption made here
can be removed.

A characterization of Bajraktarević means of the form Bϕ,ω was given in
[139]. The reader interested in one of the possible generalizations of such means
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should consult the paper [120], where Bϕ,ω’s are embedded in some one- and
two-parameter families of means.

To discuss the invariance problem involving Bajraktarević means we start
with a few results on the invariance of the arithmetic mean and some similar
ones with respect to a pair or even a tuple of Bajraktarević means and some of
their generalizations. Fix a real interval I. They were Domsta and Matkowski
who studied it probably for the first time. In [61], assuming that I ⊂ (0,+∞),
they solved the equation

ϕ−1

(
xϕ(x) + yϕ(y)

x + y

)

+ ψ−1

(
xψ(x) + yψ(y)

x + y

)

= x + y, (4.1)

expressing the invariance of the arithmetic mean with respect to the pair(
Bϕ,Id, Bψ,Id

)
of Bajraktarević means weighted by the identity function Id

defined on I.

Theorem 4.2. Assume that I ⊂ (0,+∞) and let ϕ,ψ ∈ CM(I) be four times
continuously differentiable. Then the pair (ϕ,ψ) satisfies Eq. (4.1) if and only
if

ϕ(x) ∼ 1/x, x ∈ I, and ψ(x) ∼ 1/x, x ∈ I. (4.2)

In fact, the assertion of the above result remains true if we assume that at
least one of functions ϕ,ψ ∈ CM(I) is four times countinuously differentiable.
Notice also that if ϕ(x) ∼ 1/x for all x ∈ I, then

Bϕ,Id(x, y) =
x + y

x 1
x + y 1

y

=
x + y

2
, x, y ∈ I,

that is Bϕ,Id is simply the arithmetic mean A.
A more general invariance problem, namely the invariance of the arithmetic

mean with respect to the pair
(
Bϕ,ω, Bψ,ω

)
of Bajraktarević means in two

variables, was studied in [82]. A suitable equation has the form

ϕ−1

(
ω(x)ϕ(x) + ω(y)ϕ(y)

ω(x) + ω(y)

)

+ ψ−1

(
ω(x)ψ(x) + ω(y)ψ(y)

ω(x) + ω(y)

)

= x + y.

(4.3)

The following result (see [82, Theorem 1]) gives a fundamental necessary condi-
tion for a pair (ϕ,ψ) to be a solution of Eq. (4.3), under additional assumptions
imposed on the form of ω.

Theorem 4.3. Let ϕ,ψ ∈ CM(I) and ω : I → (0,+∞) be four times differen-
tiable functions. Assume that ω satisfies the equation of the harmonic oscilla-
tor

ω′′(x) = cω(x) (4.4)
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with some c ∈ R. If the pair (ϕ,ψ) satisfies Eq. (4.3), then for any x0 ∈ I
there exist numbers a, b ∈ R \ {0} and d ∈ R such that

ϕ′(x) =
a

ω(x)2
exp
(

d

∫ x

x0

ω(t)−4/3dt

)

and

ψ′(x) =
b

ω(x)2
exp
(

−d

∫ x

x0

ω(t)−4/3dt

)

for all x ∈ I.

The next result (see [82, Theorems 3 and 4]) generalizes Theorem 4.2. Here
the function ω is assumed to be a fundamental solution of Eq. (4.4), that is
one of the functions given by

(a) ω(x) = x for x ∈ I ⊂ (0,+∞),

(b) ω(x) = exp x for x ∈ I,

(c) ω(x) = cos x for x ∈ I ⊂ (0, π/2).

Theorem 4.4. Let ϕ,ψ ∈ CM(I) and ω : I → (0,+∞).
(i) Assume that the functions ϕ,ψ are four times differentiable and ω is either
of form (a), or (b). Then the pair (ϕ,ψ) satisfies Eq. (4.3) if and only if
condition (4.2) holds in case (a), and

ϕ(x) ∼ exp(−2x), x ∈ I, and ψ(x) ∼ exp(−2x), x ∈ I,

in case (b).
(ii) Assume that functions ϕ,ψ are six times continuously differentiable and ω
is of form (c). Then the pair (ϕ,ψ) satisfies Eq. (4.3) if and only if

ϕ(x) ∼ tan x, x ∈ I, and ψ(x) ∼ tan x, x ∈ I.

A standard computation shows that the functions ϕ and ψ described in
Theorem 4.4 generate again the arithmetic mean. It would be interesting to
find a non-trivial pair

(
Bϕ,ω, Bψ,ω

)
, i.e. different from (A,A), such that the

arithmetic mean is invariant with respect to
(
Bϕ,ω, Bψ,ω

)
.

Quite recently Páles and Zakaria have studied the equation

B
[f,g]
(t,s)(x, y) + B

[h,k]
(s,t) (x, y) = x + y, (4.5)

where f, g, h, k : I → R are continuous functions such that g, k do not van-
ish and the functions f/g and h/k are strictly monotonic, and s, t are positive
numbers (see [141]). This is the equation expressing the invariance of the arith-
metic mean with respect to the pair

(
B

[f,g]
(t,s) , B

[h,k]
(s,t)

)
. Substituting ϕ := f/g,

χ := g, ψ := h/k and ω := k we can rewrite (4.5) as

ϕ−1

(
tχ(x)ϕ(x) + sχ(y)ϕ(y)

tχ(x) + sχ(y)

)

+ ψ−1

(
sω(x)ψ(x) + tω(y)ψ(y)

sω(x) + tω(y)

)

. (4.6)
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Taking here χ = ω and s = t we obtain Eq. (4.3). Notice, however, that the
assumption s 
= t is imposed on the parameters s, t in [141], everywhere the
solutions of (4.6) are determined, so Theorems 4.3 and 4.4 above cannot be
deduced from Theorem 1 proved in the paper [141]. There, under the assump-
tion that ϕ,ψ are four times continuously differentiable and s 
= t, the authors
found all solutions (ϕ,ψ) of (4.6): roughly speaking ϕ and ψ are of the form

P ◦ (ω1, ω2, ω3)
Q ◦ (ω1, ω2, ω3)

,

where P,Q are affine functions of three variables and ω1, ω2, ω3 are fundamen-
tal solutions of the equation of the harmonic oscillator, i.e. Eq. (4.4) with some
c ∈ R. The converse implication holds with no regularity assumptions imposed
on ϕ,ψ and for all positive s, t (cf. [141, Theorem 1]).

Eq. (4.6) is a particular case of the equation

λ(x, y)ϕ−1 (μ(x, y)ϕ(x) + (1 − μ(x, y))ϕ(y))

+ (1 − λ(x, y))ψ−1 (ν(x, y)ψ(x) + (1 − ν(x, y))ψ(y))

= λ(x, y)x + (1 − λ(x, y))y,

(4.7)

where λ, μ, ν : I2 → (0, 1) are given weighted functions and the unknown func-
tions ϕ and ψ are assumed to belong to the class CM(I); it is enough to take
λ(x, y) = 1/2 and

μ(x, y) =
tg(x)

tg(x) + sg(y)
and ν(x, y) =

sk(x)
sk(x) + tk(y)

for all x, y ∈ I. Extending the notion introduced in Section 3.4 by putting

Aϕ
λ(x, y) = ϕ−1 (λ(x, y)ϕ(x) + (1 − λ(x, y))ϕ(y))

we can rewrite (4.7) in the form

λ(x, y)Aϕ
μ(x, y) + (1 − λ(x, y))Aψ

ν (x, y) = λ(x, y)x + (1 − λ(x, y))y. (4.8)

Observe that for λ : I2 → (0, 1) defined by

λ(x, y) =
ω(x)

ω(x) + ω(y)

we have Aϕ
λ = Bϕ,ω.

In the special case when λ is constant or, more generally,
(
Aϕ

μ , Aψ
ν

)
-invariant:

λ ◦ (Aϕ
μ , Aψ

ν

)
= λ,

Eq. (4.8) is equivalent to

AId
λ ◦ (Aϕ

μ , Aψ
ν

)
= AId

λ ,
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which expresses the invariance of the mean AId
λ with respect to the pair(

Aϕ
μ , Aψ

ν

)
. Then we come to

Aχ
λ = Aϕ

μ ⊗ Aψ
ν

with χ = Id. The above equation extends (3.14) to the case of quasi-arithmetic
means with function weights.

In what follows we say that a function λ : I2 → R is k-times differentiable
in the first variable on the diagonal if for any x ∈ I the function λ(·, x) is k-
times differentiable at x. The following result (see [79, Theorem 2]) allows us
to reduce the problem of determining solutions of Eq. (4.7) to that of solving
the differential Ricatti equation

(μ(x, x) − ν(x, x)) φ′(x)

=
1 − μ(x, x) − ν(x, x)

1 − ν(x, x)
φ(x)2 + a(x)φ(x) + b(x).

(4.9)

Theorem 4.5. Let λ, μ, ν : I2 → (0, 1) be three times differentiable in the first
variable on the diagonal. Then there exist twice differentiable functions a, b : I →
R such that φ := ϕ′′/ϕ′ satisfies Eq. (4.9) whenever ϕ,ψ : I → R are three
times differentiable functions with non-vanishing first derivatives and the pair
(ϕ,ψ)satisfies Eq. (4.7).

It is well known that, in general, it is hard to solve the Ricatti equation
effectively. However, as it follows from (4.9), in some particular cases we are
able to manage the situation. This is, for instance, the case when

μ(x, x) = ν(x, x), x ∈ I,

or

μ(x, x) + ν(x, x) = 1, x ∈ I.

Then the Ricatti Eq. (4.9) becomes an algebraic quadratic equation or a lin-
ear differential one. In general, however, we are far from determining all the
solutions of (4.7). If we take any pair (ϕ,ψ) satisfying (4.7), then Theorem 4.5
may give only the form of ϕ′′/ϕ′. Integrating it twice we come to ϕ (and then
also to ψ). It is usually difficult to verify if the obtained pair (ϕ,ψ) really
satisfies Eq. (4.7). Some particular situations, when we are able to decide it,
were described in [79].

Other problems deal with the invariance of Bajraktarević means with re-
spect to pairs of some other means. One of them was solved in [125] by
Matkowski. With no regularity assumptions the following result brings the
form of all Bajraktarević means B[f,g] in two variables which are invariant
with respect to the pair

(
Af , Ag

)
of quasi-arithmetic means:

B[f,g] ◦ (Af , Ag
)

= B[f,g] (4.10)

(see [125, Theorem 1]).
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Theorem 4.6. Let f, g ∈ CM(I) be non-vanishing functions such that f/g ∈
CM(I). Then the pair (f, g) satisfies Eq. (4.10) if and only if either f ∼ g and
B[f,g] = Af = Ag, or the function fg is constant and

B[f,g](x, y) = f−1
(√

f(x)f(y)
)

= g−1
(√

g(x)g(y)
)

,

Af (x, y) = g−1

(
2g(x)g(y)

g(x) + g(y)

)

and Ag(x, y) = f−1

(
2f(x)f(y)

f(x) + f(y)

)

for all x, y ∈ I, that is

B[f,g] = f−1 ◦ G ◦ (f × f) = g−1 ◦ G ◦ (g × g),

Af = g−1 ◦ H ◦ (g × g) and Ag = f−1 ◦ H ◦ (f × f)

where

(f × f)(x, y) := (f(x), f(y))

for all x, y ∈ I.

If, in addition, f, g are regular enough, then one can prove a similar theorem
dealing with the more general equation

B[f,g] ◦ (Af
p , Ag

r

)
= B[f,g]

which expresses the invariance of B[f,g] with respect to the pair
(
Af

p , Ag
r

)
of

weighted quasi-arithmetic means (see [125, Theorem 2]).
We complete this section with a short report on the paper [123] by

Matkowski. It seems that much more important than the invariance result
(see [123, Theorem 3]) is the following notion of a generalized Bajraktarević
mean proposed there. Given a positive integer k denote by σk the shift of the
set {1, . . . , k} mod k that is the permutation defined by

σk(j) =
{

j + 1, if j ∈ {1, . . . , k − 1},
1, if j = k,

and by σi
k, for i = 0, . . . , k − 1, the ith iterate of σk:

σi
k(j) =

{
j + i, if j ∈ {1, . . . , k − i},
j + 1 − k, if j ∈ {k − i + 1, . . . , k}.

Assuming that k ≥ 2 and given functions ϕ ∈ CM(I) and ω1, . . . , ωk : I →
(0,+∞) we put

Bϕ,ω1,...ωk;i (x1, . . . , xk) :=

ϕ−1

⎛

⎝
ω1 (x1) ϕ

(
xσi

k(1)

)
+ . . . + ωk (xk) ϕ

(
xσi

k(k)

)

ω1 (x1) + . . . + ωk (xk)

⎞

⎠
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for every i ∈ {0, . . . , k − 1} and all x1, . . . , xk ∈ I. One can check that
Bϕ,ω1,...ωk;i is a strict mean on I for each i = 0, . . . , k − 1. It generalizes
the Bajraktarević mean: if k = 2 and ω1 = ω2 =: ω, then

Bϕ,ω1,ω2;0 (x1, x2) = ϕ−1

(
ω (x1) ϕ (x1) + ω (x2) ϕ (x2)

ω (x1) + ω (x2)

)

= Bϕ,ω (x1, x2)

and

Bϕ,ω1,ω2;1 (x1, x2) = ϕ−1

(
ω (x1) ϕ (x2) + ω (x2) ϕ (x1)

ω (x1) + ω (x2)

)

= ϕ−1

(
1

ω(x1)
ϕ (x1) + 1

ω(x2)
ϕ (x2)

1
ω(x1)

+ 1
ω(x2)

)

= Bϕ,1/ω (x1, x2)

for all x1, x2 ∈ I (cf. [123, Remark 3]). Nevertheless, if k ≥ 3 then the means
Bϕ,ω1,...ωk;i need not be of Bajraktarević type. For a simple example the reader
is referred to [123, Remark 2].

The invariance result from [123], mentioned above, reads as follows.

Theorem 4.7. Let ϕ ∈ CM(I) and ω1, . . . ωk : I → (0,+∞) be continuous.
Then

Aϕ ◦ (Bϕ,ω1,...ωk;0, . . . , Bϕ,ω1,...ωk;k−1
)

= Aϕ,

that is the quasi-arithmetic mean Aϕ is invariant with respect to the k-tuple(
Bϕ,ω1,...ωk;0, . . . , Bϕ,ω1,...ωk;k−1

)
.

4.2. Beckenbach-Gini means

Among (weighted) Bajraktarević means there are those generated by the iden-
tity function, named (weighted) Beckenbach-Gini means. So, given a function
ω : I → (0,+∞) and a probability vector (p1, . . . , pn), that is a vector with
nonnegative coordinates (p1, . . . , pn) summing up to 1, we have

Bω
(p1,...,pn) (x1, . . . , xn) := BId,ω

(p1,...,pn) (x1, . . . , xn)

=
p1x1ω (x1) + . . . + pnxnω (xn)

p1ω (x1) + . . . + pnω (xn)

for all x1, . . . , xn ∈ I; in the case when p1 = . . . = pn = 1/n we write simply

Bω (x1, . . . , xn) := BId,ω (x1, . . . , xn) =
x1ω (x1) + . . . + xnω (xn)

ω (x1) + . . . + ω (xn)
.
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Moreover, instead of Bω
(p,1−p) we write Bω

p . In the case when ω is a power
function the mean Bω was considered by Gini already in 1938 (cf. [66]) and
then, in a more general setting, by Beckenbach (see [15]).

Classical means, viz. the arithmetic, geometric and harmonic ones, serve as
typical examples of Beckenbach-Gini means. Indeed, if ω is constant: ω(x) =
c ∈ (0,+∞), then

Bω(x, y) =
cx + cy

c + c
=

x + y

2
= A(x, y), x, y ∈ R.

In turn, taking ω(x) = 1/
√

x for each x ∈ (0,+∞) we get

Bω(x, y) =
x/

√
x + y/

√
y

1/
√

x + 1/
√

y
=

√
xy

1/
√

y + 1/
√

x

1/
√

x + 1/
√

y
=

√
xy = G(x, y)

for all x, y ∈ (0,+∞). Finally, putting ω(x) = 1/x for each x ∈ (0,+∞), we
obtain

Bω(x, y) =
x/x + y/y

1/x + 1/y
=

2
1/x + 1/y

= H(x, y)

for all x, y ∈ (0,+∞).
The problem of invariance in the class of Beckenbach-Gini means leads to

the question on triples (ω, α, β) of positive functions defined on the interval I
and satisfying the functional equation

Bω ◦ (Bα, Bβ
)

= Bω. (4.11)

It seems that in general it is hard to answer this question. We start with the
particular cases when Bω is one of the means A,G,H. Then we are able to
determine all the pairs satisfying (4.11) with no regularity assumptions. The
result below has been proved by Matkowski (see [113, Theorems 1-3]).

Theorem 4.8. Let α, β : I → (0,+∞).
(i) The pair (α, β) satisfies the equation

A ◦ (Bα, Bβ
)

= A

if and only if

α(x)β(x) = c, x ∈ I,

with some c ∈ (0,+∞).
(ii) Assume that I ⊂ (0,+∞). The pair (α, β) satisfies the equation

G ◦ (Bα, Bβ
)

= G

if and only if

α(x)β(x) =
c

x
, x ∈ I,
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with some c ∈ (0,+∞).
(iii) Assume that I ⊂ (0,+∞). The pair (α, β) satisfies the equation

H ◦ (Bα, Bβ
)

= H

if and only if

α(x)β(x) =
c

x2
, x ∈ I,

with some c ∈ (0,+∞).

What concerns the general case of Eq. (4.11) we have the following neces-
sary condition obtained under some regularity conditions (see [113, Theorem
4]).

Theorem 4.9. Let α, β : I → (0,+∞) be differentiable and ω : I → (0,+∞) be
twice differentiable. If the triple (α, β, ω) satisfies Eq. (4.11), then

α(x)β(x) = cω(x)2, x ∈ I,

with some c ∈ (0,+∞).

The converse is not true (cf. [113, Remark 4]), so the question about a sufficient
condition arises. Another open problem concerns weakening regularity
assumptions in Theorem 4.9.

The next problem involving Beckenbach-Gini means was solved by
Matkowski in [129]. The main result proved there (cf. [129, Theorem 1]) deals
with the invariance of the Bajraktarević the mean B[f,g] with the pair

(
Bf , Bg

)

of Beckenbach-Gini means.

Theorem 4.10. Let f, g : I → (0,+∞) be three times differentiable and assume
that f/g is one-to-one. Then the following conditions are pairwise equivalent:

(i) the pair (f, g) satisfies the equation

B[f,g] ◦ (Bf , Bg
)

= B[f,g];

(ii) there are a ∈ R \ {0} and c, d ∈ (0,+∞) such that

f(x) = ceax and g(x) = de−ax, x ∈ I;

(iii) B[f,g] = A and there is a ∈ R \ {0} such that

Bf (x, y) =
xeax + yeay

eax + eay
and Bg(x, y) =

xe−ax + ye−ay

e−ax + e−ay

for all x, y ∈ R.

Finally we mention the paper [32] by Costin and Gh. Toader, where invari-
ance in the class of weighted Lehmer means Ca

p is examined. Given a number
a ∈ R and a weight p ∈ (0, 1) we define Ca

p on (0,+∞) by

Ca
p (x, y) =

pxa + (1 − p)ya

pxa−1 + (1 − p)ya−1
.
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Observe that C0
p is the weighted harmonic mean Hp and C1

p is the weighted
arithmetic mean Ap. Setting a = 2 we come to the weighted contraharmonic
mean Cp defined by

Cp(x, y) = C2
p(x, y) =

px2 + (1 − p)y2

px + (1 − p)y
.

If we put a = 1/2 we see that

C1/2
p (x, y) =

p
√

x + (1 − p)
√

y

p/
√

x + (1 − p)/
√

y
=

√
xy

p
√

x + (1 − p)
√

y

p
√

y + (1 − p)
√

x

for all x, y ∈ (0,+∞), so C
1/2
1/2 is the geometric mean G. Notice, however, that

for p 
= 1/2 the mean C
1/2
p is not the weighted geometric mean Gp. Clearly,

all Ca
p are Beckenbach-Gini means: putting ω(x) = xa−1 for all x ∈ (0,+∞)

we have Ca
p = Bω

p .
The main aim of the paper [32] is to look for solutions of the invariance

equation

Ca
p ◦ (Cs

q , Ct
r

)
= Ca

p , (4.12)

where a, s, t ∈ R and p, q, r ∈ [0, 1]. The authors presented a method of Taylor
series expansion which is not used very often while studying the invariance of
means.

4.3. Gini means

An important class of Bajraktarević means are those introduced by Gini still
in 1938 in the paper [66]. Given parameters r, s ∈ R the two-variable Gini
mean Gr,s is defined on (0,+∞) by the formula

Gr,s(x, y) =

⎧
⎨

⎩

(
xr+yr

xs+ys

) 1
r−s

, if r 
= s,

exp
(

xs log x+ys log y
xs+ys

)
, if r = s.

Defining ω : (0,+∞) → (0,+∞) by ω(x) = xs we see that Gr,s = Bhr−s,ω.
Observe that Gr,s = Gs,r for all r, s ∈ R. Moreover, for any r ∈ R we have

Gr,0(x, y) =

⎧
⎨

⎩

(
xr+yr

2

) 1
r

, if r 
= 0,√
xy, if r = 0,

so Gr,0 is the power (or Hölder) mean Hr and Gr,−r(x, y) =
√

xy for all
x, y ∈ (0,+∞), that is Gr,−r is the geometric mean G. It can be also shown
that Ga,b = Gc,d if and only if {a, b} = {c, d} for all a, b, c, d ∈ R.

In the paper [7] Bajak and Páles solved the invariance equation

Gr,s ◦ (Ga,b, Gc,d
)

= Gr,s (4.13)
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proving the following result (see [7, Theorem]).

Theorem 4.11. Let r, s, a, b, c, d ∈ R. The 6-tuple (r, s, a, b, c, d) satisfies
Eq. (4.13) if and only if one of the following possibilities holds:

(i) r + s = a+ b = c+d = 0, i.e. Gr,s, Ga,b and Gc,d are the geometric mean
G;

(ii) {r, s} = {a, b} = {c, d}, i.e. Gr,s = Ga,b = Gc,d;
(iii) r + s = 0 and {a, b} = {−c,−d}, i.e. Gr,s is the geometric mean G and

Ga,b = G−c,−d;
(iv) there exist u, v ∈ R such that {a, b} = {u + v, v}, {c, d} = {u − v,−v}

and {r, s} = {u, 0}, i.e. Gr,s is the power mean Hu and we have Ga,b =
Gu+v,v and Gc,d = Gu−v,−v;

(v) there exists w ∈ R such that {a, b} = {3w,w}, c + d = 0 and {r, s} =
{2w, 0}, i.e. Gr,s is the power mean H2w, Ga,b = G3w,w and Gc,d is the
geometric mean G;

(vi) there exists w ∈ R such that a + b = 0, {c, d} = {3w,w} and {r, s} =
{2w, 0}, i.e. Gr,s is the power mean H2w, Ga,b is the geometric mean G
and Gc,d = G3w,w.

As an immediate consequence one can deduce what follows (see [7, Corol-
lary]). The result concerns the case of Eq. (4.13) when {r, s} = {1, 0}, that is
Gr,s = A. In other words, we deal with the equation

A ◦ (Ga,b, Gc,d
)

= A (4.14)

expressing the invariance of the arithmetic mean with respect to a pair of two
Gini means.

Corollary 4.12. Let a, b, c, d ∈ R. The quadruple (a, b, c, d) satisfies Eq. (4.14)
if and only if one of the following possibilities holds:

(i) {a, b} = {c, d} = {1, 0}, i.e. Ga,b = Gc,d = A;
(ii) there exists v ∈ R such that {a, b} = {1 + v, v} and {c, d} = {1 − v,−v},

i.e. Ga,b = G1+v,v and Gc,d = G1−v,−v;
(iii) {a, b} =

{
3
2 , 1

2

}
and c + d = 0, i.e. Gc,d is the geometric mean G and

Ga,b = 2A − G;
(iv) a + b = 0 and {c, d} =

{
3
2 , 1

2

}
, i.e. Ga,b is the geometric mean G and

Gc,d = 2A − G.

Similarly, as in the case of solving Eq. (4.12), here, in the proof of the
Theorem, the method of Taylor series expansion turned out to be useful. To
compute the expansion up to 12th order the authors made use of the computer
algebra system Maple V Release 9. It seems that the method of Taylor expan-
sion is especially useful while studying the invariance of means described by
numerical parameters only, not by function generators, just like Lehmer means
or Gini means. The same concerns Stolarsky means (cf Subsection 5.3).
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Gini means can be embedded into some one-parameter families of means
defined on (0,+∞) which are their weighted versions. For instance, in the
paper [120] Matkowski considered two different such families. For arbitrary
numbers r, s ∈ R we define Gr,s

t , t ∈ (0,+∞), and Mr,s
p , p ∈ (0, 1), by the

formulas

Gr,s
t (x, y) =

⎧
⎨

⎩

(
ts+1
tr+1

(tx)r+yr

(tx)s+ys

) 1
r−s

, if r 
= s,

exp
(

(tx)s log(tx)+ys log y
(tx)s+ys − ts log t

ts+1

)
, if r = s,

and

Mr,s
p (x, y) =

⎧
⎨

⎩

(
pxr+(1−p)yr

pxs+(1−p)ys

) 1
r−s

, if r 
= s,

exp
(

pxs log x+(1−p)ys log y
pxs+(1−p)ys

)
, if r = s,

respectively. Notice that Gr,s
1 = Gr,s and Mr,s

1/2 = Gr,s for all r, s ∈ R.
Matkowski observed (cf. [120, Proposition 2]) that the geometric mean G is
invariant with respect to some pairs of the above means. Namely,

G ◦ (Br,s
t , B−r,−s

t

)
= G, r, s ∈ R, t ∈ (0,+∞),

and

G ◦ (Mr,s
p ,M−r,−s

1−p

)
= G, r, s ∈ R, p ∈ (0, 1).

For some further results concerning invariance in families of weighted Gini
means the reader is referred to the papers [33] and [34] by Costin and Gh.
Toader where the method of series expansion is applied again.

5. Invariance and Cauchy means

5.1. Generalities

Fix an interval I ⊂ R and differentiable functions f, g : I → R such that g′

does not vanish and the function f ′/g′ is one-to-one. Then the Cauchy mean
value theorem implies that the formula

Df,g(x, y) =

{(
f ′

g′

)−1 (
f(x)−f(y)
g(x)−g(y)

)
, if x 
= y,

x, if x 
= y,

defines a function Df,g : I2 → I which is a strict mean on I. We call it the
Cauchy mean generated by f and g. Observe that if also f ′ does not vanish,
then Df,g = Dg,f . The equality problem

Df1,g1 = Df2,g2 ,

not easy to solve, was treated by Losonczi in [102] under rather restrictive
assumptions concerning, among others, the regularity of the generators. These
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restrictions have been removed by Matkowski in [115]. There one can also find
a simple argument showing that under the above assumptions imposed on f
and g we have, in fact, f ′/g′ ∈ CM(I) (cf. [115, Remark 1]).

There are some important subclasses of the class of Cauchy means. The first
one consists of those of the form Df,id; such a mean is called the Lagrangian
mean generated by f and denoted by Lf :

Lf (x, y) =

{
(f ′)−1

(
f(x)−f(y)

x−y

)
, if x 
= y,

x, if x = y,

for all x, y ∈ I. A classical example is the logarithmic mean Llog:

Llog(x, y) =
{ x−y

log x−log y , if x 
= y,

x, if x = y,

for all x, y ∈ (0,+∞).
Another class of Cauchy means has been proposed by Stolarsky [151]. Re-

membering the definition (3.11) of the function hp : (0,+∞) → R, p ∈ R, and
given real parameters p, q such that p2+q2 > 0 define the Stolarsky mean Ep,q

on (0,+∞) by the equalities

Ep,q =
{

Dhp,hq , if p 
= q,
Dhph0,hq , if p = q.

Additionally we put E0,0 = G. In other words, we have

Ep,q(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
q
p

xp−yp

xq−yq

) 1
p−q

, if p 
= q and pq 
= 0,
(

xp−yp

p(log x−log y)

) 1
p

, if p 
= q and q = 0,
(

xq−yq

q(log x−log y)

) 1
q

, if p 
= q and p = 0,

exp
(
− 1

p + xp log x−yp log y
xp−yp

)
, if p = q 
= 0,√

xy, if p = q = 0,

for all x, y ∈ (0,+∞), x 
= y. Observe that Ep,q = Eq,p for all p, q ∈ R. The
means Ep,0, p ∈ R, are also called extended logarithmic means, whereas the
mean E1,1 is called identric. Notice that E1,0 = Llog is simply the logarithmic
mean. Moreover, Ep,−p is the geometric mean G and E2p,p is the power mean
Hp, p ∈ R; in particular, E2,1 = A, E0,0 = G, and E−2,−1 = H.

Studying invariance in the class of Cauchy means leads to difficult prob-
lems and, as it seems, there are no results on solutions (ϕ,ψ, f, g, h, k) of the
equation

Dϕ,ψ ◦ (Df,g,Dh,k
)

= Dϕ,ψ
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in the general case; only some of its particular cases have been considered up
to now. The equation

G ◦ (Df,g,Dh,k
)

= G,

where one of the generators of each Cauchy mean is a power function, serves
as an example of such a situation. It has been studied by G�lazowska in [69].
The main result proved there reads as follows (see [69, Theorem 2]).

Theorem 5.1. Let p ∈ R \ {0} and f, g : I → R be differentiable functions such
that f ′/hp and g′/h−p are one-to-one. Then the triple (f, g, p) satisfies the
equation

G ◦ (Df,hp ,Dg,h−p
)

= G (5.1)

if and only if either there exists r ∈ R \ {0, p} such that

f(x) = afxr + bfxp + cf and g(x) = agx
−r + bgx

−p + cg

for all x ∈ I, or there exists r ∈ {0, p} such that

f(x) = afxr log x + bfxp + cf and g(x) = agx
−r log x + bgx

−p + cg

for some af , ag ∈ R \ {0} and bf , bg, cf , cg ∈ R.

As it follows from Theorem 5.1 the only pairs
(
Df,hp ,Dg,h−p

)
satisfying

Eq. (5.1) are pairs of some Stolarsky means (see [69, Corollary 1]):

Corollary 5.2. Let p ∈ R \ {0} and f, g : I → R be differentiable functions such
that f ′/hp and g′/h−p are one-to-one. Then the pair

(
Df,hp ,Dg,h−p

)
satisfies

Eq. (5.1) if and only if Df,hp = Ep,r and Dg,h−p = E−p,−r with some r ∈ R.

The proof of Theorem 5.1 is very technical and long. Among the tools the
reader can find the following regularity result (cf. [69, Theorem 1]). It concerns
a little bit more general equation than Eq. (5.1).

Theorem 5.3. Let p, q ∈ R \ {0} and f, g : I → R be differentiable functions
such that f ′/hp and g′/hq are one-to-one. If the quadriple (f, g, p, q) satisfies
the equation

G ◦ (Df,hp ,Dg,hq
)

= G, (5.2)

then for every x0 ∈ I and n ∈ N there exists a neighbourhood U of x0 such
that f |U and g|U are n-times continuously differentiable except for a closed set
with an empty interior.

Theorem 5.3 is a counterpart of a result by Matkowski [116, Theorem 1] used
while considering the invariance of the arithmetic mean A with respect to a
pair of Lagrangian means. It was proved with the use of the implicit function
theorem. Some necessary conditions for the invariance of the geometric mean
G with respect to the pair

(
Df,hp ,Dg,hq

)
are given by Lemmas 1 and 2 proved

in [69]. The first of these reads as follows.
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Lemma 5.4. Let p, q ∈ R \ {0} and f, g : I → R be differentiable functions
such that f ′/hp and g′/hq are one-to-one. If the quadriple (f, g, p, q) satisfies
Eq. (5.2), then for every interval J ⊂ I there exist an interval I0 ⊂ J and
a number c ∈ R \ {0} such that f |I0 and g|I0 are three times continuously
differentiable and

(
f ′(x)
h′

p(x)

)′(
g′(x)
h′

q(x)

)′
=

c

x2(p+q+1)

for all x ∈ I0.

The second one (see [69, Lemmas 2 and 3]) has a long and complicated for-
mulation. For that reason we present it in the particular case when q = −p.

Lemma 5.5. Let p ∈ R \ {0} and f, g : I → R be differentiable functions such
that f ′/hp and g′/h−p are one-to-one. If the triple (f, g, p) satisfies Eq. (5.1),
then for every interval J ⊂ I there exist an interval I0 ⊂ J and a number
c ∈ R \ {0} such that f |I0 and g|I0 are five times continuously differentiable
and

x2f ′′′(x) − 2(p − 1)xf ′′(x) + p(1 − p)f ′(x) = c (xf ′′(x) − (1 − p)f ′(x))

for all x ∈ I0.

Lemma 5.5, especially in its full form (cf. [69, Lemma 2]), has a tedious highly
computational proof making use of both Theorem 5.3 and Lemma 5.4, and is
the main tool while proving Theorem 5.1.

Difficulties, while solving the invariance problem in the class of Cauchy
means, can be essentially reduced when we confine ourselves to some of its
special subclasses, viz. to Lagrangian means or Stolarsky means.

5.2. Lagrangian means

Before a discussion of the invariance questions for Lagrangian means we deal
with the equality problem concerning them. It was answered by Berrone and
Moro [16, Corollary 7] and independently by G�lazowska in [67, Lemma 2]. For
another proof by Matkowski the reader is referred to [122, Lemma 1].

Theorem 5.6. Let f, g : I → R be differentiable functions with one-to-one
derivatives f ′ and g′. Then Lf = Lg if and only if f ′ ∼ g′.

It seems that the first paper devoted to invariance with respect to an arbi-
trary pair of Lagrangian means was published in 2005. It is [116] by Matkowski
where all the pairs

(
lf , Lg
)

satisfying the equation
A ◦ (Lf , Lg

)
= A (5.3)

were determined. The main result of the paper (cf. [116, Theorem 2]) reads as
follows.
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Theorem 5.7. Let f, g : I → R be differentiable functions with one-to-one
derivatives f ′ and g′. Then the pair (f, g) satisfies Eq. (5.3) if and only if
either

f ′(x) ∼ x, x ∈ I, and g′(x) ∼ x, x ∈ I,

or

f ′(x) ∼ eax, x ∈ I, and g′(x) ∼ e−ax, x ∈ I,

with some a ∈ R \ {0}.
As an immediate consequence of Theorem 5.7 we obtain its reformulation in
terms of means. For each a ∈ R \ {0} we denote by La the Lagrangian mean
generated by the function I � x �−→ eax:

La(x, y) =
1
a

log
(

eax − eay

a(x − y)

)

(5.4)

for all x, y ∈ I. Additionally we put L0 = A.

Corollary 5.8. Let f, g : I → R be differentiable functions with one-to-one
derivatives f ′ and g′. Then the pair (f, g) satisfies Eq. (5.3) if and only if
Lf = La and Lg = L−a with some a ∈ R.

In the proof of Theorem 5.7 the following result improving the regularity of
the generators f, g is useful (see [116, Theorem 1]).

Theorem 5.9. Let f, g : I → R be differentiable functions with one-to-one
derivatives f ′ and g′. If the pair (f, g) satisfies Eq. (5.3), then the functions
f, g are of class C∞ except a nowhere dense subset of I.

Making use of this regularity theorem one can reduce the problem of deter-
mining the solutions of (5.3) to solving the differential equation

f (3)(x)2 = f (2)(x)f (4)(x)

in a subinterval of I.
The equation

G ◦ (Lf , Lg
)

= G, (5.5)

which expresses the invariance of the geometric mean G with respect to a
pair
(
Lf , Lg
)

of Lagrangian means, is completely solved. We start with the
research made by G�lazowska in [67] under the assumption of the conditional
homogeneity of the means Lf and Lg. Assuming that I ⊂ (0,+∞) we say that
a mean M : I2 → I is conditionally homogeneous if

M(tx, ty) = tM(x, y)
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for all x, y ∈ I and t ∈ (0,+∞) such that tx, ty ∈ (0,+∞). All conditionally
homogeneous Lagrangian means are listed below (see [67, Theorem 2]). We
use the following denotation:

L[p](x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

p+1
xp+1−yp+1

x−y

) 1
p

, if p 
= −1 and p 
= 0,
x−y

log x−log y , if p = −1,

exp
(
−1 + x log x−y log y

x−y

)
, if p = 0,

for all x, y ∈ I, x 
= y, and L[p](x, x) = x for all x ∈ I, p ∈ R. Notice that L[p]

is the Lagrangian mean generated by the function hp+1 whenever p 
= −1 and
p 
= 0. Moreover, L[−1] = E1,0 = E0,1 is the logarithmic mean and L[0] = E1,1

is the identric one. In general, L[p] is called the generalized logarithmic mean.

Theorem 5.10. Assume that I ⊂ (0,+∞). Let f : I → R be a differentiable
function with one-to-one derivative f ′. Then the following statements are pair-
wise equivalent:

(i) the mean Lf is conditionally homogeneous;
(ii) there exists p ∈ R such that f ′ = hp, that is either p 
= 0 and

f ′(x) ∼ xp, x ∈ I,

or p = 0 and

f ′(x) ∼ log x, x ∈ I;

(iii) there exists p ∈ R such that Lf = L[p].

In the proof [110, Theorem 1] as well as some ideas of the proof of [85, Propo-
sition 2] have been used.

Making use of Theorems 5.10 and 5.6 , and some calculus of derivatives,
G�lazowska proved the theorem below which is the main result of [67].

Theorem 5.11. Assume that I ⊂ (0,+∞). Let f, g : I → R be differentiable
functions with one-to-one derivatives f ′ and g′. Assume that at least one of
the means Lf , Lg is conditionally homogeneous. Then the following statements
are pairwise equivalent:

(i) the pair (f, g) satisfies Eq. (5.5);
(ii) f ′(x) ∼ 1

x2 , x ∈ I, and g′(x) ∼ 1
x2 , x ∈ I;

(iii) Lf = Lg = G.

The next step in solving Eq. (5.5) was made in the paper [72] by G�lazowska
and Matkowski. There they resigned the assumption of conditional homogene-
ity of Lagrangian means and proved the following necessary condition for the(
Lf , Lg
)
-invariance of the geometric mean (cf. [72, Theorem 4]).
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Theorem 5.12. Assume that I ⊂ (0,+∞). Let f, g : I → R be differentiable
functions with one-to-one derivatives f ′ and g′. If the pair (f, g) satisfies
Eq. (5.5), then either

f ′(x) ∼ 1
x2

, x ∈ I, and g′(x) ∼ 1
x2

, x ∈ I,

or

log
(
x3f ′′(x)

) ∼ x− 4
9 , x ∈ I.

While proving this theorem some auxiliary results were obtained:

– a theorem improving the regularity of solutions (see [72, Theorem 1])
being a counterpart of Theorem 5.9;

– a result stating that, under the assumptions of Theorem 5.12, for every
interval J ⊂ I there exist an interval I0 ⊂ J and a number c ∈ R \ {0}
such that

f ′′(x)g′′(x) =
c

x6
, x ∈ I (5.6)

(see [72, Theorem 2]);
– a theorem reducing the original problem to the differential equation

(3 + xw(x))
(
9x2w′(x) + 13xw(x) + 12

)
= 0

locally satisfied by the function f ′′′/f ′′ (see [72, Theorem 3]);
– a result providing the general solution of the above differential equation.

In [72] the functions f and g are actually assumed continuously differentiable.
This is, in fact, superfluous since any function differentiable on an interval, with
one-to-one derivative, is continuously differentiable there (cf. [116, Remark 1]).

In the case when log
(
x3f ′′(x)

) ∼ x− 4
9 , x ∈ I, (and of course also (5.6)

holds) the mean Lf cannot be expressed by elementary functions. For this
reason it was hard to decide if the geometric mean G is, in fact, invariant with
respect to the pair

(
Lf , Lg
)
. This problem remained unsolved until 2011 when

G�lazowska [68] showed that this is not the case. This was done by calculat-
ing partial derivatives of order 7 of Lf and Lg satisfying (5.5). Some of the
calculations were made using Mathematica 4.1.

Summarizing, the final answer to the question on solutions of Eq. (5.5) can
be formulated as follows (cf. Theorem 5.12 and [68, Theorem 3.1]).

Theorem 5.13. Assume that I ⊂ (0,+∞). Let f, g : I → R be differentiable
functions with one-to-one derivatives f ′ and g′. Then the pair (f, g) satisfies
Eq. (5.5) if and only if

f ′(x) ∼ 1
x2

, x ∈ I, and g′(x) ∼ 1
x2

, x ∈ I,

or, equivalently, Lf = Lg = G.



854 J. Jarczyk, W. Jarczyk AEM

We conclude this section with a result of Matkowski [122] solving the equa-
tion

Df,g ◦ (Lf , Lg
)

= Df,g, (5.7)

expressing the invariance of the Cauchy mean Df,g with respect to a pair of
Lagrangian means generated by the same functions f and g. Here the means
La, a ∈ R\{0}, defined by (5.4) play an important role (see [122, Theorem 1]).
In its original formulation there is a lack of the assumption that the functions
f ′ and g′ are one-to-one, needful to define the means Lf and Lg. It does not
follow from the assumption that f ′/g′ is one-to-one: f = log and g = id serve
as an example. On the other hand there is no need to assume that f , g are
continuously differentiable. This is forced by the invertibility of f ′ and g′.

Theorem 5.14. Let f, g : I → R be differentiable functions such that g′ does not
vanish and the functions f ′, g′ and f ′/g′ are one-to-one. Then the following
statements are pairwise equivalent:

(i) the pair (f, g) satisfies Eq. (5.7);
(ii) either

f ′(x) ∼ g′(x), x ∈ I,

or

f(x) ∼ eax, x ∈ I, and g(x) ∼ e−ax, x ∈ I; (5.8)

(iii) either Df,g = Lf = Lg, or there is a ∈ R \ {0} such that Df,g = L0 = A,
Lf = La and Lg = l−a.

In the proof the lemma below is very useful (see [122, Lemma 2]).

Lemma 5.15. Let f, g : I → R be differentiable functions with nonvanishing
derivatives f ′ and g′. If

f(x) − f(y)
g(x) − g(y)

=
f ′(x)
g′(y)

, x, y ∈ I, x 
= y,

then condition (5.8) holds with some a ∈ R \ {0}.

5.3. Stolarsky means

The invariance problem in the class of Stolarsky means relies on solving the
equation

Ep,q ◦ (Ea,b, Ec,d
)

= Ep,q. (5.9)

Its particular case when p + q = 0, that is the equation

G ◦ (Ea,b, Ec,d
)

= G (5.10)

was studied in [19] by B�lasińska-Lesk (the former name of the first author),
G�lazowska and Matkowski. They solved Eq. (5.10) by finding quadruples
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(a, b, c, d) satisfying it. Some of them were formally losed. Nevertheless, as
Ep,q = Eq,p for all p, q ∈ R, all the means Ea,b and Ec,d were finally deter-
mined. Below we present a reformulation of Theorem 2 from [19] made also in
terms of means, which seems to be more adequate then the “parameter only”
attempt.

Theorem 5.16. Let a, b, c, d ∈ R. The quadruple (a, b, c, d) satisfies Eq. (5.10)
if and only if one of the following possibilities holds:

(i) a + b = c + d = 0, i.e. Ea,b and Ec,d are the geometric mean G;
(ii) {a, b} = {−c,−d}, i.e. Ea,b = E−c,−d.

To prove this result the authors of [19] used classical methods of mathematical
analysis like differentiation (up to eighth order derivatives) and taking limits.

Seven years later Theorem 5.16 was generalized by Baják and Páles in the
paper [8] where they solved Eq. (5.9) in full generality. To prove the next
theorem they used the computer algebra system Maple Release 9 to compute
the Taylor expansion of the approximation of some involved functions up to
12th order.

Theorem 5.17. Let p, q, a, b, c, d ∈ R. The 6-tuple (p, q, a, b, c, d) satisfies
Eq. (5.9) if and only if one of the following possibilities holds:

(i) p+q = a+b = c+d = 0, i.e. Ep,q, Ea,b and Ec,d are the geometric mean
G;

(ii) {p, q} = {a, b} = {c, d}, i.e. Ep,q = Ea,b = Ec,d;
(iii) p + q = 0 and {a, b} = {−c,−d}, i.e. Ep,q is the geometric mean G and

Ea,b = E−c,−d.

The method of Taylor series expansion was also used by Gh. Toader, Costin
and S. Toader in [154] to study the invariance problem in the class of extended
logarithmic means, that is the equation

Ep,0 ◦ (Ea,0, Ec,0
)

= Ep,0,

which is a particular case of (5.9). Of course the final result of [154] is covered
by Theorem 5.16.

At the very end of the section we say some words about the mixed case
where each of the means K,M,N satisfying the invariance equation K ◦
(M,N) = K is either a Gini mean, or a Stolarsky mean. There are six such
equations and two of them, that is (4.13) and (5.9), have been already dis-
cussed. Then it remains to study the following four:

Gp,q ◦ (Ea,b, Gc,d
)

= Gp,q, (5.11)

Gp,q ◦ (Ea,b, Ec,d
)

= Gp,q, (5.12)

Ep,q ◦ (Ga,b, Gc,d
)

= Ep,q, (5.13)

Ep,q ◦ (Ga,b, Ec,d
)

= Ep,q. (5.14)
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All of them were solved in [9] by Bájak and Páles. We do not provide the
formulation of the main results (see [9, Theorems 1-4]) listing all 6-tuples
(p, q, a, b, c, d) which determine solutions of each of the above four equations,
but would rather focus on a very interesting common attempt to these equa-
tions. To solve them the Maple Release 9 machinery was extensively used
to compute some derivatives of order 12. However, this is a rather standard
although really tedious task. In our opinion the following reasoning seems to
be much more interesting.

Given a Borel measure μ on [0, 1] and numbers r, s ∈ R we define the
function Mr,s,μ : (0,+∞)2 → (0,+∞) putting

Mr,s,μ(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎝

1∫

0
(xty1−t)r

dμ(t)

1∫

0
(xty1−t)sdμ(t)

⎞

⎠

1
r−s

, if r 
= s,

exp

⎛

⎝

1∫

0
(xty1−t)r

log(xty1−t)dμ(t)

1∫

0
(xty1−t)rdμ(t)

⎞

⎠ , if r = s,

for all x, y ∈ (0,+∞). A standard computation shows that Mr,s,μ is a mean
on (0,+∞) which is homogeneous, that is

Mr,s,μ(ux, uy) = uMr,s,μ(x, y), x, y, u ∈ (0,+∞),

and symmetric provided the measure μ is symmetric with respect to 1/2, i.e.
μ(1 − A) = μ(A) for all Borel sets A ⊂ [0, 1]. It is not hard to check that if μ
is the arithmetic mean of the Dirac measures δ0 and δ1 concentrated at 0 and
1, respectively, then Mr,s,μ is the Gini mean Gr,s, and in the case when μ is
the Lebesgue measure on [0, 1], the mean Mr,s,μ is the Stolarski mean Er,s.
Thus we have just defined a common generalization of the Gini and Stolarsky
means. Therefore, each of the equations (4.13), (5.9) and (5.11)–(5.14) can be
written as the equation

Mr,s,κ ◦ (Ma,b,μ,Mc,d,ν) = Mr,s,κ, (5.15)

where each of κ, μ and ν is either (δ0 + δ1) /2, or the Lebesgue measure on
[0, 1]. The following lemmas play an important role while preparing equations
(5.11)–(5.14) for using the computational machinery of Maple V.

Lemma 5.18. Let M,N : (0,+∞)2 → (0,+∞) be homogeneous strict means.
Then

(i) the Gauss composition M ⊗ N is homogeneous;
(ii) if M,N are symmetric, then so is M ⊗ N ;
(iii) if K : (0,+∞)2 → (0,+∞) is a homogeneous strict mean, then K =

M ⊗ N if and only if the function FK,M,N : R → R, defined by

FK,M,N (u) = log
K (M (eu, e−u) , N (eu, e−u))

K (eu, e−u)
,
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vanishes everywhere;
(iv) if, in addition, the functions K,M,N are analytic, then so is FK,M,N

and it vanishes on R if and only if F
(i)
K,M,N (0) = 0 for all i ∈ N;

(v) if, in addition, the functions K,M,N are symmetric, then the function
FK,M,N is even and vanishes on R if and only if F

(i)
K,M,N (0) = 0 for all

even i ∈ N.

According to Lemma 5.18, Eq. (5.15) is satisfied if and only if

F
(i)
Mr,s,κ,Ma,b,μ,Mc,d,ν

(0) = 0, i ∈ N.

Introduce the function Lμ : R → (0,∞) by

Lμ(z) = log
∞∑

i=0

zi

i!
μi,

where

μi :=

1∫

0

(

t − 1
2

)i

dμ(t), i ∈ N0,

are consecutive, central moments of the measure μ (observe that since μ is

symmetric with respect to 1/2 we have μ2i−1 = 0, i ∈ N, and thus
∞∑

i=0

zi

i! μi is

positive for all z ∈ R!). The next lemma provides a more useful representation
of the mean Mr,s,μ.

Lemma 5.19. Let μ be a Borel probability measure on [0, 1], symmetric with
respect to 1/2, and let r, s ∈ R. Then

Mr,s,μ(x, y) = exp
(
M∗

r,s,μ (log x, log y)
)
, x, y ∈ (0,+∞),

where M∗
r,s,μ : R2 → R is defined by

M∗
r,s,μ(u, v) =

{
u+v
2 + Lμ(r(u−v))−Lμ(s(u−v))

r−s , if r 
= s,
u+v
2 + (u − v)L′

μ (r(u − v)) , if r = s.

The final lemma deals with approximating functions defined as follows. Given
a probability Borel measure μ on [0, 1], symmetric with respect to 1/2, and a
number m ∈ N we put

Lμ;m(z) = log
m∑

i=0

zi

i!
μi, z ∈ R,

and, for all r, s ∈ R,

M∗
r,s,μ;m(u, v) =

{
u+v
2 + Lμ;m(r(u−v))−Lμ;m(s(u−v))

r−s , if r 
= s,
u+v
2 + (u − v)L′

μ;m (r(u − v)) , if r = s,
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and, for all u, v ∈ R, and

Mr,s,μ;m(x, y) = exp
(
M∗

r,s,μ;m (log x, log y)
)
, x, y ∈ (0,+∞).

Lemma 5.20. Let μ be a Borel probability measure on [0, 1], symmetric with
respect to 1/2. Then, for all m ∈ N0, we have

L(i)
μ (0) = L(i)

μ;m(0), i = 1, . . . ,m,

and

∂i
1∂

j
2Mr,s,μ(1, 1) = ∂i

1∂
j
2Mr,s,μ;m(1, 1), i, j ∈ N0, i + j ≤ m,

for all r, s ∈ R.

6. None of the above, but on invariance

6.1. Makó–Páles means

These means were introduced in [104] as a common generalization of weighted
quasi-arithmetic and Lagrangian means. Given an interval I, a function ϕ ∈
CM(I) and a probability Borel measure μ on [0, 1] we define the Makó–Páles
mean Mϕ,μ : I2 → I by

Mϕ,μ(x, y) = ϕ−1

⎛

⎝

1∫

0

ϕ (tx + (1 − t)y) dμ(t)

⎞

⎠ .

For any τ ∈ R denote by δτ the Dirac measure concentrated at τ . Observe
that if p ∈ (0, 1) and μ = (1 − p)δ0 + pδ1, then Mϕ,μ is the weighted quasi-
arithmetic mean Aϕ

p . On the other hand, if μ is the Lebesgue measure on [0, 1],
then taking any primitive function f of ϕ, for all different x, y ∈ I we have

Mϕ,μ(x, y) = ϕ−1

⎛

⎝

1∫

0

ϕ (tx + (1 − t)y) dt

⎞

⎠

= ϕ−1

⎛

⎝ 1
x − y

x∫

y

ϕ (u) du

⎞

⎠ = (f ′)−1
(

f(x) − f(y)
x − y

)

,

that is Mϕ,μ is the Lagrangian mean Lf .
The paper [104] is devoted to the equality problem for the means Mϕ,μ

whereas the paper [105] deals with the equation

Mϕ,μ(x, y) + Mψ,ν(x, y) = x + y (6.1)

expressing the invariance of the arithmetic mean with respect to a pair (Mϕ,μ,
Mψ,ν). While studying Eq. (6.1) moments and central moments of the involved
measures are especially important. Given a probability Borel measure μ on
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[0, 1] and a nonnegative integer k the kth moment μ̂k and the kth central
moment μk are defined by

μ̂k :=

1∫

0

tkdμ(t) and μk :=

1∫

0

(t − μ̂1)
k
dμ(t),

respectively. Moments of measures are also crucial while studying some prop-
erties of an individual Makó–Páles mean. The paper [25] provides characteri-
zations of their conditional homogeneity and conditional translativity, whereas
the note [26] is devoted to the symmetry of these means. Both papers are by
Burai and the first author.

The plurality of probability Borel measures implies that the class of Makó–
Páles means is pretty large and, consequently, the invariance problem studied
there has various solutions which strongly depend on some parameters of the
used measures, on their moments, in particular. From the numerous results
proved in [105] we choose the following two describing the form of pairs (ϕ,ψ)
satisfying Eq. (6.1). The first one (see [105, Theorem 6]) considers the case
μ2ν2 = 0, while the second one (see [105, Theorem 8]) deals with the comple-
mentary case μ2ν2 
= 0.

Theorem 6.1. Let μ, ν be probability Borel measures on [0, 1] such that μ2ν2 =
0 and let ϕ,ψ ∈ CM(I) be twice continuously differentiable functions with
nonvanishing first derivatives. The pair (ϕ,ψ) satisfies Eq. (6.1) if and only if
one of the following conditions holds:

(i) μ = δτ and ν = δ1−τ with some τ ∈ [0, 1];
(ii) μ = δτ and ν̂1 = 1 − τ with some τ ∈ [0, 1], ν2 
= 0 and

ψ(x) ∼ x, x ∈ I;

(iii) ν = δ1−τ and μ̂1 = τ with some τ ∈ [0, 1], μ2 
= 0 and

ϕ(x) ∼ x, x ∈ I.

To determine the form of solutions in the case when μ2ν2 
= 0 we need a
higher regularity of functions ϕ,ψ and a nondegeneracy condition imposed on
the second and third central moments of μ, ν.

Theorem 6.2. Let μ, ν be probability Borel measures on [0, 1] such that μ2ν2 
= 0
and let ϕ,ψ ∈ CM(I) be three times continuously differentiable functions with
nonvanishing first derivatives. Assume that

(μ3, ν3) 
= 3 (μ̂1 − ν̂1)
μ2 + ν3

(−μ2
2, ν

2
2

)
.

The pair (ϕ,ψ) satisfies Eq. (6.1) if and only if μ̂1 + ν̂1 = 1 and one of the
following conditions holds:
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(i)

ϕ(x) ∼ x, x ∈ I, and ψ(x) ∼ x, x ∈ I;

(ii)

ϕ(x) ∼ eax, x ∈ I, and ψ(x) ∼ ebx, x ∈ I,

with some a, b ∈ R such that ab < 0 and
n∑

i=0

(
n

i

)

aibn−i (μi+1νn−i + μiνn+1−i) = 0

for all n ∈ N;
(iii) there exist a, b ∈ R such that (a − 1)(b − 1) < 0 and

ϕ(x) ∼
{ |x − x0|a , if a 
= 0,

log |x − x0| , if a 
= 0,
ψ(x) ∼

{
|x − x0|b , if b 
= 0,
log |x − x0| , if b 
= 0,

with some x0 ∈ R \ I and for all x ∈ I, and

Fa,μ(z) + Fb,ν(z) = 2 + z, z ∈ (−1,+∞),

where

Fc,λ(z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1∫

0

(1 + tz)c
dλ(t)
) 1

c

, if c 
= 0,

exp
(

1∫

0

log (1 + tz) dλ(t)
)

, if c = 0,

for all z ∈ (−1,+∞), c ∈ R and all probability Borel measures λ on [0, 1].

The proof of Theorem 6.1 is quite elementary and immediate. However, unlike
this one, the proofs of Theorem 6.2 and some other results of [105] need more
sophisticated tools such as, e.g., the differential equations

(
3μ̂1μ2 + μ3

μ2
− 3ν̂1ν2 + ν3

ν2

)

φ′ +
(

μ3

μ2
2

+
ν3
ν2
2

)

φ2 = 0

and
(

6μ̂2
1μ2 + 4μ̂1μ3 + μ4

μ2
− 6ν̂2

1ν2 + 4ν̂1ν3 + ν4
ν2

)

φ′′

+
(

8μ̂1μ3 + 3μ4

μ2
2

+
8ν̂1ν3 + 3ν4

ν2
2

)

φφ′ +
(

μ4 − 3μ2
2

μ3
2

− ν4 − 3ν2
2

ν3
2

)

φ3 = 0

(cf. [105, Theorem 9]).
In [105] the reader can also find results dealing with the case when μ2ν2 
= 0,

μ3+ν3 = 0, and μ̂1+ν̂1 = 1 ( [105, Theorem 11]), or μ̂1 = ν̂1 = 1/2 and μ4 = ν4
( [105, Theorem 12]). In a particular case of the second one the following can
be proved (see [105, Corollary 13]).
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Theorem 6.3. Let μ be a probability Borel measure on [0, 1], having μ2 
=
0 and symmetric with respect to 1/2, and let ϕ,ψ ∈ CM(I) be four times
continuously differentiable functions with nonvanishing first derivatives. Then
the pair (ϕ,ψ) satisfies the equation

Mϕ,μ(x, y) + Mψ,μ(x, y) = x + y (6.2)

if and only if either

ϕ(x) ∼ x, x ∈ I, and ψ(x) ∼ x, x ∈ I,

or

ϕ(x) ∼ eax, x ∈ I, and ψ(x) ∼ e−ax, x ∈ I,

with some a ∈ R \ {0}.
Eq. (6.2) considered here is a special case of Eq. (6.1) where we take ν =
μ. Observe also that both the measures (δ0 + δ1) /2 and l1|[0,1] satisfy the
assumptions of Theorem 6.3, so it can be applied to equations (3.1) and (5.3)
dealing with the original Matkowski-Sutô problem and the invariance of the
arithmetic mean with respect to a pair of Lagrangian means, respectively.
Remember, however, that the assertion of Theorem 6.3 need a higher regularity
than Theorems 3.16 and 5.7. By the way the problem of reducing regularity
assumptions in results of [105] is open. Of course, among equations of the form
(6.1), there are a great number of equations not discussed in the present article
up to now. The equation

ϕ−1

(
2ϕ(x) + ϕ(y)

3

)

+ ψ−1

(
ψ(x) + 4ψ

(
x+y
2

)
+ 4ψ(y)

9

)

= x + y

serves as an example. This is Eq. (6.1) with the measures μ and ν given by

μ =
δ0 + 2δ1

3
and ν =

4δ0 + 4δ1/2 + δ1

9
(cf. [105, Example 4]).

A year later a similar research was made by Qian Zhang and Bing Xu for
the equation

Mϕ,μ(x, y)Mψ,ν(x, y) = xy (6.3)

describing the invariance of the geometric mean G with respect to a pair
(Mϕ,μ,Mψ,ν) of Makó–Páles means. An attempt presented by them in [156]
is similar to that from [105] and relies on reducing the main problem again to
some differential equations. However, in this case these are more complicated
and harder to solve than those occurring in [105], and thus the obtained results
are longer and less satisfactory. In particular, in the crucial case when μ2ν2 
= 0
only necessary conditions for pairs (ϕ,ψ) to satisfy Eq. (6.3) (see [156, Theorem
3]) are given. These conditions are formulated mainly in terms of derivatives
of ϕ and ψ, and do not allow us to express the means Mϕ,μ and Mψ,ν by
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elementary functions. For this reason it is impossible to verify if we have really
come to solutions of (6.3).

At the very end of this section we recall the paper [148] once more (cf. The-
orem 3.39), mainly because Eq. (3.26) is studied there. It is another example
of a Makó–Páles mean, since putting μ = qδ0 + pδ1 + (1 − p − q)δt we have

Mϕ,μ(x, y) = ϕ−1

⎛

⎝

1∫

0

ϕ (sx + (1 − s)y) dμ(s)

⎞

⎠

= ϕ−1 (pϕ(x) + qϕ(y) + (1 − p − q)ϕ(tx + (1 − t)y)) ,

for all x, y ∈ I and for all ϕ ∈ CM(I), that is Mϕ,μ is the At-conjugate mean
generated by ϕ and weighted by p and q.

6.2. Quotient means

These means were introduced by Matkowski in [121] in 2011. Given an interval
I ⊂ R and positive functions ϕ,ψ ∈ CM(I) of different types of monotonicity
the formula

Qϕ,ψ(x, y) =
(

ϕ

ψ

)−1(
ϕ(x)
ψ(y)

)

defines a mean on I; we call it a quotient mean. The main result of [121]
provides a complete solution of the problem of invariance of a quotient mean
Qϕ,ψ with respect to a pair

(
Aϕ

p , Aψ
q

)
of weighted quasi-arithmetic means.

Notice that no regularity assumptions are imposed here.

Theorem 6.4. Let ϕ,ψ ∈ CM(I) be positive functions of different types of
monotonicity and let p, q ∈ (0, 1). Then the following statements are pairwise
equivalent:

(i) the pair (ϕ,ψ) satisfies the equation

Qϕ,ψ ◦ (Aϕ
p , Aψ

q

)
= Qϕ,ψ; (6.4)

(ii) the product ϕψ is a constant function and p + q = 1;
(iii)

Qϕ,ψ(x, y) = ϕ−1
(√

ϕ(x)ϕ(y)
)

and Aψ
q (x, y) = ϕ−1

(
ϕ(x)ϕ(y)

pϕ(x) + (1 − p)ϕ(y)

)

for all x, y ∈ I.

Its proof is quite immediate and completely self-contained.
Just recently Qian Zhang and Bing Xu in [157] have studied the more

general equation

Qϕ,ψ ◦ (Mϕ,μ,Mψ,ν) = Qϕ,ψ (6.5)
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expressing the invariance of a quotient mean Qϕ,ψ with respect to a pair
(Mϕ,μ,Mψ,ν) of Makó–Páles means. They solved (6.5) under some regular-
ity conditions. Their answer to this invariance problem is contained in the
following three results (see [157, Theorems 2,4,5]).

Theorem 6.5. Let μ, ν be probability Borel measures on [0, 1] such that
(1 − μ̂1) ν̂1 = 0 and let ϕ,ψ ∈ CM(I) be positive continuously differentiable
functions of different types of monotonicity. Then the pair (ϕ,ψ) satisfies
Eq. (6.5) if and only if μ = δ1 and ν = δ0.

This result needs no advanced arguments and tedious calculations. But the
next two theorems have been proved with the help of a differential equation
(cf. [157, Theorem 3]).

Theorem 6.6. Let μ, ν be probability Borel measures on [0, 1] such that
(1 − μ̂1) ν̂1 
= 0 and

1 − μ̂2

1 − μ̂1
=

ν̂2
ν̂1

,

and let ϕ,ψ ∈ CM(I) be positive twice continuously differentiable functions of
different types of monotonicity. Then

μ = pδ1 + (1 − p)δ0 and ν = qδ1 + (1 − q)δ0

with p = μ̂1 and q = ν̂1, respectively, and Eq. (6.5) takes the form (6.4).

Now the form of ϕ and ψ can be learned from Theorem 6.4. In the last result
of this subsection, given a real number t and an integer i ∈ N the symbol

(
t
i

)

denotes the generalized binomial coefficient given by
(

t

i

)

=
(t − i + 1) · . . . · (t − 1)t

i!
.

Theorem 6.7. Let μ, ν be probability Borel measures on [0, 1] such that
(1 − μ̂1) ν̂1 
= 0 and

1 − μ̂2

1 − μ̂1

= ν̂2

ν̂1
,

and let ϕ,ψ ∈ CM(I) be positive twice continuously differentiable functions of
different types of monotonicity. Put

p = −
1−μ̂2

(1−μ̂1)
2 − 2

1−μ̂1
+ ν̂2

ν̂2
1

1−μ̂2
1−μ̂1

− ν̂2
ν̂1

.

(i) In the case when p = 0 the pair (ϕ,ψ) satisfies Eq. (6.5) if and only if

ϕ(x) = ae
c

1−μ̂1
x and ψ(x) = be− c

ν̂1
x, x ∈ I,
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with some a, b ∈ (0,+∞) and c ∈ R \ {0} and

(1 − μ̂n)
(

c

1 − μ̂1

)n

+
n∑

i=1

(
n

i

)

ν̂i

(
c

1 − μ̂1

)n−i(

− c

ν̂1

)i

= 0

for all n ∈ N.

(ii) In the case when p 
= 0 the pair (ϕ,ψ) satisfies Eq. (6.5) if and only if

ϕ(x) = a |x − x0|−
1

p(1−μ̂1) and ψ(x) = b |x − x0|
1

pν̂1 , x ∈ I,

with some a, b ∈ (0,+∞) and x0 ∈ R \ I and

(1 − μ̂n)
(− 1

p(1−μ̂1)

n

)

+
n∑

i=1

ν̂i

(− 1
p(1−μ̂1)

n − i

)( 1
p1−ν̂1

i

)

= 0

for all n ∈ N.

6.3. Means of power growth

The Heinz mean was defined by Bhatia [17] in 2006. Given a number p ∈ [0, 1]
the mean H [p] : (0,+∞)2 → (0,+∞) is given by

H [p](x, y) =
xpy1−p + x1−pyp

2
.

It is named after Heinz who considered its matrix version to prove several
inequalities in the perturbation theory of operators (see [75]). In fact, the
mean H [p] occurred already in [74], called there symmetric. Observe that it is
positively homogeneous and symmetric. Since H [1−p] = H [p] for all p ∈ [0, 1],
it is enough to consider Heinz means only for p ∈ [0, 1/2]. Notice that H [1/2] =
G ≤ H [p] ≤ A = H [0] for all p ∈ [0, 1/2]. Moreover,

H [p] = A ◦ (Gp, G1−p) , p ∈ [0, 1/2],

where Gp stands for the p-weighted geometric mean.
The invariance equation in the class of Heinz means, that is

H [p] ◦
(
H [q],H [r]

)
= H [p], (6.6)

was solved by Besenyei [18]. His main result (see [18, Theorem 4]) reads as
follows.

Theorem 6.8. Let p, q, r ∈ [0, 1/2]. Then the triple (p, q, r) satisfies Eq. (6.6)
if and only if p = q = r.

To prove this result Besenyei used the Taylor expansion of the Heinz mean up
to order 6.
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Theorem 6.8 was extended to a much broader class of means by Witkowski
[155]. He introduced the notion of mean of power growth. A positively homo-
geneous and symmetric mean M on (0,+∞) is said to be a mean of power
growth if the limit

lim
x→0

M(x, 1)
xα

exists and is positive and finite for some α ∈ R. Clearly, if such an α exists at
all, it is unique. We call it the order of M and denote by ord(M). It is easy
to observe that the order of any mean of power growth lies in [0, 1]. Among
means of power growth are, for instance, the weighted arithmetic restricted to
(0,+∞), geometric, and harmonic means Ap|(0,+∞), Gp and Hp, respectively,
the power means Hp and the Heinz means H [p]. Standard calculations show
that ord

(
Ap|(0,+∞)

)
= 0, ord (Gp) = p and ord (Hp) = 1 for all p ∈ (0, 1),

ord (Hp) =

⎧
⎨

⎩

0, if p ∈ (0,+∞),
1/2, if p = 0,
1, if p ∈ (−∞, 0),

and

ord
(
H [p]
)

=
{

1/2, if p ∈ [0, 1/2],
1, if p = 1/2.

In [155] Witkowski proposed the following definition. Given a symmetric
homogeneous mean M on (0,+∞), of power growth, and a number p ∈ [0, 1/2]
we define the mean Mp on (0,+∞) by

Mp = M ◦ (Gp, G1−p) .

If M = A then Mp = H [p] for all p ∈ [0, 1/2]. It is easy to verify that Mp is
again of power growth and

ord (Mp) = p + (1 − 2p)ord(M)

for all p ∈ [0, 1/2]. Invariance in the class of such functions was examined in
the following result (see [155, Theorem 2]).

Theorem 6.9. Let p, q, r ∈ [0, 1/2] and M be a symmetric homogeneous mean
on (0,+∞), of power growth. Assume that ord(M) 
= 1/2 and

lim
x→0

M(x, 1)
xord(M)


= 1.

Then the triple (p, q, r) satisfies the equation

Mp ◦ (Mq,Mr) = Mp (6.7)

if and only if p = q = r.

As an immediate corollary, taking here M = A, we obtain Theorem 6.8 of
Besenyei. The proof of Theorem 6.9 is quite elementary and relies on controlling
the asymptotic behaviour at 0 of the functions involved in equality (6.7).
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means. Math. Slovaca 63, 493–502 (2013)

[130] Matkowski, J.: Invariance identity in the class of generalized quasi-arithmetic means.
Colloq. Math. 137, 221–228 (2014)
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