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On the generalized Fréchet functional equation with constant
coefficients and its stability
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Abstract. We study a generalization of the Fréchet functional equation, stemming from a
characterization of inner product spaces. We show, in particular, that under some weak
additional assumptions each solution of such an equation is additive. We also obtain a
theorem on the Ulam type stability of the equation. In its proof we use a fixed point result
to show the existence of an exact solution of the equation that is close to a given approximate
solution.

Mathematics Subject Classification. 39B52, 39B82, 47H10.

Keywords. Stability, Inner product space, Fixed point theorem, Fréchet equation.

1. Introduction

In this paper we study the following functional equation (with constant coef-
ficients)

A1F (x + y + z) + A2F (x) + A3F (y) + A4F (z) = A5F (x + y)
+A6F (x + z) + A7F (y + z), (1)

where A1, . . . , A7 ∈ K and K ∈ {R,C} (R and C denote the fields of real and
complex numbers, respectively), in the class of functions F : X → Y , where
(X, +) is a commutative monoid (i.e., a semigroup with a neutral element
denoted by 0) and Y is a Banach space over the field K.

This equation is a generalization of the Fréchet functional equation

F (x + y + z) + F (x) + F (y) + F (z) = F (x + y) + F (x + z) + F (y + z). (2)

Namely, in case Ai = Aj �= 0 for i, j ∈ {1, . . . , 7}, Eq. (1) can be easily reduced
to Eq. (2). Therefore, we will be interested mainly in the case where Ai �= Aj

for some i, j.
Fréchet [17] proved that a normed space (X, ‖ · ‖) is an inner product space

if and only if for all x, y, z ∈ X
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‖x + y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2 = ‖x + y‖2 + ‖x + z‖2 + ‖y + z‖2. (3)

This means that a normed space X is an inner product space if and only if the
function F , given by F (x) ≡ ‖x‖2, satisfies Eq. (2). For further similar results
we refer to [1,4,5,7,13,15,20,27–29].

The first part of this paper contains some results on solutions of Eq. (1)
in the case where (X,+) is a monoid and Y is a Banach space. It is known
that, if X is a group and Y is an abelian group divisible by 2, then the general
solution of Eq. (2) is the sum of a quadratic and an additive function (see [23,
pp. 249-250]). An analogous result is true for Eq. (1), but then each solution is
a sum of a quadratic, an additive and a constant function (see [4, Proposition
7]). We will show that under the assumption that at least two coefficients
Ai are not equal, every solution F of Eq. (1), with F (0) = 0, is an additive
function.

In the second part of this paper we will consider the problem of Ulam
stability of Eq. (1). A stability result concerning Eq. (2) can be found in [5].
Analogous outcomes for Eq. (1) were proved in [26] (see also [4, Corollary
6]), under the assumptions that (X,+) is a commutative group, A1 �= 0 and
A2 + A3 + A4 = A5 + A6 + A7, which has motivated us to study a bit further
the dependence of the stability of Eq. (1) on the values of the coefficients
A1, . . . , A7. Moreover, we weaken the assumptions on X by assuming ‘only’
that it is a commutative monoid. In this way we also complement the recent
outcomes in [4].

We use a fixed point approach, introduced in [10] (see also [4,5,13,26,30,
34]). The main tool in the proof of our main stability result is the fixed point
theorem in [11] (similar results can be found in, e.g., [2,12,14]).

Theorem 1. [11] Let the following three hypotheses be valid.

(H1) S is a nonempty set, E is a Banach space, and functions f1, . . . , fk :
S → S and l1, . . . , lk : S → R+ are given.

(H2) T : ES → ES is an operator satisfying the inequality

∥
∥T ξ(x) − T μ(x)

∥
∥ ≤

k∑

i=1

li(x)
∥
∥ξ(fi(x)) − μ(fi(x))

∥
∥, ξ, μ ∈ ES , x ∈ S.

(H3) Λ : R+
S → R+

S is defined by

Λδ(x) :=
k∑

i=1

li(x)δ(fi(x)), δ ∈ R+
S , x ∈ S.

Assume that functions ε : S → R+ and ϕ : S → E fulfil the following two
conditions
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∥
∥T ϕ(x) − ϕ(x)

∥
∥ ≤ ε(x), x ∈ S, (4)

ε∗(x) :=
∞∑

n=0

Λnε(x) < ∞, x ∈ S. (5)

Then there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ S.

Moreover,

ψ(x) := lim
n→∞ T nϕ(x), x ∈ S.

Using this theorem we prove that an operator defined in the space Y X

determines an exact solution of Eq. (1) as the limit of a sequence of its iterates
on an approximate solution of this equation. Such a method has been used in,
e.g., [4–6,10,26,30,33,34]. Moreover, the results that we provide correspond
to the outcomes in [3,9,13,16,18,21,24,25,31,32] (for more details see, e.g.,
[8,19,22]) and complement [4, Corollary 6].

2. Additive solutions of the generalized Fréchet functional equation

In this section we present some auxiliary observations on solutions of Eq. (1).
The main result of this part says that, under a natural additional assumption
concerning the coefficients Ai, each solution F of Eq. (1), with F (0) = 0, is an
additive function.

Throughout this section X is a monoid, Y is a vector space over the field
K ∈ {R,C}, and A1, . . . , A7 ∈ K. Let us recall that every solution of Eq. (2)
satisfies the equality F (0) = 0. But this is not necessarily the case for Eq. (1).
The following result gives a sufficient condition for the equality F (0) = 0.

Proposition 2. If the condition

A1 + A2 + A3 + A4 �= A5 + A6 + A7, (6)

is fulfilled, then each solution F : X → Y of Eq. (1) satisfies the condition
F (0) = 0.

Proof. Let F be a solution of Eq. (1). Putting x = 0, y = 0 and z = 0 into
Eq. (1) we obtain

(A1 + A2 + A3 + A4)F (0) = (A5 + A6 + A7)F (0). (7)

Hence, if F (0) �= 0, then

A1 + A2 + A3 + A4 = A5 + A6 + A7. (8)

Consequently, by (6) we have F (0) = 0. �
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From now on we are interested in solutions of Eq. (1) which satisfy the
relation F (0) = 0.

Proposition 3. If a nonzero function F : X → Y , with F (0) = 0, satisfies
Eq. (1), then

⎧

⎨

⎩

A2 = −A1 + A5 + A6,
A3 = −A1 + A5 + A7,
A4 = −A1 + A6 + A7.

(9)

Proof. Putting y = 0, z = 0 in (1), we get

A1F (x) + A2F (x) = A5F (x) + A6F (x), x ∈ X.

Thus

(A1 + A2 − A5 − A6)F (x) = 0, x ∈ X,

whence

A2 = −A1 + A5 + A6,

since F is a nonzero function. In a similar way we obtain the other two relations
in (9). More precisely, putting x = 0, z = 0 and x = 0, y = 0 we get
A3 = −A1 + A5 + A7 and A4 = −A1 + A6 + A7, respectively. �

Proposition 4. Assume that relations (9) are fulfilled. Then every additive
function a : X → Y is a solution of Eq. (1).

Proof. Let a : X → Y be an additive function. Then

A5a(x + y) + A6a(x + z) + A7a(y + z)

= (A5 + A6)a(x) + (A5 + A7)a(y) + (A6 + A7)a(z). (10)

By (9) we obtain

A1a(x + y + z) + A2a(x) + A3a(y) + A4a(z) = A1a(x + y + z)

+ (−A1 + A5 + A6)a(x) + (−A1 + A5 + A7)a(y) + (−A1 + A5 + A7)a(z).

Hence using the additivity of the function a once again we get

A1a(x + y + z) + A2a(x) + A3a(y) + A4a(z)

= (A5 + A6)a(x) + (A5 + A7)a(y) + (A6 + A7)a(z). (11)

Thus by (10) and (11) we get

A1a(x + y + z) + A2a(x) + A3a(y) + A4a(z)
= A5a(x + y) + A6a(x + z) + A7a(y + z),

i.e. a satisfies Eq. (1). �

Corollary 5. A nonzero additive function a : X → Y satisfies Eq. (1) if and
only if relations (9) hold.
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Proof. Let a : X → Y be a nonzero additive function. Assume that a satisfies
Eq. (1). Then by Proposition 3 relations (9) hold, since a(0) = 0. The converse
implication follows directly from Proposition 4. �

Corollary 6. If Eq. (1) has a nonzero solution F : X → Y , with F (0) = 0,
then each additive function a : X → Y satisfies Eq. (1).

Proof. Assume that Eq. (1) has a nonzero solution F : X → Y such that
F (0) = 0. Then by Proposition 3 relations (9) hold. Hence by Corollary 5
every nonzero additive function satisfies Eq. (1). Moreover, it is easily seen
that the function a : X → Y , given by a(x) = 0 for all x ∈ X, is a solution of
Eq. (1). �

Thus we have shown that the set of all nonzero solutions F : X → Y
of Eq. (1) such that F (0) = 0, if non-empty, contains the set of all additive
functions a : X → Y . Under the assumption that relations (9) hold we obtain
by Proposition 4 that the considered set of solutions of Eq. (1) is non-empty.
The next result states that, under a suitable assumption on the coefficients
Ai, the two sets coincide.

Theorem 7. If Ai �= Aj for some i, j ∈ {1, . . . , 7}, then each solution F : X →
Y of Eq. (1), with F (0) = 0, is an additive function.

Proof. Clearly, if F (x) ≡ 0, then it is additive. So, assume that F is a nonzero
solution of Eq. (1) such that F (0) = 0. We distinguish the cases A1 �= A5 and
A1 = A5. Let us note that by (9) we have

A1 − A5 = A6 − A2 = A7 − A3 := B. (12)

First let us assume that A1 �= A5, i.e., B �= 0. Putting z = 0 into (1) we
get

A1F (x + y)+A2F (x) + A3F (y) = A5F (x + y) + A6F (x) + A7F (y), x, y ∈ X.

Hence

(A1 − A5)F (x + y) = (A6 − A2)F (x) + (A7 − A3)F (y), x, y ∈ X. (13)

By (12) Eq. (13) can be written in the form

BF (x + y) = BF (x) + BF (y), x, y ∈ X,

where B �= 0. Consequently

F (x + y) = F (x) + F (y), x, y ∈ X.

Now we proceed to the case where A1 = A5. Then by (12), A6 = A2 and
A7 = A3 and Eq. (1) has the form

A1F (x + y + z) + A2F (x) + A3F (y) + A4F (z)

= A1F (x + y) + A2F (x + z) + A3F (y + z), x, y, z ∈ X.
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Hence with x = 0 we obtain that

A1F (y + z)+A3F (y)+A4F (z) = A1F (y)+A2F (z)+A3F (y + z), y, z ∈ X.

Thus

(A1 − A3)F (y + z) = (A1 − A3)F (y) + (A2 − A4)F (z), y, z ∈ X. (14)

Next, from (9) we get that

A1 − A7 = A6 − A4.

Hence
A1 − A3 = A2 − A4 := C, (15)

since by (12) we have A7 = A3 and A6 = A2. Consequently, Eq. (14) can be
written in the form

CF (y + z) = CF (y) + CF (z), y, z ∈ X. (16)

Now we consider the following two subcases: A1 �= A3 and A1 = A3. If
A1 �= A3, then C �= 0 and from (16) we obtain that F is additive. Now let us
assume that A1 = A3. Then from (12) and (15) we obtain that A1 = A3 =
A5 = A7 and A2 = A4 = A6. Thus Eq. (1) has the form

A1F (x + y + z) + A2F (x) + A1F (y) + A2F (z)

= A1F (x + y) + A2F (x + z) + A1F (y + z), x, y, z ∈ X.

Hence putting y = 0 we get

A1F (x+z)+A2F (x)+A2F (z) = A1F (x)+A2F (x+z)+A1F (z), x, z ∈ X.

Consequently

DF (x + z) = DF (x) + DF (z), x, z ∈ X,

where D =: A1 − A2. Thus, if A1 �= A2, then F is additive. �
Directly from Theorem 7 we obtain the following result.

Corollary 8. If there exists a nonadditive nonzero solution F : X → Y of
Eq. (1) such that F (0) = 0, then Ai = Aj for all i, j ∈ {1, . . . , 7}.

Moreover, from Theorem 7 and Proposition 2 we get the following descrip-
tion of the set of solutions of Eq. (1).

Corollary 9. If Ai �= Aj for some i, j ∈ {1, . . . , 7} and condition (6) holds,
then each solution of Eq. (1) is an additive function.

Now we proceed to the general case, without the assumption that F (0) = 0.

Corollary 10. Assume that Ai �= Aj for some i, j ∈ {1, . . . , 7}. If F : X → Y
is a solution of Eq. (1), then

F (x) = a(x) + c, x ∈ X, (17)

where a : X → Y is an additive function and c = F (0).



Vol. 92 (2018) On the generalized Fréchet functional equation 361

Proof. Let F satisfy Eq. (1). If F (0) = 0, then from Theorem 7 we obtain that
(17) holds with c = 0. Now, let us assume that F (0) �= 0. Define the function
F0 : X → Y by the formula

F0(x) := F (x) − F (0), x ∈ X.

Then F0 is a solution of Eq. (1), since F satisfies Eq. (1) and consequently
condition (7) holds. On account of Theorem 7 the function F0 is additive. Thus
F is a sum of an additive function and the constant c := F (0). �

Let us note that the converse of Corollary 10, in general, is false. Consider
the case where A1 = 2 and A2 = A3 = A4 = A5 = A6 = A7 = 1. Then by
Proposition 2 for each solution F of Eq. (1) we have F (0) = 0, since condition
(6) holds. Thus on account of Corollary 5 we obtain that the only solution
of Eq. (1) is the zero function, since condition (9) is not fulfilled. In the case
where A1 = A2 = A3 = A4 = A5 = A6 = 1 and A7 = 2 the set of solutions of
Eq. (1) consists of all constant functions, since none of conditions (6) and (9)
holds.

Now consider the case where A1 = 3, A2 = A3 = A4 = −1 and A5 = A6 =
A7 = 1. Then by Proposition 2, F (0) = 0 for every solution F of Eq. (1). Thus
from Proposition 4 we obtain that the set of solutions of Eq. (1) consists of all
additive functions. In case A1 = 3, A2 = A3 = A4 = 1 and A5 = A6 = A7 = 2
each function F of the form (17) is a solution of Eq. (1). In fact, we can state
a more general result.

Corollary 11. Assume that conditions (8) and (9) hold. If F : X → Y is of
the form (17), where a : X → Y is an additive function and c ∈ Y , then F is
a solution of Eq. (1).

Proof. Since relations (9) hold, on account of Proposition 4 we have that each
additive function satisfies Eq. (1). However, condition (8) implies that any
constant function is a solution of Eq. (1). �

At the end of this section let us recall that in the only remaining case A1 =
· · · = A7 there exists a nonadditive solution F of Eq. (1) such that F (0) = 0.
Namely, without loss of generality we can assume that A1 = · · · = A7 = 1 (we
exclude the trivial case A1 = · · · = A7 = 0). Next, let (X, ‖ · ‖) be an inner
product space and Y = R. Then the function F : X → R, given by F (x) :=
‖x‖2, is a solution of Eq. (1), where the norm is derived from the inner product
(cf. [17]). Moreover, in [26] it was proved that if F : X → R, F (x) = ‖x‖2 is a
solution of (1), then A1 = · · · = A7 (which corresponds to Corollary 8).

3. The stability result

In this section, as before, (X, +) is a commutative group, X̂ := X3\{(0, 0, 0)},
Y is a Banach space over the field K ∈ {R,C}, and A1, . . . , A7 ∈ K.
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We prove a stability result for the generalized Fréchet functional equation.
As a corollary we obtain that near an approximate solution of Eq. (1) there
exists an additive function. The proof of this fact is based on the results of the
previous section.

Let us recall that the following theorem, concerning the stability of Eq. (1),
was proved in [26].

Theorem 12. Let A1 �= 0 and

A2 + A3 + A4 = A5 + A6 + A7.

Assume that f : X → Y , c : Z\{0} → [0,∞) and L : X̂ → [0,∞) satisfy the
following three conditions:

M := {m ∈ Z\{0} : |A7|c(−2m) + |A5 + A6|c(m + 1) + |A3 + A4|c(−m)

+ |A2|c(2m + 1) < |A1|} �= ∅,

L(kx, ky, kz) ≤ c(k)L(x, y, z), (x, y, z) ∈ X̂,m ∈ M,

k ∈ {−2m,m + 1,−m, 2m + 1},

‖A1f(x + y + z) + A2f(x) + A3f(y) + A4f(z) − A5f(x + y) − A6f(x + z)

− A7f(y + z)‖ ≤ L(x, y, z), (x, y, z) ∈ X3.

Then there is a unique function F : X → Y satisfying Eq. (1) such that

‖f(x) − F (x)‖ ≤ ρL(x), x ∈ X\{0},

where

ρL(x) := inf
m∈M

L((2m + 1)x,−mx,−mx)
|A1| − βm

,

βm := |A7|c(−2m) + |A5 + A6|c(m + 1) + |A3 + A4|c(−m) + |A2|c(2m + 1).

The main theorem of this section corresponds to Theorem 12 and reads as
follows.

Theorem 13. Let A2 + A3 + A4 �= 0,

β0 :=
∣
∣
∣
∣

A5 + A6 + A7 − A1

A2 + A3 + A4

∣
∣
∣
∣
< 1,

and L : X3 → [0,∞) satisfy the condition

L(kx, ky, kz) ≤ ckL(x, y, z), (x, y, z) ∈ X̂, k ∈ {2, 3}, (18)

with some c2, c3 ∈ [0,∞) such that β := b2c2 + b3c3 < 1, where

b2 :=
∣
∣
∣
∣

A5 + A6 + A7

A2 + A3 + A4

∣
∣
∣
∣
, b3 :=

∣
∣
∣
∣

A1

A2 + A3 + A4

∣
∣
∣
∣
. (19)
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If f : X → Y fulfils the condition

‖A1f(x + y + z) + A2f(x) + A3f(y) + A4f(z) − A5f(x + y)

− A6f(x + z) − A7f(y + z)‖ ≤ L(x, y, z), (x, y, z) ∈ X3, (20)

then there exists a unique function F : X → Y satisfying (1) such that F (0) =
0 and

‖f(x) − F (x)‖ ≤ ρL(x), x ∈ X, (21)

where

ρL(x) :=
L(x, x, x)

|A2 + A3 + A4|(1 − γ(x))
, x ∈ X, (22)

with

γ(x) :=
{

β if x �= 0;
β0 if x = 0.

Proof. In the first part of the proof we define an operator T and show that T
satisfies the assumptions of Theorem 1. Taking y = z = x in (20) we obtain

‖A1f(3x)+(A2 + A3 + A4)f(x)−(A5 + A6 + A7)f(2x)‖≤L(x, x, x), x ∈ X.

Hence, for each x ∈ X,
∥
∥
∥
∥
f(x) − A5 + A6 + A7

A2 + A3 + A4
f(2x) +

A1

A2 + A3 + A4
f(3x)

∥
∥
∥
∥

≤ ε(x), (23)

where

ε(x) :=
L(x, x, x)

|A2 + A3 + A4|
.

Put

T ξ(x) :=
A5 + A6 + A7

A2 + A3 + A4
ξ(2x) − A1

A2 + A3 + A4
ξ(3x), ξ ∈ Y X , x ∈ X. (24)

In particular, for x = 0 we have

T ξ(0) =
A5 + A6 + A7 − A1

A2 + A3 + A4
ξ(0), ξ ∈ Y X . (25)

Let us note that the operator T is linear. From (23) and (24) we get directly
that

‖f(x) − T f(x)‖ ≤ ε(x), x ∈ X,

which means that condition (4) holds. In particular, on account of (23) and
(25) with x = 0, we have

‖f(0) − T f(0)‖ =
∣
∣
∣
∣
1 − A5 + A6 + A7 − A1

A2 + A3 + A4

∣
∣
∣
∣
‖f(0)‖ ≤ ε(0).
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Now we will show that condition (H2) of Theorem 1 is satisfied with k = 3,
S = X, E = Y , f1(x) = 2x, f2(x) = 3x, f3(x) = x and

l1(x) :=
{

b2 if x �= 0;
0 if x = 0,

l2(x) :=
{

b3 if x �= 0;
0 if x = 0,

l3(x) :=
{

0 if x �= 0;
β0 if x = 0,

i.e.,

‖T ξ(x) − T μ(x)‖ ≤
3∑

i=1

li(x)‖ξ(fi(x)) − μ(fi(x))‖, ξ, μ ∈ Y X , x ∈ X.

Let us fix ξ, μ ∈ Y X . Then for every x ∈ X we have

‖T ξ(x) − T μ(x)‖ =
∥
∥
∥
∥

A5 + A6 + A7

A2 + A3 + A4
(ξ(2x) − μ(2x))

− A1

A2 + A3 + A4
(ξ(3x) − μ(3x))

∥
∥
∥
∥

.

Hence by the triangle inequality we obtain that

‖T ξ(x) − T μ(x)‖ ≤
∣
∣
∣
∣

A5 + A6 + A7

A2 + A3 + A4

∣
∣
∣
∣
‖ξ(2x) − μ(2x)‖

+
∣
∣
∣
∣

A1

A2 + A3 + A4

∣
∣
∣
∣
‖ξ(3x) − μ(3x)‖.

Thus

‖T ξ(x) − T μ(x)‖ ≤ b2 ‖ξ(2x) − μ(2x)‖ + b3 ‖ξ(3x) − μ(3x)‖, x ∈ X. (26)

Actually, we use this relation for x ∈ X\{0}. In case x = 0 we have a bit more:

‖T ξ(0) − T μ(0)‖ =
∥
∥
∥
∥

A5 + A6 + A7 − A1

A2 + A3 + A4
(ξ(0) − μ(0))

∥
∥
∥
∥

=
∣
∣
∣
∣

A5 + A6 + A7 − A1

A2 + A3 + A4

∣
∣
∣
∣
‖ξ(0) − μ(0)‖.

Consequently

‖T ξ(0) − T μ(0)‖ = β0 ‖ξ(0) − μ(0)‖, (27)

which means that condition (H2) holds.
Define an operator Λ : R+

X → R+
X as in (H3) by

Λη(x) :=
3∑

i=1

li(x)η(fi(x)), x ∈ X (28)
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for every η ∈ R+
X . Then for each η ∈ R+

X we have

Λη(x) := b2 η(2x) + b3 η(3x), x ∈ X\{0}
and

Λη(0) := β0η(0).

Let us note that the operator Λ is nondecreasing, i.e., Λη ≤ Λζ for all η, ζ ∈
R+

X with η ≤ ζ. Moreover, by (26) and (27)

‖T ξ(x) − T μ(x)‖ ≤ Λ(‖ξ − μ‖)(x), ξ, μ ∈ Y X , x ∈ X. (29)

Now we will show that condition (5) is satisfied, i.e., the function series
∑∞

n=0 Λnε(x) is convergent for each x ∈ X. Fix an x ∈ X\{0}. In view of (28)
and (18), we have

Λε(x) = b2 ε(2x) + b3 ε(3x) = b2
L(2x, 2x, 2x)

|A2 + A3 + A4|
+ b3

L(3x, 3x, 3x)
|A2 + A3 + A4|

≤ b2c2
L(x, x, x)

|A2 + A3 + A4|
+ b3c3

L(x, x, x)
|A2 + A3 + A4|

= (b2c2 + b3c3)
L(x, x, x)

|A2 + A3 + A4|
.

Thus

Λε(x) ≤ βε(x). (30)

By induction one can show that the monotonicity and linearity of Λ implies

Λnε(x) ≤ βnε(x). (31)

Consequently, for each x ∈ X\{0} we receive the following estimate:

ε∗(x) =
∞∑

n=0

Λnε(x) ≤ ε(x)

(

1 +
∞∑

n=1

βn

)

=
ε(x)
1 − β

=
L(x, x, x)

|A2 + A3 + A4|(1 − β)
.

In case x = 0 we have

Λε(0) = β0ε(0). (32)

Hence by induction we obtain

Λnε(0) = βn
0 ε(0). (33)

Therefore

ε∗(0) =
∞∑

n=0

Λnε(0) = ε(0)

(

1 +
∞∑

n=1

βn
0

)

=
ε(0)

1 − β0
=

L(0, 0, 0)
|A2 + A3 + A4|(1 − β0)

.

Thus we have shown that

ε∗(x) =
∞∑

n=0

Λnε(x) ≤ L(x, x, x)
|A2 + A3 + A4|(1 − γ(x))

< ∞, x ∈ X.
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By Theorem 1 (with S = X and E = Y ), there exists a function F : X → Y
satisfying the equation

F (x) =
A5 + A6 + A7

A2 + A3 + A4
F (2x) − A1

A2 + A3 + A4
F (3x), x ∈ X, (34)

such that

‖f(x) − F (x)‖ ≤ ε∗(x) ≤ L(x, x, x)
|A2 + A3 + A4|(1 − γ(x))

, x ∈ X.

Moreover,

F (x) = lim
n→∞ T nf(x), x ∈ X.

Let us note that condition (34) means that Eq. (1) is satisfied for x = y = z.
Next we will show that the function F satisfies Eq. (1) for all x, y, z ∈ X.

To obtain this fact we will prove by induction that for all (x, y, z) ∈ X3,
n ∈ N0 := N ∪ {0} we have

‖A1T nf(x + y + z) + A2T nf(x) + A3T nf(y) + A4T nf(z)

− A5T nf(x + y) − A6T nf(x + z) − A7T nf(y + z)‖
≤ λn L(x, y, z), (35)

where λ := max{β, β0}. For n = 0 condition (35) follows directly from (20).
Assume that (35) holds for some n ∈ N0 and all (x, y, z) ∈ X3. Then by (24)
we have

∥
∥A1T n+1f(x + y + z) + A2T n+1f(x) + A3T n+1f(y) + A4T n+1f(z)

−A5T n+1f(x + y) − A6T n+1f(x + z) − A7T n+1f(y + z)
∥
∥

=
∥
∥
∥
∥

A5 + A6 + A7

A2 + A3 + A4
A1T nf(2(x + y + z))

− A1

A2 + A3 + A4
A1T nf(3(x + y + z))

+
A5 + A6 + A7

A2 + A3 + A4
A2T nf(2x) − A1

A2 + A3 + A4
A2T nf(3x)

+
A5 + A6 + A7

A2 + A3 + A4
A3T nf(2y) − A1

A2 + A3 + A4
A3T nf(3y)

+
A5 + A6 + A7

A2 + A3 + A4
A4T nf(2z) − A1

A2 + A3 + A4
A4T nf(3z)

− A5 + A6 + A7

A2 + A3 + A4
A5T nf(2(x + y)) +

A1

A2 + A3 + A4
A5T nf(3(x + y))

− A5 + A6 + A7

A2 + A3 + A4
A6T nf(2(x + z)) +

A1

A2 + A3 + A4
A6T nf(3(x + z))

− A5 + A6 + A7

A2 + A3 + A4
A7T nf(2(y + z)) +

A1

A2 + A3 + A4
A7T nf(3(y + z))

∥
∥
∥
∥
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≤
∣
∣
∣
∣

A5 + A6 + A7

A2 + A3 + A4

∣
∣
∣
∣
λnL(2x, 2y, 2z) +

∣
∣
∣
∣

A1

A2 + A3 + A4

∣
∣
∣
∣
λnL

(

3x, 3y, 3z
)

for every (x, y, z) ∈ X̂. Hence by (18)
∥
∥A1T n+1f(x + y + z) + A2T n+1f(x) + A3T n+1f(y) + A4T n+1f(z)

−A5T n+1f(x + y) − A6T n+1f(x + z) − A7T n+1f(y + z)
∥
∥

≤ λn(b2c2 + b3c3)L(x, y, z) ≤ λn+1L(x, y, z) (36)

for (x, y, z) ∈ X̂. Finally, by (25),
∥
∥(A1 + A2 + A3 + A4 − A5 − A6 − A7)T n+1f(0)

∥
∥

=
∥
∥
∥
∥
(A1 + A2 + A3 + A4 − A5 − A6 − A7)

A5 + A6 + A7 − A1

A2 + A3 + A4
T nf(0)

∥
∥
∥
∥

= β0

∥
∥(A1 + A2 + A3 + A4 − A5 − A6 − A7)T nf(0)

∥
∥

≤ β0λ
nL(0, 0, 0) ≤ λn+1L(0, 0, 0),

which ends the proof of (35). Letting n → ∞ in (35), we obtain

A1F (x + y + z) + A2F (x) + A3F (y) + A4F (z)

= A5F (x + y) + A6F (x + z) + A7F (y + z), (x, y, z) ∈ X3.

Thus, we have proved that, there exists a function F : X → Y satisfying
Eq. (1) for which

‖f(x) − F (x)‖ ≤ ε∗(x) ≤ ρL(x), x ∈ X. (37)

Now we will show that F (0) = 0. From (24) we get by induction that

T nξ(0) =
(

A5 + A6 + A7 − A1

A2 + A3 + A4

)n

ξ(0) = βn
0 ξ(0), ξ ∈ Y X , n ∈ N.

Thus

lim
n→∞ T nξ(0) = 0 , ξ ∈ Y X , (38)

since β0 < 1. Consequently, we have F (0) = limn→∞ T nf(0) = 0.
It remains to prove the statement concerning the uniqueness of F . To get

this fact we first show by induction that for all ξ, μ ∈ Y X , n ∈ N

‖T nξ(x) − T nμ(x)‖ ≤ Λn(‖ξ − μ‖)(x), x ∈ X. (39)

By (29) condition (39) holds for n = 1. Fix ξ, μ ∈ Y X and assume that (39)
holds for n ∈ N. Then by (29)

‖T n+1ξ(x) − T n+1μ(x)‖ = ‖T (T nξ)(x) − T (T nμ)(x)‖
≤ Λ(‖T nξ − T nμ‖)(x), x ∈ X.

Hence by the inductive hypothesis and the monotonicity of Λ we obtain

‖T n+1ξ(x) − T n+1μ(x)‖ ≤ Λ(Λn(‖ξ − μ‖))(x) = Λn+1(‖ξ − μ‖)(x), x ∈ X.
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Let G : X → Y be also a solution of (1) such that ‖f(x) − G(x)‖ ≤ ρL(x)
for x ∈ X. Then

‖G(x) − F (x)‖ ≤ 2ρL(x), x ∈ X. (40)

Hence by (39) we obtain

‖T nG(x) − T nF (x)‖ ≤ 2ΛnρL(x) =
2Λnε(x)
1 − γ(x)

, x ∈ X,

since Λ is linear and monotone. Letting n → ∞, by the convergence of the
series

∑∞
n=0 Λnε(x), we get

lim
n→∞ ‖T nG(x) − T nF (x)‖ = 0, x ∈ X.

Hence ‖G(x) − F (x)‖ = 0 for x ∈ X, since G and F are fixed points of T .
Consequently G(x) = F (x) for every x ∈ X. �

Now we proceed to some applications of the main result of this paper
concerning additive functions. Let us note that the result presented below
cannot be applied to Eq. (2), since its assumptions exclude the case where
A1 = · · · = A7 = 1.

Corollary 14. Assume that Ai �= Aj for some i, j ∈ {1, . . . , 7}, A2+A3+A4 �=
0, L : X3 → [0,∞) satisfy condition (18), and β0, β ∈ [0, 1), where β0 and β
are defined as in Theorem 13. Let f : X → Y be a function satisfying condition
(20). Then there exists a unique additive solution a : X → Y of Eq. (1) such
that

‖f(x) − a(x)‖ ≤ ρL(x), x ∈ X,

where ρL(x) is given by (22), i.e.,

ρL(x) :=
L(x, x, x)

|A2 + A3 + A4|(1 − γ(x))
, x ∈ X,

with

γ(x) :=
{

β if x �= 0,
β0 if x = 0.

Proof. On account of Theorem 13 there exists a unique solution F : X → Y
of Eq. (1) such that F (0) = 0 and

‖f(x) − F (x)‖ ≤ ρL(x), x ∈ X.

Then by Theorem 7 we obtain that F is additive. �

The assumption that β0 < 1 can be omitted in Theorem 13, if we replace
(18) by the subsequent somewhat stronger condition

L(kx, ky, kz) ≤ ckL(x, y, z), (x, y, z) ∈ X3, k ∈ {2, 3}; (41)

let us note that in the case L(0, 0, 0) = 0 these two conditions are equivalent.
Namely, we have the following.
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Proposition 15. Let A2 + A3 + A4 �= 0 and L : X3 → [0,∞) satisfy condition
(41) with some c2, c3 ∈ [0,∞) such that β := b2c2 + b3c3 < 1, where b2, b3 are
given by (19). If f : X → Y fulfils condition (20), then there exists a unique
function F : X → Y satisfying (1) for which

‖f(x) − F (x)‖ ≤ ρL(x), x ∈ X,

where

ρL(x) :=
L(x, x, x)

|A2 + A3 + A4|(1 − β)
, x ∈ X. (42)

Proof. We give only an outline of the proof since the main steps are the same
as in the proof of Theorem 13. Let us consider the operator T defined by
(24). From (26) we obtain that condition (H2) is satisfied with k = 2, S = X,
E = Y ,

f1(t) = 2t, f2(t) = 3t,

l1(t) = b2, l2(t) = b3,

i.e.,

‖T ξ(t) − T μ(t)‖ ≤
2∑

i=1

li(t)‖ξ(fi(t)) − μ(fi(t))‖, ξ, η ∈ Y X , t ∈ X.

Then the operator Λ : R+
X → R+

X defined by

Λη(t) :=
2∑

i=1

li(t)η(fi(t)), η ∈ R+
X , t ∈ X

is of the form

Λη(t) = b2η(2t) + b3η(3t), η ∈ R+
X , t ∈ X.

From (41) we get that condition (30) holds for all x ∈ X with

ε(x) :=
L(x, x, x)

|A2 + A3 + A4|
.

Hence we obtain that condition (31) also holds for all x ∈ X. Consequently,
for each x ∈ X we have

ε∗(x) =
∞∑

n=0

Λnε(x) ≤ ε(x)
(

1 +
∞∑

n=1

βn

)

=
ε(x)
1 − β

=
L(x, x, x)

|A2 + A3 + A4|(1 − β)
.

Let us yet note that (35) holds for λ = β, since we (36) holds also for x = y =
z = 0 in view of (41).

The existence and uniqueness of F satisfying Eq. (1) can be obtained in
the same way as in the proof of Theorem 13. �

From the above result we can obtain the following counterpart of Corollary
14.
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Corollary 16. Let Ai �= Aj for some i, j ∈ {1, . . . , 7}, A2 + A3 + A4 �= 0 and
relations (9) hold. Let a function L : X3 → [0,∞) satisfy condition (41) with
c2, c3 ∈ [0,∞) such that β := b2c2 + b3c3 < 1, where b2, b3 are given by (19).
If f : X → Y fulfils condition (20), then there exists a unique additive solution
a : X → Y of Eq. (1) and a constant c ∈ Y such that

‖f(x) − a(x) − c‖ ≤ ρL(x), x ∈ X,

where ρL(x) is given by (42).

4. Final remarks

First, note that the condition

L(kx, ky, kz) ≤ ckL(x, y, z), k ∈ {2, 3}, (43)

for (x, y, z) = (0, 0, 0), means that L(0, 0, 0) = 0 or c2, c3 ∈ [1,∞).
Let X be a normed space. Then the function L : X3 → [0,∞) given by

L(x, y, z) := (α1‖x‖p1 + α2‖y‖p2 + α3‖z‖p3)w, (x, y, z) ∈ X̂, (44)

with any fixed pi, w, αi ∈ R such that pi > 0 and αi > 0 for i ∈ {1, 2, 3},
satisfies condition (18) with

ck = kpw, k ∈ {2, 3},

where

p =

{

max {p1, p2, p3} if w > 0;
min {p1, p2, p3} if w < 0.

By (22) we have

ρL(x) =
(α1 + α2 + α3)w‖x‖pw
|A2 + A3 + A4|(1 − β)

, x ∈ X\{0}.

The value of L at (x, y, z) = (0, 0, 0) can be taken arbitrarily. In particular,
L(0, 0, 0) can take the value of the left-hand side of condition (20) at x = y =
z = 0. For x = 0 we have

ρL(0) =
L(0, 0, 0)

|A2 + A3 + A4|(1 − β0)
.

Thus an approximate solution f satisfying (20) need not satisfy the condition
f(0) = 0.

Let A1 = −4, A2 = A3 = A4 = 8 and A5 = A6 = A7 = 2. Then relations
(9) hold and b2 = 1

4 , b3 = 1
6 . Consider the function L : X3 → [0,∞) given by

L(x, y, z) := ‖x‖p + ‖y‖p + ‖z‖p, (x, y, z) ∈ X3,

with some p ∈ R such that p > 0. It satisfies condition (41) with ck = |k|p for
k ∈ {2, 3}. Thus β < 1 if and only if p ∈ (0, 1), since 2b2 + 3b3 = 1. Therefore,
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in this case, Corollary 16 implies that, for a given function f : X → Y fulfilling
condition (20), there exists an additive function F such that

‖f(x) − F (x)‖ ≤ ρL(x), x ∈ X,

where

ρL(x) =
L(x, x, x)
24(1 − β)

, x ∈ X.

Now let us consider the function L : X3 → [0,∞) given by

L(x, y, z) := (α1‖x‖p + α2‖y‖p + α3‖z‖p)w + ε, (x, y, z) ∈ X,

with any fixed p,w, αi ∈ R such that p > 0, w > 0, αi > 0 for i ∈ {1, 2, 3},
and an ε > 0. Then condition (18) holds with ck = kpw, because kpw > 1.

Let us note that under the assumptions of Theorem 13 and Corollary 14
we get that

− 3A1 + 2(A5 + A6 + A7) �= 0,

in the case where the solution of Eq. (1) occurring in each of these results is
a nonzero function. Indeed, from Proposition 3 and Corollary 5, respectively,
we obtain that relations (9) are satisfied. Hence we get that A2 + A3 + A4 =
−3A1 + 2(A5 + A6 + A7).

Finally observe that also the function L : X3 → [0,∞), given by

L(x, y, z) := α‖x‖p1‖y‖p2‖z‖p3 + ε, (x, y, z) ∈ X̂,

with any fixed p1, p2, p3, α, ε ∈ [0,∞), fulfils (18) with

ck = kp1+p2+p3 , k ∈ {2, 3}.
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