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1. Introduction

It is known from the classical Hahn–Banach separation theorem, that if a
function f is concave, g is convex and f � g, then there exists an affine
function h such that f � h � g. This separation (sandwich) theorem plays an
important role in many fields of mathematics and has numerous applications
in convex analysis, optimization theory and economics. Many other results
providing conditions under which two given functions can be separated by a
function from some special class can be found in the literature (see, for instance
[1–3,5,6,10,11,15–19,23] and the references therein).

In this note we investigate the separation problem for stochastic processes.
We characterize pairs of processes that can be separated by Jensen and affine
processes. As a consequence of our main theorems we obtain Hyers–Ulam-type
stability results for Jensen and affine stochastic processes.

Let (Ω,A, P ) be an arbitrary probability space and I ⊂ R be an interval.
A function A : Ω → R is called a random variable, if it is A-measurable.
A function X : I × Ω → R is called a stochastic process, if for every t ∈ I the
function X(t, ·) is a random variable.
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Recall that a stochastic process X : I × Ω → R is called midconvex (cf.
[12]) if

X
( t1 + t2

2
, ·

)
� X(t1, ·) + X(t2, ·)

2
(a.e.),

for all t1, t2 ∈ I. It is called midconcave if it satisfies the reverse inequalities.
We say that X is a Jensen stochastic process if it is both midconvex and
midconcave simultaneously, that is the following condition holds

X
( t1 + t2

2
, ·

)
=

X(t1, ·) + X(t2, ·)
2

(a.e.),

for all t1, t2 ∈ I. Let D denote the set of all dyadic real numbers. It is known
(see [12]) that if X is a Jensen process then

X
( n∑

i=1

piti, ·
)

=
n∑

i=1

piX(ti, ·) (a.e.),

for all n ∈ N, t1, . . . , tn ∈ I and p1, . . . , pn ∈ [0, 1]∩D such that p1+· · ·+pn = 1.
A stochastic process X : I × Ω → R is said to be convex, if the inequality

X
(
λt1 + (1 − λ)t2, ·

)
� λX(t1, ·) + (1 − λ)X(t2, ·) (a.e.),

is satisfied for all t1, t2 ∈ I and λ ∈ [0, 1]. It is called concave if it satisfies the
reverse inequalities. We say that X is an affine stochastic process if it is both
convex and concave simultaneously, that is

X
(
λt1 + (1 − λ)t2, ·

)
= λX(t1, ·) + (1 − λ)X(t2, ·) (a.e.),

for all t1, t2 ∈ I and λ ∈ [0, 1]. Many properties of convex and midconvex
stochastic processes can be found in [6–8,12,21,22].

At the end of this section, let us recall the definitions of the essential in-
fimum and essential supremum of a collection of functions. We will use these
notions as a basic tool in the proof of our main theorems. Let (Ω,F , μ) be
a measure space and S be a collection of measurable functions f : Ω → R.
On R the Borel σ-algebra is used. If S is a countable set, then we may define
the pointwise infimum of the functions from S, which is measurable itself. If
S is uncountable, then the pointwise infimum need not be measurable. In this
case, the essential infimum can be used. The essential infimum of S, written
as ess inf S, if it exists, is a measurable function f : Ω → R satisfying the
following two axioms:

• f � g almost everywhere, for any g ∈ S,
• if h : Ω → R is measurable and h � g almost everywhere for every g ∈ S,

then h � f almost everywhere.
Similarly, the essential supremum of S, written as ess sup S, is a measurable
function f : Ω → R satisfying the following two axioms:

• f � g almost everywhere, for any g ∈ S,
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• if h : Ω → R is measurable and h � g almost everywhere for every g ∈ S,
then h � f almost everywhere.

It can be shown that for a σ-finite measure μ, the essential infimum (essential
supremum) of S does exist, whenever S is a family of measurable functions
jointly bounded from below (from above). For more details we refer the reader
to [4].

2. Separation by Jensen processes

In this section we characterize pairs of stochastic processes that can be sep-
arated by a Jensen process. We start with a sandwich theorem of Rodé type
(see [20]), which plays a crucial role in our investigations. The proof presented
is based on the idea taken from [9] (cf also [14]).

Theorem 1. Let X,Y : I × Ω → R be midconcave and midconvex stochastic
processes respectively. We additionally assume, that for all t ∈ I

X(t, ·) � Y (t, ·) (a.e.).

Then there exists a Jensen stochastic process Z : I × Ω → R, such that

X(t, ·) � Z(t, ·) � Y (t, ·) (a.e.)

for all t ∈ I.

Proof. Consider the family of stochastic processes

M =
{
Φ : I × Ω → R : Φ - midconcave and for every t ∈ I

X(t, ·) � Φ(t, ·) � Y (t, ·) (a.e.)
}

endowed with the partial order defined by:

Φ1 � Φ2 if for every t ∈ I Φ1(t, ·) � Φ2(t, ·) (a.e.).

M is not empty, because X ∈ M. If L is a chain of elements of M, then the
process Φ0 : I × Ω → R defined by

Φ0(t, ·) = ess sup
{
Φ(t, ·) : Φ ∈ L}

, t ∈ I,

is its upper bound. Therefore, by the Kuratowski–Zorn lemma, there exists a
maximal element Z of M. We will show that Z is a Jensen process. Since for
any s, t ∈ I

Z
(s + t

2
, ·

)
� Y

(s + t

2
, ·

)
� 1

2
Y (s, ·) +

1
2
Y (t, ·) (a.e.), (1)

we can define

H(s, ·) = ess sup
{

Z
(s + t

2
, ·

)
− 1

2
Y (t, ·) : t ∈ I

}
, s ∈ I.



114 D. Kotrys, K. Nikodem AEM

Then, for every s ∈ I,

H(s, ·) � 1
2
Y (s, ·) (a.e.)

and H is midconcave. Indeed, by the midconcavity of Z and the midconvexity
of Y , for every s, t, u, v ∈ I, we have

1
2

[
Z

(s + u

2
, ·

)
− 1

2
Y (u, ·)

]
+

1
2

[
Z

( t + v

2
, ·

)
− 1

2
Y (v, ·)

]

� Z
(1

2

(s + t

2
+

u + v

2

)
, ·

)
− 1

2
Y

(u + v

2

)
� H

(s + t

2

)
(a.e.).

Hence, taking the essential supremum over u and next over v, we obtain

H
(s + t

2
, ·

)
� 1

2
H(t·) +

1
2
H(s·) (a.e.).

By inequality (1), we have

H(s, ·) � 1
2
Y (s, ·) (a.e.), s ∈ I. (2)

Since

Z
(s + t

2
, ·

)
− 1

2
Y (t, ·) � Z(s, ·) + Z(t, ·)

2
− 1

2
Y (t, ·) =

=
1
2
Z(s, ·) +

1
2

[
Z(t, ·) − Y (t, ·)

]
(a.e.)

and, in view of the maximality of (2)

ess sup
{
Z(t, ·) − Y (t, ·))} = ess inf

{
Y (t, ·) − Z(t, ·))} = 0,

we also have
H(s, ·) � 1

2
Z(s, ·) (a.e.), s ∈ I. (3)

By (2) and (3)
1
2
Z(s, ·) � H(s, ·) � 1

2
Y (s, ·) (a.e.)

for any s ∈ I. Thus, using once more the maximality of Z, we get

H(s, ·) =
1
2
Z(s.·) (a.e.).

Hence

Z
(s + t

2
, ·

)
− 1

2
Y (t, ·) � H(s, ·) =

1
2
Z(s, ·) (a.e.)

so
Z

(s + t

2
, ·

)
� 1

2
Z(s, ·) +

1
2
Y (t, ·) (a.e.). (4)

Now, fix an arbitrary t ∈ I and define

G(s, ·) = Z
(s + t

2
, ·

)
− 1

2
Z(t, ·). (5)



Vol. 92 (2018) Separation by Jensen and affine stochastic processes 115

It is easy to check that G is midconcave, G(s, ·) � 1
2Z(s, ·), and because of (4)

G(s, ·) � 1
2Y (s, ·). Therefore

G(s, ·) =
1
2
Z(s, ·) (a.e.).

Hence, using (5), we obtain

Z
(s + t

2
, ·

)
=

1
2
Z(s, ·) +

1
2
Z(t, ·) (a.e.),

which proves that Z is a Jensen process. �

The above theorem gives a sufficient, but not necessary condition for the
existence of a Jensen separator. A full characterization of pairs of stochastic
processes that can be separated by a Jensen process provides the following
result.

Theorem 2. Let X,Y : I × Ω → R be stochastic processes such that X(t, ·) �
Y (t·) for every t ∈ I. The following conditions are equivalent:
(i) for all m,n ∈ N, s1, . . . , sm ∈ I, t1, . . . , tn ∈ I and p1, . . . , pm, q1, . . . , qn ∈

[0, 1]∩D such that p1+· · ·+pm = q1+· · ·+qn = 1 and p1s1+· · ·+pmsm =
q1t1 + · · · + qntn, the following inequality holds

m∑
i=1

piX(si, ·) �
n∑

j=1

qjY (tj , ·) (a.e.); (6)

(ii) there exists a midconcave stochastic process Z1 : I × Ω → R and a mid-
convex stochastic process Z2 : I × Ω → R such that

X(t, ·) � Z1(t, ·) � Z2(t, ·) � Y (t, ·) (a.e.)

for every t ∈ I;
(iii) there exists an Jensen stochastic process Z : I × Ω → R such that

X(t, ·) � Z(t, ·) � Y (t, ·) (a.e.)

for every t ∈ I.

Proof. We will prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
To prove that (i) ⇒ (ii) define first the process Z2 : I × Ω → R by

Z2(t, ·) = ess inf
{ n∑
j=1

qjY (tj , ·) : n ∈ N, t1, . . . , tn ∈ I, q1, . . . , qn ∈ [0, 1] ∩ D

such that q1 + · · · + qn = 1 and t = q1t1 + · · · + qntn

}
.

By (6) (for m = 1, p1 = 1 and s1 = t) and the definition of essential infimum
we have

X(t, ·) � Z2(t, ·) (a.e.), t ∈ I.
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By the definition of Z2 (taking n = 1, q1 = 1 and t1 = t) we also get

Z2(t, ·) � Y (t, ·) (a.e.), t ∈ I.

To prove that Z2 is midconvex fix s, t ∈ I and take arbitrary s1, . . . , sm, t1, . . . ,
tn ∈ I and p1, . . . , pmq1, . . . , qn ∈ [0, 1] ∩ D such that p1 + · · · + pm = 1,
q1 + · · · + qn = 1 and s = p1s1 + · · · + pmsm, t = q1t1 + · · · + qntn. Since

s + t

2
=

m∑
i=1

pi
2

si +
n∑

j=1

qj
2

tj ,

by the definition of Z2 we have

Z2

(s + t

2
, ·

)
� 1

2

m∑
i=1

piY (si, ·) +
1
2

n∑
j=1

qjY (tj , ·) (a.e.). (7)

This inequality holds for every n ∈ N, s1, . . . , sm ∈ I and p1, . . . , pm ∈ [0, 1]∩D
such that p1+ · · ·+pm = 1 and p1s1+ · · ·+pmsm = s, as well as for all m ∈ N,
t1, . . . , tn ∈ I and q1, . . . , qn ∈ [0, 1] ∩ D such that q1 + · · · + qn = 1 and
q1t1 + · · · + qntn = t. Therefore taking the essential infimum in the first term
of the right hand side of (7) and next in the second term and using the second
axiom of the definition of essential infimum, we get

Z2

(s + t

2
, ·

)
� 1

2
Z2(s, ·) +

1
2
Z2(t, ·) (a.e.).

This shows that Z2 is midconvex.
Now, define Z1 : I × Ω → R by

Z1(s, ·)=ess sup

{
m∑
i=1

piX(si, ·) : m∈N, s1, . . . , sm∈I, p1, . . . , pm∈ [0, 1]∩D

such that p1 + · · · + pm = 1 and s = p1s1 + · · · + pmsm

}
.

Similarly as above, we can prove that Z1 is midconcave and

X(s, ·) � Z1(s, ·) � Y (s, ·) (a.e.),

for every s ∈ I.
Finally, using (6) once more and taking the essential infimum of the term

on the right hand side and next the essential supremum of the term on the left
hand side, we get

Z1(t, ·) � Z2(t, ·) (a.e.)

for every t ∈ I.
Implication (ii) ⇒ (iii) follows by Theorem 1 applied for X = Z1 and

Y = Z2.
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To prove (iii) ⇒ (i) fix s1, . . . , sm, t1, . . . , tn ∈ I and p1, . . . , pm, q1, . . . , qn ∈
[0, 1] ∩ D such that p1 + · · · + pm = q1 + · · · + qn and p1s1 + · · · + pmsm =
q1t1 + · · · + qntn. By the definition of Z, we get

m∑
i=1

piX(si, ·) �
m∑
i=1

piZ(si, ·) = Z
( m∑
i=1

pisi, ·
)

=

= Z
( n∑
j=1

qjtj , ·
)

=
n∑

j=1

qjZ(tj , ·) �
n∑

j=1

qjY (tj , ·) (a.e.).

This finishes the proof. �

3. Separation by affine processes

In this section we present the second main result of this paper. It gives a
condition under which two given stochastic processes can be separated by an
affine stochastic process. We start with the following counterpart of the Hahn–
Banach separation theorem.

Theorem 3. Let X,Y : I × Ω → R be stochastic processes such that X(t, ·) �
Y (t, ·) (a.e.) for any t ∈ I. If X is concave and Y is convex, then there exists
an affine stochastic process Z : I × Ω → R such that

X(t, ·) � Z(t, ·) � Y (t, ·) (a.e.) (8)

for every t ∈ I.

Proof. By Theorem 1 there exists a Jensen process Z satisfying (8). Since Z
is majorized by a convex (and hence continuous) process Y , it follows that it
is continuous (see [12]). Consequently, Z is affine. �

Theorem 4. Let X,Y : I × Ω → R be stochastic processes such that X(t, ·) �
Y (t·) (a.e.) for every t ∈ I. The following conditions are equivalent:

(i) for all m,n ∈ N, s1, . . . , sm ∈ I, t1, . . . , tn ∈ I and α1, . . . , αm, β1, . . . , βn

� 0 such that α1 + · · ·+αm = β1 + · · ·+βn = 1 and α1s1 + · · ·+αmsm =
β1t1 + · · · + βntn the following inequality holds

m∑
i=1

αiX(si, ·) �
n∑

j=1

βjY (tj , ·) (a.e.); (9)

(ii) there exists a concave stochastic process Z1 : I × Ω → R and a convex
stochastic process Z2 : I × Ω → R such that

X(t, ·) � Z1(t, ·) � Z2(t, ·) � Y (t, ·) (a.e.)

for every t ∈ I;
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(iii) there exists an affine stochastic process Z : I × Ω → R such that

X(t, ·) � Z(t, ·) � Y (t, ·) (a.e.)

for every t ∈ I.

Proof. Similarly as in the proof of Theorem 2 we will show that (i) ⇒ (ii) ⇒
(iii) ⇒ (i).

To prove that (i) ⇒ (ii) define first the process Z2 : I × Ω → R by

Z2(t, ·) = ess inf
{ n∑
j=1

βjY (tj , ·) : n ∈ N, t1, . . . , tn ∈ I, β1, . . . , βn ∈ [0, 1]

such that β1 + · · · + βn = 1 and t = β1t1 + · · · + βntn

}
.

By (9) and the definition of essential infimum we get

X(t, ·) � Z2(t, ·) � Y (t, ·) (a.e.), t ∈ I.

To prove that Z2 is convex fix s, t ∈ I and λ ∈ [0, 1]. Take arbitrary s1, . . . , sm ∈
I, α1, . . . , αm ∈ [0, 1] and t1, . . . , tn ∈ I, β1, . . . , βn ∈ [0, 1] such that α1 + · · ·+
αm = 1, β1 + · · · + βn = 1 and s = α1s1 + · · · + αmsm, t = β1t1 + · · · + βntn.
Since

m∑
i=1

λαi +
n∑

j=1

(
1 − λ

)
βj = 1

the point λs + (1 − λ)t is a convex combination of s1, . . . , sm, t1, . . . , tn and

λs + (1 − λ)t = λ
m∑
i=1

αisi +
(
1 − λ

) n∑
j=1

βjtj .

Therefore, by the definition of Z2 we have

Z2

(
λs + (1 − λ)t, ·) � λ

m∑
i=1

αiY (si, ·) + (1 − λ)
n∑

j=1

βjY (tj , ·) (a.e.). (10)

This inequality holds for every n ∈ N, s1, . . . , sm ∈ I and α1, . . . , αm ∈ [0, 1]
such that α1 + · · · + αm = 1 and α1s1 + · · · + αmsm = s, as well as for all
m ∈ N, t1, . . . , tn ∈ I and β1, . . . , βn ∈ [0, 1] such that β1 + · · · + βn = 1 and
β1t1 + · · · + βntn = t. Therefore taking the essential infimum in the first term
of the right hand side of (10) and next in the second term and using the second
axiom of the definition of essential infimum, we get

Z2

(
λs + (1 − λ)t, ·) � λZ2(s, ·) + (1 − λ)Z2(t, ·) (a.e.).

This shows that Z2 is convex.
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Now, define Z1 : I × Ω → R by

Z1(s, ·) = ess sup

{
m∑
i=1

αiX(si, ·) : m ∈ N, s1, . . . , sm ∈ I, α1, . . . , αm ∈ [0, 1]

such that α1 + · · · + αm = 1 and s = α1s1 + · · · + αmsm

}
.

Similarly as above, we can prove that Z1 is concave and

X(s, ·) � Z1(s, ·) � Y (s, ·) (a.e.),

for every s ∈ I.
Finally, using (9) once more and taking the essential infimum of the term

on the right hand side and next the essential supremum of the term on the left
hand side, we get

Z1(t, ·) � Z2(t, ·) (a.e.)

for every t ∈ I.
Implication (ii) ⇒ (iii) follows by Theorem 3 applied for X = Z1 and

Y = Z2.
To prove (iii) ⇒ (i) fix s1, . . . , sm, t1, . . . , tn ∈ I and α1, . . . , αm, β1, . . . , βn

� 0 such that α1 + · · · + αm = β1 + · · · + βn and α1s1 + · · · + αmsm =
β1t1 + · · · + βntn. By the definition of Z, we get

m∑
i=1

αiX(si, ·) �
m∑
i=1

αiZ(si, ·) = Z
( m∑
i=1

αisi, ·
)

=

= Z
( n∑
j=1

βjtj , ·
)

=
n∑

j=1

βjZ(tj , ·) �
n∑

j=1

βjY (tj , ·) (a.e.).

This finishes the proof. �

4. Hyers–Ulam-type stability result

As an immediate consequence of Theorem 4 we obtain the following Hyers–
Ulam-type stability results for affine stochastic processes.

Let ε be a positive constant. We say that a stochastic process X : I×Ω → R

is ε-affine if ∣∣∣X
( n∑
i=1

βiti, ·
)

−
n∑

i=1

βiX(ti, ·)
∣∣∣ � ε (a.e.) (11)

for all n ∈ N, t1, . . . , tn ∈ I and β1, . . . , βn � 0 with β1 + · · · + βn = 1.

Theorem 5. If a stochastic process X : I ×Ω → R is ε-affine, then there exists
an affine stochastic process Z such that
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|X(t, ·) − Z(t, ·)| � ε (a.e.) (12)

for all t ∈ I.

Proof. Let us fix n,m ∈ N and u = α1s1+· · ·+αmsm = β1t1+· · ·+βntn, where
s1, . . . , sm, t1, . . . , tn ∈ I, α1, . . . , αm, β1, . . . , βn ∈ [0, 1] and α1 + · · ·+αm = 1,
β1 + · · ·+βn = 1. By (11) for u = α1s1 + · · ·+αmsm and u = β1t1 + · · ·+βntn
we get

m∑
i=1

αiX(si, ·) − ε � X
(
u, ·) �

m∑
i=1

αiX(si, ·) + ε (a.e.)

n∑
j=1

βjX(tj , ·) − ε � X
(
u, ·) �

n∑
j=1

βjX(tj , ·) + ε (a.e.).

Hence
m∑
i=1

αiX(si, ·) �
n∑

j=1

βjX(tj , ·) + 2ε (a.e.). (13)

Define Y (t, ·) = X(t, ·) + 2ε for every t ∈ I. In view of (13) the processes
X and Y satisfy (9). Therefore, by Theorem 4, there exists an affine process
Z1 : I ×Ω → R, such that X(t, ·) � Z1(t, ·) � X(t, ·)+2ε for all t ∈ I. Putting
Z(t, ·) = Z1(t, ·) − ε we get (12). This completes the proof. �

In the same way, applying Theorem 2 instead of Theorem 4, we can prove
the stability result for Jensen stochastic processes. We say that a stochastic
process X : I × Ω → R is ε-Jensen if

∣∣∣X
( n∑
i=1

qiti, ·
)

−
n∑

i=1

qiX(ti, ·)
∣∣∣ � ε (a.e.)

for all n ∈ N, t1, . . . , tn ∈ I and q1, . . . , qn ∈ [0, 1] ∩ D with q1 + · · · + qn = 1.

Theorem 6. If a stochastic process X : I × Ω → R is ε-Jensen, then there
exists a Jensen stochastic process Z such that

|X(t, ·) − Z(t, ·)| � ε (a.e.)

for all t ∈ I.

The stability problem for Jensen stochastic processes defined on the whole
R × Ω (instead of I × Ω) was earlier investigated in [13]. Using the stability
of additive stochastic processes (a counterpart of the classical Hyers theorem),
the following result is proved there.

Theorem 7. If a stochastic process X : R × Ω → R satisfies
∣∣∣X

(s + t

2
, ·

)
− X(s, ·) + X(t, ·)

2

∣∣∣ � ε (a.e.) (14)
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for all s, t ∈ R, then there exists a Jensen stochastic process Z such that

|X(t, ·) − Z(t, ·)| � 4ε (a.e.)

for all t ∈ R.

Proof. Define X1(t, ·) = X(t, ·) − X(0, ·), t ∈ R. By (14)

|X1(s + t, ·) − X1(s, ·) − X1(t, ·)| = |X(s + t, ·) − X(s, ·) − X(t, ·) + X(0.·)|
� 2

∣∣∣X(s + t, ·) + X(0, ·)
2

− X
(s + t

2
, ·

)∣∣∣

+2
∣∣∣X

(s + t

2
, ·

)
− X(s, ·) + X(t, ·)

2

∣∣∣ � 4ε (a.e.),

which means that X1 is ε-additive. Therefore, because of the stability of ad-
ditive stochastic processes (see [13]), there exists an additive process Z1 :
R × Ω → R such that

|X1(t, ·) − Z1(t, ·)| � 4ε (a.e.)

for all t ∈ R. Define Z(t, ·) = Z1(t, ·) + X(0, ·), t ∈ R. Then Z is a Jensen
stochastic process and

|X(t, ·) − Z(t, ·)| = |X1(t, ·) − Z1(t, ·)| � 4ε (a.e.)

for all t ∈ R. This finishes the proof. �
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[6] González, L., Kotrys, D., Nikodem, K.: Separation by convex and strongly convex sto-

chastic processes. Publ. Math. Debr. 89(3), 365–372 (2016)
[7] Kotrys, D.: Remarks on strongly convex stochastic processes. Aequ. Math. 86, 91–98

(2012)
[8] Kotrys, D.: Some characterizations of strongly convex stochastic processes. Math.

Aeterna 4(8), 855–861 (2014)
[9] König, H.: On the abstract Hahn–Banach theorem due to Rodé. Aequ. Math. 34, 89–95
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