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Abstract. We deal with functions which fulfil the condition AZ+1<p(x) € Z for all z, h taken
from some linear space V. We derive necessary and sufficient conditions for such a function
to be decent in the following sense: there exist functions f: V' — R, g: V — Z such that
p=f+gand AZ+1f(x) =0 forall z,h € V.
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1. Introduction

Let V be a linear space over Q, R or C and n € N (we assume that 0 € N).
The symbol = stands for a congruence modulo Z (so a = b <= a —b €
Z, a,b € R), the symbol [x] denotes the integer part of a real number x and
denotes the fractional part of x (so z = [z] + %, Z € [0,1)).

Following e.g. [10], we define the difference operator:

Definition 1.1. Let f: V — R be a function. Then
Apf =1
Af(x) = Anf(z) = flz+h) - f(x) (z,heV),
APTLf = AR(ALS) (P EN).
A function f: V — R which satisfies the condition
AZ“f(x) =0 (z,heV) (1.1)
is called a polynomial function of degree n.

The aim of this paper is to examine functions ¢: V — R fulfilling a less
restrictive condition than (1.1), namely
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Atlo(z) €Z (x,h e V). (1.2)

We call condition (1.2) polynomial congruence of degree n.
This study is inspired by several works (e.g. [1-4]), in which the so called
Cauchy’s congruence (or Cauchy equation modulo 7) i.e.

plx+y)—p@)—py) €Z  (r,yeV, p: V—=R) (1.3)

is considered. In these works the problem of decency in the sense of Baker
of solutions of (1.3) is discussed (see e.g. [1]; the solution ¢ of (1.3) is called
decent iff there exist an additive function a: V' — R and a function g: V — Z
such that ¢ = a + g).

In many cases Cauchy’s congruence can be easily transformed to the con-
gruence A?p(x) € Z, z,h € V. To be more precise, if ¢ fulfills (1.3), then

Afe(x) = p(z + 2h) — 2p(z + h) + ¢(z)
= (@ ((@+h) + k) — 9+ h) — o(h)) — (9@ + h) — p(@) — @(h)) € Z (5, h € V),

Almost conversely, if A?p(z) € Z for x,h € V, then the function ¢ = ¢ —(0)
fulfills ¢(z+y)—@(z)—@(y) € Z. Indeed, observe first that ¢(0) = 0. Moreover,
AZp(0) = AZp(0) = 4(2h) — 2¢(h) + $(0) € Z for h € V, so ¢(h) = 2¢(%)
for h € V. Therefore,

Bt 1) = 50 - 50) =26 (32 ) - ¢l - 2l

=-A2_,p(x) €Z (x,h V).

Obviously, if o = f+g¢g, f: V — R is a polynomial function of degree n
and g: V — Z, then ¢ solves the congruence (1.2). In analogy to Baker [1], we
call such functions ¢ decent solutions of (1.2).

Examples of A. Széz and G. Szdz from [13] and Godini from [8] prove that
there exist non-decent solutions of (1.3). Thus the natural question arises: what
conditions should be imposed on the solution of the congruence AZ-H(,D(Z‘) ez
to ensure its decency.

In the present paper we obtain results which correspond to those of Baron
et al. from [2] and results of Baron and Volkmann from [3]. Namely, we present
analogues of results from [2,3] for polynomial congruences of degree greater
than 1. Below we cite one of the characterizations of decent solutions of the
Cauchy’s congruence from [2], because we use it in Remark 1.3:

Theorem 1.2. (Baron et al. [2]) A solution ¢: V — R of Cauchy’s congruence
is decent if and only if for every vector v € V there is a real a such that

p(&v) = Ea for all £ € Q.

When dealing with polynomial functions the inductional approach may
always come in mind. In our situation one could expect that a solution of the
congruence A} p(x) € Z is a decent iff for every h € V the function V' >
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v — p(v+h)—p(v) is a decent solution of the polynomial congruence of degree
n — 1. However, this is not the case as it is visible from the following remark:

Remark 1.3. There exists a function ¢ such that A3 p(z) € Z for all z,h € R,
App is a decent solution of the polynomial congruence of degree 1 for every
h € V, but ¢ is not a decent solution of the polynomial congruence of degree 2.

Proof. Let a: R — R be a function fulfilling a(z+y)—a(z) —ay) = m(z,y) €
Z for all z,y € R, which cannot be expressed as a sum of an additive function
and an integer-valued function (the existence of such a function is proved in
8], [13]). Then « fulfills the congruence AZa(z) € Z, x, h € R (which is proved
on the previous page).

Define ¢: R — R by the formula ¢(z) = a(x) + 22. Then of course
Adp(z) = Ala(z) = Ay (A2a) (z) € Z for all z,h € R and App(z) =
o(x+h)—p(r) =alz+h)—alx)+(x+h)?—2% = 22h+h%+a(h) +m(z, h).
The function R 3 # — 2xh + h? + a(h) is a polynomial function of degree
1 and the function R 5 © — m(z,h) is integer-valued, thus the function
R >z — App(x) is a decent solution of the polynomial congruence of degree
1 (for every fixed h € V). Suppose that the function ¢ is a decent solution of the
polynomial congruence of degree 2. Then from Theorem 2.2, which is proved
in the second part of this paper, it follows that for every v € R there exist con-
stants a,, by, ¢, € R such that for every £ € Q we have p(£v) = a,&2 +b,&+cy.
Thus a(év) = (a, —v?)E2 + b€+ ¢, +ny(€), where n,: Q — Z. The expression
a(z +y) — a(z) — a(y) is an integer for z,y € R, so 2(a, —v?)ép — ¢, € Z for
all £, € Q. This condition holds only if a, = v?, ¢, € Z. Then a(&v) = by
for £ € Q and Theorem 1.2 implies that « is a decent solution of Cauchy’s
congruence, which is in contradiction to our choice of the function a. O

We make use of the following, easy to check, properties of (decent) solutions
of the congruence (1.2):

Remark 1.4. Let p: V - R, m: V — Z and vg € V, ¢ € R. Then:

(i) ¢isa (decent) solution of the congruence (1.2) if and only if the function
P: V. — R, ¥(v) = (v +vg) is a (decent) solution of (1.2),

(ii)  ¢isa (decent) solution of the congruence (1.2) if and only if the function
¢ + ¢ is a (decent) solution of (1.2),

(iii) ¢ isa (decent) solution of the congruence (1.2) if and only if the function
w+m is a (decent) solution of (1.2). Hence, in particular, ¢ is a (decent)
solution of the congruence (1.2) if and only if the function ¢ is a (decent)
solution of (1.2).

Proof. Ad (i) The first part is a consequence of the equality A}y (v) =
= A o(v + vg).

Observe that ¢ is of the form ¢ = f+g¢g, with f: V — R being a polynomial
function of degree n and g: V — Z if and only if ¢ = f+ g where f(v) =
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f(v + vg) is a polynomial function of degree n and §(v) = g(v + vg) is an
integer-valued function.

Ad (ii) The first part follows from the identity A} (¢p+c)(v) = A} p(v).

The function ¢ = f+g, where f: V — R is a polynomial function of degree
n and g: V — Z if and only if we have ¢ + ¢ = (f + ¢) + g, where f + ¢ is a
polynomial function of degree n and g is an integer-valued function.

Ad (iii) Obviously

At +m)(v) = Ay o) + Ap T m(v) = AT (),

which proves the first part.

We have ¢ = f 4 g, where f: V — R is a polynomial function of degree n
and g: V — Z if and only if ¢ +m = f + (¢ + m), which means that ¢ +m
can also be split into a polynomial and an integer-valued part. O

We can also notice that ¢ fulfills the congruence A} ™'y (z) € Z for all z,h € V
if and only if the function ® = wo ¢ (7: R — R/Z denotes the natural
projection of R onto R/Z) is a solution of the Frechét equation A} ®(z) = 0
for all ,h € V, where 0 means the neutral element of the quotient group
(R/Z,+). We recall the well-known result (see e.g. [14], Theorem 9.1, p.70)
describing solutions of the Frechét equation in a wide class of spaces. It will
be useful for us in our further considerations (Theorem 2.2) and, moreover,
it will clarify why we cannot use it for the group R/Z (the group R/Z is not
divisible by n! for n > 1). For the simplicity of the statement we assume that a
0-additive function is an arbitrary function, whose domain is the linear space

{0} (see e.g. [7]).

Theorem 1.5. (Székelyhidi [14]) Let n € N. Let (S, +) be an abelian semigroup
with identity and (H,+) be an abelian group uniquely divisible by n!. Then
a function f: S — H fulfills the equation AZHf(x) =0 for all x,h € S if
and only if f is of the form f =", a’, where a® is a diagonalisation of the
i-additive and symmetric function A*: S* — H.

2. Main result
We start with the result which corresponds to Theorem 2.1 from [2]. In the
proof we make use of Theorem 1.5 and the following, very obvious remark:

Remark 2.1. If p is a polynomial from R[X], which takes only integer values
for rational arguments, then p is constantly equal to p(0).

Our first theorem reads as follows:

Theorem 2.2. Let n € N and let ¢: V — R fulfill (1.2). Then ¢ is a decent
solution of the polynomial congruence of degree n if and only if for every vector
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v € V there exists a polynomial p, of degree smaller than n + 1 with real
coefficients so that p(Ev) = p, (&) for all € € Q.

Proof. Firstly, assume that ¢ is a decent solution of the polynomial congruence
of degree n. Then there exist functions f: V — R,g: V — Z such that ¢ =
f+gand A} f(z) = 0 for all z,h € V. From Theorem 1.5 it follows that
[ = > ,a; where a;(v) = A;(v,...,v) for an i-additive and symmetric
function A;: V* — R. Thus

p(&v) = f(€v) + g(&v) = Zazgwg@ ZA £v, ..., €v) + g(&v)
1=0

7214 €Z+g §U Zal §Z+g §v Ezal *pv )
=0 =0

Now, assume that for every v € V there exists p, € R, [X] such that p({v) =
pu(§) for all £ € Q. At the beginning, let us consider the case ¢(0v) = 0
for v € V. Then we can choose polynomials p, € R, [X] in such a way that
py(v) =0 for v e V. Forv,h €V, £ €Q we have Ag,flgo(ﬁv) € Z, so

n+1
0=agpe) =3 (" )0l + k)
k=0

n+1
= Z <n —]: 1) (=)™ Dy an (6).

k=0

From the above congruence it follows that S27F) ("I (=) Fpy gy, is the
polynomial with integer values for rational arguments. Moreover, p, 4 (0) =
0 for k = 0,1,...,n + 1, so Z"H ("H)( 1)1 =*p, 1 xp is the polynomial
constantly equal to 0. Deﬁne the function f: V — R by the formula f(v) =
pu(1). Then AP f(v) = Zié (nzl)(—l)m_l_kpv-i-kh(l) = 0 and f(v) =
pu(1) = p(v). Thus the function g = ¢ — f is integer-valued.

For an arbitrary function ¢ consider ¢ = ¢ —(0). Using the already proved
part of the theorem to the function ¢, we obtain that ¢ is decent. From Remark
1.4 (ii) it follows that it is equivalent to the decency of the function . O

Considering (i) of Remark 1.4 we can rewrite Theorem 2.2 in the following
manner:

Remark 2.3. Let ¢: V — R fulfill the condition A}t p(x) € Z for all z,h € V.

Then ¢ is a decent solution of the polynomial congruence of degree n if
and only if for any vectors v,w € V there exists a polynomial p, ., of degree
smaller than n + 1 with real coefficients so that (v + Ew) = p, . (§) for all

£eqQ.

In our main theorem we apply the following result:
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Theorem 2.4. (Ger [6]) Let X and Y be two Q-linear spaces and let D be
a nonempty Q-convez subset of X. If algintgD # () then for every function
f: D =Y fulfilling AZHf(x) =0 forallz,h € X such that x,z+(n+1)h € D
there exists exactly one function F: X — Y fulfilling AZHF(:c) =0 for all
z,h € X and F|D = f.

Now we present our main result, which provides necessary and sufficient con-
ditions for a function ¢ fulfilling A}y (x) € Z for all #,h € V to be a decent
solution of this congruence.

Theorem 2.5. Let p: V — R fulfill the condition A} o(x) € Z for all z,h €
V.

Then the following conditions are equivalent:

(i) ¢ is a decent solution of the polynomial congruence of degree n,

(ii) For every vector v € V there exists a polynomial p, of degree smaller
than n + 1 with real coefficients so that p(Ev) = p, (&) for all £ € Q,

(iii) For every vector v € V there exist ¢ > 0 and a polynomial p, of degree
smaller than n + 1 with real coefficients so that (Ev) = p, (&) for all
£€Qn(0,e),

(iv) For every vector v € V there exist € > 0 and a polynomial p, of degree
smaller than n + 1 with real coefficients so that $(Ev) = py(§) for all
£€Qn(0,2),

(v) For every vector v € V there exist € > 0 and o € [0,1] such that for
every £ € QN (0,¢) we have 3(&v) € (o, a + za57),

(vi) For every vector v € V there exists € > 0 such that the function £ >
Q — @¢(&v) is monotone on QN (0,¢).

Proof. The equivalence (i) <= (i7) has already been proved.
The implication (i4) == (4i7) is obvious.
Now we show that (iii) = (4i).

For this aim, denote Q = {€ € Q: p(&v) = p,(§)}. From our assumption it
follows that Q N (0,¢) C Q.

First, we prove that if QN (0,) C €2, then QN (0, (1 + +)a) C Q. Indeed,
for fixed £ € QN e, (14 1)a) and arbitrarily taken h € QN (€ — a, T%Hg) put
x=&—(n+1)h. We have z,z+h,...,z+nh € QN(0,a) and z+(n+1)h = &.
Therefore

n+1
0=apewn) =3 (" )0l ki)

k=0

=p((r+ (n+1)h +Z<n+1> )" =k (z + kh)

= p(&v) —puo(&) + A7 pu () = 9(8v) — pu(8),
which means that £ € Q.
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From the above we obtain [J;>5(0, (1 + n+1) e)NQ = (0,400)NQ C Q.
For £ € QN (—00,0] put h = =26+ 1. Then £+ h, 4+ 2h, ...+ (n+1)h € Q
and by similar considerations as above for AZ;H@(&/), we obtain that £ € Q.
Since @(&v),pu(€) € [0,1), we have

(p(§v) = pu(§)) <= ((&v) = pu(§)) = (P(§v) = Pu(§))
for £ € (0,) N Q.
(v) = (iv)
Fix v € V and take £ € (0,6) N Q, 1 € Q such that £+ (n+ 1)n € (0,e) N Q.
We have

AT B (Ev)
= = ("Paerwn- 5 (")t

n+l—keE, 1 n+1—k€On+1

5 (D)) 5 (1)

’I’L+1—/€€En+1 TL+1—]€EOV,L+1

1 " a1
:(a+2n+1)2 —Oé2 25,

where E, .1 denotes the set of all natural even numbers smaller than or equal
ton+1 and O,, 41 denotes the set of all natural odd numbers smaller than or
equal to n + 1.

Arguing similarly as above one can obtain that ApF!3(Ev) > —3 for € €
(0, a) NQ, n € Q such that &+ (n 4 1)y € (0,6) N Q. Thus A}LF go(gfu)
[—1,3]1NZ = {0} for £ € (0,6) NQ, n € Q such that £+ (n+1)n € (0,) NQ.
From Theorem 2.4 it follows that there exists a function F': Q — Y such that
F(&) = ¢(év) for £ € QN (0,¢) and APH F(€) = 0 for all §,7 € Q. In particular
F(&) =Y ga;& for & € Q. Thus we get ¢(&v) = Y i a;&" for £ € QN (0,¢).
This completes the proof.

(iv) = (vi)

There exists ¢’ € (0,¢) such that p, () is monotone and the function (0,)N
Q 3 & — [py(9)] is constant. Therefore, the function (0,') NQ 3 € — p,(€) =
Py (&) — [pp(§)] is monotone, too.

To finish the proof it is enough to demonstrate that (vi) = (v).

Let £ 5 Q — ¢(&v) be increasing on QN (0, ). Take an arbitrary sequence
(&2)nen € ((0,2)NQ)Y, which is decreasing and with limit 0. Then (@(£,v))nen
is monotone, with elements in [0,1] and say converges to some limit, call it
g € [0,1]. Thus, we have N € N such that 0 < g — @({nv) < g for
m > N m € N. From the monotonicity of the function £ > Q — @(&v)
it follows that g — 2% < ¢(&v) < g for sufficiently small £. In case of a
decreasing function £ 5 Q — @({v) on QN (0,¢) the proof is analogical. O

IN
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Remark 2.6. Considering part (i) of Remark 1.4 we can replace conditions
(#4) — (vi) from Theorem 2.5 with slightly more general ones. For example, the
condition (v) may be replaced by the following one:

(v’) there exists a point vg € V such that for every vector v € V there
exist € > 0 and « € R such that for every £ € QN (0,¢) we have @(vg + &v) €
(o, @ + z2r7).

Proof. Indeed, for fixed vy € V define a function ¥: V' — R by the formula
P(v) = @(vo + v). From (v’) it follows that for every vector v € V there exist
e > 0and a € R such that for every ¢ € (0,)NQ we have ¢ (£v) € (o, a+ =]
Moreover, from part (i) of Remark 1.4 it follows that ¢ fulfills a polynomial
congruence of degree n. Therefore, the already proved part (v) of Theorem 2.5
implies that v is a decent solution of the polynomial congruence of degree n.
Then also ¢ is a decent solution of the polynomial congruence of degree n (see
part (i) of Remark 1.4). O

3. Regular solutions of polynomial congruences

Now we are going to make use of Theorem 2.5 [equivalence (i) and (v)] to obtain
that regular (continuous with respect to a suitable topology or measurable with
respect to a suitable o-field) solutions of polynomial congruences are decent.

At first we recall the notions of core topology and Q-radial continuity of a
function:

Definition 3.1. Let X be a linear space over Q and let A C X. A point vy € A
is said to be algebraically interior to A iff for every vector v € V' there exists
e > 0 such that for every A € Q, |\| < & we have vy + \v € A.

The set A is called algebraically open iff each of its points is algebraically
interior to A.

The family of all algebraically open sets in a linear space X is a topology
in X, which is called the core topology.

Definition 3.2. Let h: V' — R be a function and vg € V. Then we say that h is
Q-radial continuous at the point vy provided that for every vector v € V the
function Q 3 & — h(vg + &v) is continuous at 0.

Corollary 3.3. Let p: V — R be a solution of (1.2), which is Q-radial contin-
wous at 0. Then ¢ is decent.

Proof. We can assume that ¢(0) = 1 (take ¢ = 3 — ¢(0) in Remark 1.4
(ii)). Now fix v € V and choose € > 0 such that [p({v) — ¢(0)| < 5= for
€ (—&,e)NQ. Then
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1 1 1 1 1 1 13
p(év) € (@(0) - W,sﬁ(o) + 2”+2) = <2 T oty + 2n+2> - <474) ;

50 [p(€v)] = 0 for € € (—¢,€) NQ. Thus $(€v) € (H(0) — gz, P(0) + gas) for
&€ (—e,e)NQ, so condition (v) from Theorem 2.5 is fulfilled. O

From the Remark 2.6 it follows that it is enough to assume that the solution
of the congruence A;flcp(x) € 7 is Q-radial continuous at some point to get
its decency.

Obviously, every function continuous with respect to the core topology in
V' is Q-radial continuous at this point, thus it is decent.

Now we focus our attention on Lebesgue measurable and on Baire measur-
able solutions of (1.2).

Definition 3.4. (see e.g. [5]) Let X be a linear space over R and let n € N. For
arbitrary £ C X we define the set H(F) as follows

H(E)={ze€ X: pexx+kh,o —khe Efork=1,2,....,n+1}.
Moreover,
HO

(E) =E,
H'(E) = H(E),
H*YE)= H(H*(E)), keN.
(5,9

The following remarks (see [5,9]) show important properties of the operation
H.

Remark 3.5. (Ger [5]) Suppose K is a field containing the set of rationals and
X is a linear space over K. If E C X is of the second category and with the
Baire property, then intH (E) # (.

Remark 3.6. (Kemperman [9]) If E C R™, m € N, has got a positive inner
Lebesgue measure, then intH (E) # 0.

In the proof of Theorem 3.8 we will make use of the following results:

Theorem 3.7. (Ger [5]) Let X be a real Hausdorff linear topological space,
0 # D C X is a convex and open set and let Y be a real normed space. Suppose
that an n-convex function f: D — Y is bounded on a set E C D. If there exists
a nonnegative integer k such that int H*(E) # 0, then f is continuous in D.

Theorem 3.8. Let X be a real Hausdorff locally convex linear topological space
and let E C X be such a set that intH(E) # 0. If ¢: V — R is a solution
of the congruence At p(z) = 0, x,h € X such that p(z) € Z + (—a,q)
for x € E and some 0 < a < m, then ¢ is a decent solution of
the polynomial congruence of degree m. Moreover, ¢ = f + g with f being
a continuous polynomial function of degree m and g being an integer-valued
function.
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Proof. First we prove that ¢(z) € Z 4 (— a7, 5277) for arguments x taken
from some nonempty open subset of X.

From our assumptions it follows that there exist functions m: F — 7Z and
q: F — (—a,«) such that ¢|p = m + ¢. Since X is a locally convex linear
topological space and int H(E) # (), there exists an open and convex set U such
that ) # U C H(E). Fix x € U and choose h € X such that x+kh,z—kh € E
for k=1,2,...,n+ 1. Then

n+1

1
Z > AV () = (=1)" T p(x) + Z L=k (n;r )m(a: + kh)

n+1
" Z(—l)”“-’f(”“) (o4 kh) < (~1)"p(a) + M

k
1
()
k>0

= (=1)""o(x) + M + (2" = 1),
where M = S0 (= 1) =R (" m(a + kh).

Similarly, one can show that
Z > AP o(z) > (=1)"Mp(r) + M — (2" - 1)
Putting N = A} p(x) — M € Z, we have
(=)™ lo(@) € N+ (2" = Da, 2" = 1)a),
so p(z) € Z+ (—(2" = 1o, 2" — 1)) C Z + (— 57, 5r) for z € UL
Thus there exist functions 7m: U — Z, §: U — (—zmrr, a0r) such that
plu =m+q.
Now we fix © € U and choose h € X such that z+h,...,z+(n+1)h € U.
Then we have

n+1
A ole) = A i) + 3 (1) ("3t )

n+1
< AMln(z) + Z ( >2n+1 AL (z) 4 1.

Similarly, A} p(2) > AP n(z) — 1. Therefore A7 o(z) = A7t n(z) and
A G(z) =0 for z € U and h € X such that  + h, ...,z + (n+1)h € U.
Theorem 2.4 applied for the function ¢, the space X and the set U implies
that there exists a polynomial function F: X — R of degree n such that
F|y = 4. Therefore F is bounded from both sides on U, so it is continuous
(Theorem 3.7).
We get o(x) = m(z) + §(z) = F(x) for z € U.
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Now take ¢ € U and define ¢: X — R by the formula ¢(z) = p(z + ¢).
Take x € U — ¢. Then z + c € U, so

P(x) = p(x +c¢) = Flax +¢) = G(x).
Obviously, G is a continuous polynomial function of degree n.
Denote Q = {z € X: ¢(x) = G(x)}. We know that U —¢ C Q and U — ¢ is
a convex neighbourhood of 0. We show that if W is a convex neighbourhood
of 0, then W C € implies that (1+ L)W C Q. Choose arbitrary = € W. From
the convexity of W and 0 € W it follows that %x, ey ”T_lx € W. Thus

n

siran=o(225) e S (e ()
=0

- n+1 . ntioi (M +1 k
:1/)( p x)—l—k:O(—l) + ( P )G(nx>
:¢<n+1x)—I—A’}‘;lG(O)—G(n_'—lx)

n n n
—z/)<n+1x)—G(n+1 )7

n n

which means that "TH;U € 0.

Since limy— 400 ()% = 400, we get X = [J, o (ZH1)FU C Q.

Thus p(z) = Y(x — ¢) = G(x — ¢) = F(x) for z € X. O
Theorem 3.9. Let X be a linear space and let p: X — R be a solution of
the polynomial congruence of degree n. Assume that one of the following two
hypotheses is valid

1. X =R"™, with some positive m and ¢, is Lebesgue measurable.

2. X is a real Fréchet space and  is a Baire measurable function.
Then @ is a decent solution of the polynomial congruence of degree n. Moreover,
p = f+ g with f being a continuous polynomial function of degree n and g
being an integer-valued and Lebesgue (resp. Baire) measurable function.

Proof. Let a = m Put A9 = ¢ (Z + [~a,a]) and for k = 1,...,
nt2(gntl 1) —2
Ap = (L + [ka, (k + 1)a]) .
The function ¢ is Lebesgue measurable in case (1) and Baire measurable in case
(2) measurable, therefore each of the sets Ay, k =0,1,...,2" 2(2"1 —1)-2is
Lebesgue measurable in case (1) and has got a Baire property in case (2). More-
n+2on+1

over, i;o (@ -1)-2
A = X, so some of the sets Ay, k = 0,1,...,2" 22"+ — 1) — 2, say Ay,
is of positive Lebesgue measure in case (1) and is of the second category in
case (2).
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If ko = 0, then the previous theorem and Remark 3.5 in case (1) and Remark
3.6 in case (2) implies the decency of ¢ and the continuity of its polynomial
part in a decomposition of ¢ on a polynomial function and an integer-valued
function.

If ko € {1,...,27F2(27+1 — 1) — 2}, then consider the function

X 1
socp(ko+2>a.

Of course, the function ¢ is a solution of the polynomial congruence of degree

(- (or)e) oo

e[
=0 N (Z + [koa, (ko + 1)a]) = Ag,.

Therefore, from Remark 3.5 in case (1) and Remark 3.6 in case (2) and the
previous theorem it follows that ¢ is a decent solution of the polynomial con-
gruence and a polynomial part of its decomposition is continuous, but then
also ¢ is a decent solution of the polynomial congruence of degree n with
continuous polynomial part in the decomposition.

We proved that ¢ = f+g, where f is a continuous polynomial function and
g is an integer-valued function. Since f is continuous, it is Lebesgue measurable
in case (1) and Baire measurable in case (2). Therefore, g = ¢ — f is Lebesgue
measurable in case (1) and Baire measurable in case (2), too. O

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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