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Abstract. We deal with functions which fulfil the condition Δn+1
h ϕ(x) ∈ Z for all x, h taken

from some linear space V . We derive necessary and sufficient conditions for such a function
to be decent in the following sense: there exist functions f : V → R, g : V → Z such that

ϕ = f + g and Δn+1
h f(x) = 0 for all x, h ∈ V .
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1. Introduction

Let V be a linear space over Q, R or C and n ∈ N (we assume that 0 ∈ N).
The symbol ≡ stands for a congruence modulo Z (so a ≡ b ⇐⇒ a − b ∈
Z, a, b ∈ R), the symbol [x] denotes the integer part of a real number x and x̃
denotes the fractional part of x (so x = [x] + x̃, x̃ ∈ [0, 1)).
Following e.g. [10], we define the difference operator:

Definition 1.1. Let f : V → R be a function. Then

Δ0
hf = f,

Δ1
hf(x) = Δhf(x) = f(x + h) − f(x) (x, h ∈ V ),

Δp+1
h f = Δh(Δp

hf) (p ∈ N).

A function f : V → R which satisfies the condition

Δn+1
h f(x) = 0 (x, h ∈ V ) (1.1)

is called a polynomial function of degree n.

The aim of this paper is to examine functions ϕ : V → R fulfilling a less
restrictive condition than (1.1), namely
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Δn+1
h ϕ(x) ∈ Z (x, h ∈ V ). (1.2)

We call condition (1.2) polynomial congruence of degree n.
This study is inspired by several works (e.g. [1–4]), in which the so called
Cauchy’s congruence (or Cauchy equation modulo Z) i.e.

ϕ(x + y) − ϕ(x) − ϕ(y) ∈ Z (x, y ∈ V, ϕ : V → R) (1.3)

is considered. In these works the problem of decency in the sense of Baker
of solutions of (1.3) is discussed (see e.g. [1]; the solution ϕ of (1.3) is called
decent iff there exist an additive function a : V → R and a function g : V → Z

such that ϕ = a + g).
In many cases Cauchy’s congruence can be easily transformed to the con-

gruence Δ2
hϕ(x) ∈ Z, x, h ∈ V . To be more precise, if ϕ fulfills (1.3), then

Δ2
hϕ(x) = ϕ(x + 2h) − 2ϕ(x + h) + ϕ(x)

= (ϕ ((x + h) + h) − ϕ(x + h) − ϕ(h)) − (ϕ(x + h) − ϕ(x) − ϕ(h)) ∈ Z (x, h ∈ V ).

Almost conversely, if Δ2
hϕ(x) ∈ Z for x, h ∈ V , then the function ϕ̂ = ϕ−ϕ(0)

fulfills ϕ̂(x+y)−ϕ̂(x)−ϕ̂(y) ∈ Z. Indeed, observe first that ϕ̂(0) = 0. Moreover,
Δ2

hϕ(0) = Δ2
hϕ̂(0) = ϕ̂(2h) − 2ϕ̂(h) + ϕ̂(0) ∈ Z for h ∈ V , so ϕ̂(h) ≡ 2ϕ̂(h

2 )
for h ∈ V . Therefore,

ϕ̂(x + y) − ϕ̂(x) − ϕ̂(y) ≡ 2ϕ̂

(
x + y

2

)
− ϕ̂(x) − ϕ̂(y)

= −Δ2
y−x
2

ϕ̂(x) ∈ Z (x, h ∈ V ).

Obviously, if ϕ = f + g, f : V → R is a polynomial function of degree n
and g : V → Z, then ϕ solves the congruence (1.2). In analogy to Baker [1], we
call such functions ϕ decent solutions of (1.2).

Examples of Á. Száz and G. Száz from [13] and Godini from [8] prove that
there exist non-decent solutions of (1.3). Thus the natural question arises: what
conditions should be imposed on the solution of the congruence Δn+1

h ϕ(x) ∈ Z

to ensure its decency.
In the present paper we obtain results which correspond to those of Baron

et al. from [2] and results of Baron and Volkmann from [3]. Namely, we present
analogues of results from [2,3] for polynomial congruences of degree greater
than 1. Below we cite one of the characterizations of decent solutions of the
Cauchy’s congruence from [2], because we use it in Remark 1.3:

Theorem 1.2. (Baron et al. [2]) A solution ϕ : V → R of Cauchy’s congruence
is decent if and only if for every vector v ∈ V there is a real α such that
ϕ(ξv) ≡ ξα for all ξ ∈ Q.

When dealing with polynomial functions the inductional approach may
always come in mind. In our situation one could expect that a solution of the
congruence Δn+1

h ϕ(x) ∈ Z is a decent iff for every h ∈ V the function V �
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v −→ ϕ(v+h)−ϕ(v) is a decent solution of the polynomial congruence of degree
n − 1. However, this is not the case as it is visible from the following remark:

Remark 1.3. There exists a function ϕ such that Δ3
hϕ(x) ∈ Z for all x, h ∈ R,

Δhϕ is a decent solution of the polynomial congruence of degree 1 for every
h ∈ V , but ϕ is not a decent solution of the polynomial congruence of degree 2.

Proof. Let α : R → R be a function fulfilling α(x+y)−α(x)−α(y) = m(x, y) ∈
Z for all x, y ∈ R, which cannot be expressed as a sum of an additive function
and an integer-valued function (the existence of such a function is proved in
[8], [13]). Then α fulfills the congruence Δ2

hα(x) ∈ Z, x, h ∈ R (which is proved
on the previous page).

Define ϕ : R → R by the formula ϕ(x) = α(x) + x2. Then of course
Δ3

hϕ(x) = Δ3
hα(x) = Δh

(
Δ2

hα
)
(x) ∈ Z for all x, h ∈ R and Δhϕ(x) =

ϕ(x+h)−ϕ(x) = α(x+h)−α(x)+(x+h)2 −x2 = 2xh+h2 +α(h)+m(x, h).
The function R � x −→ 2xh + h2 + α(h) is a polynomial function of degree
1 and the function R � x −→ m(x, h) is integer-valued, thus the function
R � x −→ Δhϕ(x) is a decent solution of the polynomial congruence of degree
1 (for every fixed h ∈ V ). Suppose that the function ϕ is a decent solution of the
polynomial congruence of degree 2. Then from Theorem 2.2, which is proved
in the second part of this paper, it follows that for every v ∈ R there exist con-
stants av, bv, cv ∈ R such that for every ξ ∈ Q we have ϕ(ξv) ≡ avξ2+bvξ+cv.
Thus α(ξv) = (av −v2)ξ2+bvξ+cv +nv(ξ), where nv : Q → Z. The expression
α(x + y) − α(x) − α(y) is an integer for x, y ∈ R, so 2(av − v2)ξμ − cv ∈ Z for
all ξ, μ ∈ Q. This condition holds only if av = v2, cv ∈ Z. Then α(ξv) ≡ bvξ
for ξ ∈ Q and Theorem 1.2 implies that α is a decent solution of Cauchy’s
congruence, which is in contradiction to our choice of the function α. �

We make use of the following, easy to check, properties of (decent) solutions
of the congruence (1.2):

Remark 1.4. Let ϕ : V → R, m : V → Z and v0 ∈ V, c ∈ R. Then:
(i) ϕ is a (decent) solution of the congruence (1.2) if and only if the function

ψ : V −→ R, ψ(v) = ϕ(v + v0) is a (decent) solution of (1.2),
(ii) ϕ is a (decent) solution of the congruence (1.2) if and only if the function

ϕ + c is a (decent) solution of (1.2),
(iii) ϕ is a (decent) solution of the congruence (1.2) if and only if the function

ϕ+m is a (decent) solution of (1.2). Hence, in particular, ϕ is a (decent)
solution of the congruence (1.2) if and only if the function ϕ̃ is a (decent)
solution of (1.2).

Proof. Ad (i) The first part is a consequence of the equality Δn+1
h ψ(v) =

= Δn+1
h ϕ(v + v0).

Observe that ϕ is of the form ϕ = f +g, with f : V → R being a polynomial
function of degree n and g : V → Z if and only if ψ = f̂ + ĝ where f̂(v) =



1118 A. Lewicka AEM

f(v + v0) is a polynomial function of degree n and ĝ(v) = g(v + v0) is an
integer-valued function.

Ad (ii) The first part follows from the identity Δn+1
h (ϕ+c)(v) = Δn+1

h ϕ(v).
The function ϕ = f +g, where f : V → R is a polynomial function of degree

n and g : V → Z if and only if we have ϕ + c = (f + c) + g, where f + c is a
polynomial function of degree n and g is an integer-valued function.

Ad (iii) Obviously

Δn+1
h (ϕ + m)(v) = Δn+1

h ϕ(v) + Δn+1
h m(v) ≡ Δn+1

h ϕ(v),

which proves the first part.
We have ϕ = f + g, where f : V → R is a polynomial function of degree n

and g : V → Z if and only if ϕ + m = f + (g + m), which means that ϕ + m
can also be split into a polynomial and an integer-valued part. �

We can also notice that ϕ fulfills the congruence Δn+1
h ϕ(x) ∈ Z for all x, h ∈ V

if and only if the function Φ = π ◦ ϕ (π : R → R/Z denotes the natural
projection of R onto R/Z) is a solution of the Frechét equation Δn+1

h Φ(x) = 0̂
for all x, h ∈ V , where 0̂ means the neutral element of the quotient group
(R/Z,+). We recall the well-known result (see e.g. [14], Theorem 9.1, p.70)
describing solutions of the Frechét equation in a wide class of spaces. It will
be useful for us in our further considerations (Theorem 2.2) and, moreover,
it will clarify why we cannot use it for the group R/Z (the group R/Z is not
divisible by n! for n > 1). For the simplicity of the statement we assume that a
0-additive function is an arbitrary function, whose domain is the linear space
{0} (see e.g. [7]).

Theorem 1.5. (Székelyhidi [14]) Let n ∈ N. Let (S,+) be an abelian semigroup
with identity and (H,+) be an abelian group uniquely divisible by n!. Then
a function f : S → H fulfills the equation Δn+1

h f(x) = 0 for all x, h ∈ S if
and only if f is of the form f =

∑n
i=0 ai, where ai is a diagonalisation of the

i-additive and symmetric function Ai : Si → H.

2. Main result

We start with the result which corresponds to Theorem 2.1 from [2]. In the
proof we make use of Theorem 1.5 and the following, very obvious remark:

Remark 2.1. If p is a polynomial from R[X], which takes only integer values
for rational arguments, then p is constantly equal to p(0).

Our first theorem reads as follows:

Theorem 2.2. Let n ∈ N and let ϕ : V → R fulfill (1.2). Then ϕ is a decent
solution of the polynomial congruence of degree n if and only if for every vector
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v ∈ V there exists a polynomial pv of degree smaller than n + 1 with real
coefficients so that ϕ(ξv) ≡ pv(ξ) for all ξ ∈ Q.

Proof. Firstly, assume that ϕ is a decent solution of the polynomial congruence
of degree n. Then there exist functions f : V → R, g : V → Z such that ϕ =
f + g and Δn+1

h f(x) = 0 for all x, h ∈ V . From Theorem 1.5 it follows that
f =

∑n
i=0 ai, where ai(v) = Ai(v, . . . , v) for an i-additive and symmetric

function Ai : V i → R. Thus

ϕ(ξv) = f(ξv) + g(ξv) =
n∑

i=0

ai(ξv) + g(ξv) =
n∑

i=0

Ai(ξv, . . . , ξv) + g(ξv)

=
n∑

i=0

Ai(v, . . . , v)ξi+g(ξv)=
n∑

i=0

ai(v)ξi+g(ξv) ≡
n∑

i=0

ai(v)ξi =:pv(ξ).

Now, assume that for every v ∈ V there exists pv ∈ Rn[X] such that ϕ(ξv) ≡
pv(ξ) for all ξ ∈ Q. At the beginning, let us consider the case ϕ(0v) = 0
for v ∈ V . Then we can choose polynomials pv ∈ Rn[X] in such a way that
pv(v) = 0 for v ∈ V . For v, h ∈ V, ξ ∈ Q we have Δn+1

ξh ϕ(ξv) ∈ Z, so

0 ≡ Δn+1
ξh ϕ(ξv) =

n+1∑
k=0

(
n + 1

k

)
(−1)n+1−kϕ(ξ(v + kh))

≡
n+1∑
k=0

(
n + 1

k

)
(−1)n+1−kpv+kh(ξ).

From the above congruence it follows that
∑n+1

k=0

(
n+1

k

)
(−1)n+1−kpv+kh is the

polynomial with integer values for rational arguments. Moreover, pv+kh(0) =
0 for k = 0, 1, . . . , n + 1, so

∑n+1
k=0

(
n+1

k

)
(−1)n+1−kpv+kh is the polynomial

constantly equal to 0. Define the function f : V → R by the formula f(v) =
pv(1). Then Δn+1

h f(v) =
∑n+1

k=0

(
n+1

k

)
(−1)n+1−kpv+kh(1) = 0 and f(v) =

pv(1) ≡ ϕ(v). Thus the function g = ϕ − f is integer-valued.
For an arbitrary function ϕ consider ϕ̂ = ϕ−ϕ(0). Using the already proved

part of the theorem to the function ϕ̂, we obtain that ϕ̂ is decent. From Remark
1.4 (ii) it follows that it is equivalent to the decency of the function ϕ. �

Considering (i) of Remark 1.4 we can rewrite Theorem 2.2 in the following
manner:

Remark 2.3. Let ϕ : V → R fulfill the condition Δn+1
h ϕ(x) ∈ Z for all x, h ∈ V .

Then ϕ is a decent solution of the polynomial congruence of degree n if
and only if for any vectors v, w ∈ V there exists a polynomial pv,w of degree
smaller than n + 1 with real coefficients so that ϕ(v + ξw) ≡ pv,w(ξ) for all
ξ ∈ Q.

In our main theorem we apply the following result:



1120 A. Lewicka AEM

Theorem 2.4. (Ger [6]) Let X and Y be two Q-linear spaces and let D be
a nonempty Q-convex subset of X. If algintQD 	= ∅ then for every function
f : D → Y fulfilling Δn+1

h f(x) = 0 for all x, h ∈ X such that x, x+(n+1)h ∈ D

there exists exactly one function F : X → Y fulfilling Δn+1
h F (x) = 0 for all

x, h ∈ X and F |D = f .

Now we present our main result, which provides necessary and sufficient con-
ditions for a function ϕ fulfilling Δn+1

h ϕ(x) ∈ Z for all x, h ∈ V to be a decent
solution of this congruence.

Theorem 2.5. Let ϕ : V → R fulfill the condition Δn+1
h ϕ(x) ∈ Z for all x, h ∈

V .
Then the following conditions are equivalent:
(i) ϕ is a decent solution of the polynomial congruence of degree n,
(ii) For every vector v ∈ V there exists a polynomial pv of degree smaller

than n + 1 with real coefficients so that ϕ(ξv) ≡ pv(ξ) for all ξ ∈ Q,
(iii) For every vector v ∈ V there exist ε > 0 and a polynomial pv of degree

smaller than n + 1 with real coefficients so that ϕ(ξv) ≡ pv(ξ) for all
ξ ∈ Q ∩ (0, ε),

(iv) For every vector v ∈ V there exist ε > 0 and a polynomial pv of degree
smaller than n + 1 with real coefficients so that ϕ̃(ξv) ≡ p̃v(ξ) for all
ξ ∈ Q ∩ (0, ε),

(v) For every vector v ∈ V there exist ε > 0 and α ∈ [0, 1] such that for
every ξ ∈ Q ∩ (0, ε) we have ϕ̃(ξv) ∈ (α, α + 1

2n+1 ),
(vi) For every vector v ∈ V there exists ε > 0 such that the function ξ �

Q → ϕ̃(ξv) is monotone on Q ∩ (0, ε).

Proof. The equivalence (i) ⇐⇒ (ii) has already been proved.
The implication (ii) =⇒ (iii) is obvious.
Now we show that (iii) =⇒ (ii).

For this aim, denote Ω = {ξ ∈ Q : ϕ(ξv) ≡ pv(ξ)}. From our assumption it
follows that Q ∩ (0, ε) ⊆ Ω.

First, we prove that if Q ∩ (0, α) ⊆ Ω, then Q ∩ (0, (1 + 1
n )α) ⊆ Ω. Indeed,

for fixed ξ ∈ Q∩ [α, (1 + 1
n )α) and arbitrarily taken h ∈ Q∩ (ξ − α, 1

n+1ξ) put
x = ξ−(n+1)h. We have x, x+h, . . . , x+nh ∈ Q∩(0, α) and x+(n+1)h = ξ.
Therefore

0 ≡ Δn+1
hv ϕ(xv) =

n+1∑
k=0

(
n + 1

k

)
(−1)n+1−kϕ((x + kh)v)

≡ ϕ((x + (n + 1)h)v) +
n∑

k=0

(
n + 1

k

)
(−1)n+1−kpv(x + kh)

= ϕ(ξv) − pv(ξ) + Δn+1
h pv(x) = ϕ(ξv) − pv(ξ),

which means that ξ ∈ Ω.
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From the above we obtain
⋃+∞

k=0(0, (1 + 1
n+1 )kε) ∩ Q = (0,+∞) ∩ Q ⊆ Ω.

For ξ ∈ Q∩ (−∞, 0] put h = −2ξ + 1. Then ξ + h, ξ + 2h, . . . , ξ + (n + 1)h ∈ Ω
and by similar considerations as above for Δn+1

hv ϕ(ξv), we obtain that ξ ∈ Ω.
(iii) ⇐⇒ (iv)
Since ϕ̃(ξv), p̃v(ξ) ∈ [0, 1), we have

(ϕ(ξv) ≡ pv(ξ)) ⇐⇒ (ϕ̃(ξv) ≡ p̃v(ξ)) ⇐⇒ (ϕ̃(ξv) = p̃v(ξ))

for ξ ∈ (0, ε) ∩ Q.
(v) =⇒ (iv)
Fix v ∈ V and take ξ ∈ (0, ε) ∩ Q, η ∈ Q such that ξ + (n + 1)η ∈ (0, ε) ∩ Q.
We have
Δn+1

ηv ϕ̃(ξv)

=
∑

n+1−k∈En+1

(
n + 1

k

)
ϕ̃((ξ + ηk)v) −

∑
n+1−k∈On+1

(
n + 1

k

)
ϕ̃((ξ + ηk)v)

≤
∑

n+1−k∈En+1

(
n + 1

k

)(
α +

1
2n+1

)
−

∑
n+1−k∈On+1

(
n + 1

k

)
α

=
(

α +
1

2n+1

)
2n − α2n =

1
2
,

where En+1 denotes the set of all natural even numbers smaller than or equal
to n + 1 and On+1 denotes the set of all natural odd numbers smaller than or
equal to n + 1.

Arguing similarly as above one can obtain that Δn+1
ηv ϕ̃(ξv) ≥ − 1

2 for ξ ∈
(0, ε) ∩ Q, η ∈ Q such that ξ + (n + 1)η ∈ (0, ε) ∩ Q. Thus Δn+1

ηv ϕ̃(ξv) ∈
[− 1

2 , 1
2 ] ∩Z = {0} for ξ ∈ (0, ε) ∩Q, η ∈ Q such that ξ + (n + 1)η ∈ (0, ε) ∩Q.

From Theorem 2.4 it follows that there exists a function F : Q → Y such that
F (ξ) = ϕ̃(ξv) for ξ ∈ Q∩(0, ε) and Δn+1

η F (ξ) = 0 for all ξ, η ∈ Q. In particular
F (ξ) =

∑n
i=0 aiξ

i for ξ ∈ Q. Thus we get ϕ̃(ξv) =
∑n

i=0 aiξ
i for ξ ∈ Q∩ (0, ε).

This completes the proof.
(iv) =⇒ (vi)
There exists ε′ ∈ (0, ε) such that pv|(0,ε′) is monotone and the function (0, ε′)∩
Q � ξ → [pv(ξ)] is constant. Therefore, the function (0, ε′) ∩ Q � ξ → p̃v(ξ) =
pv(ξ) − [pv(ξ)] is monotone, too.
To finish the proof it is enough to demonstrate that (vi) =⇒ (v).

Let ξ � Q → ϕ̃(ξv) be increasing on Q ∩ (0, ε). Take an arbitrary sequence
(ξn)n∈N ∈ ((0, ε)∩Q)N, which is decreasing and with limit 0. Then (ϕ̃(ξnv))n∈N

is monotone, with elements in [0, 1] and say converges to some limit, call it
g ∈ [0, 1]. Thus, we have N ∈ N such that 0 < g − ϕ̃(ξmv) ≤ 1

2n+1 for
m ≥ N m ∈ N. From the monotonicity of the function ξ � Q → ϕ̃(ξv)
it follows that g − 1

2n+1 ≤ ϕ̃(ξv) ≤ g for sufficiently small ξ. In case of a
decreasing function ξ � Q → ϕ̃(ξv) on Q ∩ (0, ε) the proof is analogical. �
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Remark 2.6. Considering part (i) of Remark 1.4 we can replace conditions
(ii)− (vi) from Theorem 2.5 with slightly more general ones. For example, the
condition (v) may be replaced by the following one:

(v’) there exists a point v0 ∈ V such that for every vector v ∈ V there
exist ε > 0 and α ∈ R such that for every ξ ∈ Q ∩ (0, ε) we have ϕ̃(v0 + ξv) ∈
(α, α + 1

2n+1 ).

Proof. Indeed, for fixed v0 ∈ V define a function ψ : V → R by the formula
ψ(v) = ϕ(v0 + v). From (v’) it follows that for every vector v ∈ V there exist
ε > 0 and α ∈ R such that for every ξ ∈ (0, ε)∩Q we have ψ̃(ξv) ∈ (α, α+ 1

2n+1 ).
Moreover, from part (i) of Remark 1.4 it follows that ψ fulfills a polynomial
congruence of degree n. Therefore, the already proved part (v) of Theorem 2.5
implies that ψ is a decent solution of the polynomial congruence of degree n.
Then also ϕ is a decent solution of the polynomial congruence of degree n (see
part (i) of Remark 1.4). �

3. Regular solutions of polynomial congruences

Now we are going to make use of Theorem 2.5 [equivalence (i) and (v)] to obtain
that regular (continuous with respect to a suitable topology or measurable with
respect to a suitable σ-field) solutions of polynomial congruences are decent.

At first we recall the notions of core topology and Q-radial continuity of a
function:

Definition 3.1. Let X be a linear space over Q and let A ⊆ X. A point v0 ∈ A
is said to be algebraically interior to A iff for every vector v ∈ V there exists
ε > 0 such that for every λ ∈ Q, |λ| < ε we have v0 + λv ∈ A.

The set A is called algebraically open iff each of its points is algebraically
interior to A.

The family of all algebraically open sets in a linear space X is a topology
in X, which is called the core topology.

Definition 3.2. Let h : V → R be a function and v0 ∈ V . Then we say that h is
Q-radial continuous at the point v0 provided that for every vector v ∈ V the
function Q � ξ → h(v0 + ξv) is continuous at 0.

Corollary 3.3. Let ϕ : V → R be a solution of (1.2), which is Q-radial contin-
uous at 0. Then ϕ is decent.

Proof. We can assume that ϕ(0) = 1
2 (take c = 1

2 − ϕ(0) in Remark 1.4
(ii)). Now fix v ∈ V and choose ε > 0 such that |ϕ(ξv) − ϕ(0)| < 1

2n+2 for
ξ ∈ (−ε, ε) ∩ Q. Then
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ϕ(ξv) ∈
(

ϕ(0) − 1
2n+2

, ϕ(0) +
1

2n+2

)
=

(
1
2

− 1
2n+2

,
1
2

+
1

2n+2

)
⊆

(
1
4
,
3
4

)
,

so [ϕ(ξv)] = 0 for ξ ∈ (−ε, ε) ∩Q. Thus ϕ̃(ξv) ∈ (ϕ̃(0) − 1
2n+2 , ϕ̃(0) + 1

2n+2 ) for
ξ ∈ (−ε, ε) ∩ Q, so condition (v) from Theorem 2.5 is fulfilled. �

From the Remark 2.6 it follows that it is enough to assume that the solution
of the congruence Δn+1

h ϕ(x) ∈ Z is Q-radial continuous at some point to get
its decency.

Obviously, every function continuous with respect to the core topology in
V is Q-radial continuous at this point, thus it is decent.

Now we focus our attention on Lebesgue measurable and on Baire measur-
able solutions of (1.2).

Definition 3.4. (see e.g. [5]) Let X be a linear space over R and let n ∈ N. For
arbitrary E ⊆ X we define the set H(E) as follows

H(E) = {x ∈ X : ∃h∈Xx + kh, x − kh ∈ E for k = 1, 2, . . . , n + 1}.

Moreover,

H0(E) = E,

H1(E) = H(E),

Hk+1(E) = H(Hk(E)), k ∈ N.

The following remarks (see [5,9]) show important properties of the operation
H.

Remark 3.5. (Ger [5]) Suppose K is a field containing the set of rationals and
X is a linear space over K. If E ⊆ X is of the second category and with the
Baire property, then intH(E) 	= ∅.

Remark 3.6. (Kemperman [9]) If E ⊆ Rm, m ∈ N, has got a positive inner
Lebesgue measure, then intH(E) 	= ∅.

In the proof of Theorem 3.8 we will make use of the following results:

Theorem 3.7. (Ger [5]) Let X be a real Hausdorff linear topological space,
∅ 	= D ⊆ X is a convex and open set and let Y be a real normed space. Suppose
that an n-convex function f : D → Y is bounded on a set E ⊆ D. If there exists
a nonnegative integer k such that intHk(E) 	= ∅, then f is continuous in D.

Theorem 3.8. Let X be a real Hausdorff locally convex linear topological space
and let E ⊆ X be such a set that intH(E) 	= ∅. If ϕ : V → R is a solution
of the congruence Δn+1

h ϕ(x) ≡ 0, x, h ∈ X such that ϕ(x) ∈ Z + (−α, α)
for x ∈ E and some 0 < α < 1

2n+1(2n+1−1) , then ϕ is a decent solution of
the polynomial congruence of degree n. Moreover, ϕ = f + g with f being
a continuous polynomial function of degree n and g being an integer-valued
function.



1124 A. Lewicka AEM

Proof. First we prove that ϕ(x) ∈ Z + (− 1
2n+1 , 1

2n+1 ) for arguments x taken
from some nonempty open subset of X.

From our assumptions it follows that there exist functions m : E → Z and
q : E → (−α, α) such that ϕ|E = m + q. Since X is a locally convex linear
topological space and intH(E) 	= ∅, there exists an open and convex set U such
that ∅ 	= U ⊆ H(E). Fix x ∈ U and choose h ∈ X such that x+kh, x−kh ∈ E
for k = 1, 2, . . . , n + 1. Then

Z � Δn+1
h ϕ(x) = (−1)n+1ϕ(x) +

n+1∑
k=1

(−1)n+1−k

(
n + 1

k

)
m(x + kh)

+
n+1∑
k=1

(−1)n+1−k

(
n + 1

k

)
q(x + kh) < (−1)n+1ϕ(x) + M

+
∑
k>0

(
n + 1

k

)
α

= (−1)n+1ϕ(x) + M + (2n+1 − 1)α,

where M =
∑n+1

k=1(−1)n+1−k
(
n+1

k

)
m(x + kh).

Similarly, one can show that

Z � Δn+1
h ϕ(x) > (−1)n+1ϕ(x) + M − (2n+1 − 1)α.

Putting N = Δn+1
h ϕ(x) − M ∈ Z, we have

(−1)n+1ϕ(x) ∈ N + (−(2n+1 − 1)α, (2n+1 − 1)α),

so ϕ(x) ∈ Z + (−(2n+1 − 1)α, (2n+1 − 1)α) ⊆ Z + (− 1
2n+1 , 1

2n+1 ) for x ∈ U .
Thus there exist functions m̂ : U → Z, q̂ : U → (− 1

2n+1 , 1
2n+1 ) such that

ϕ|U = m̂ + q̂.
Now we fix x ∈ U and choose h ∈ X such that x + h, . . . , x + (n + 1)h ∈ U .

Then we have

Δn+1
h ϕ(x) = Δn+1

h m̂(x) +
n+1∑
k=0

(−1)n+1−k

(
n + 1

k

)
q̂(x + kh)

< Δn+1
h m̂(x) +

n+1∑
k=0

(
n + 1

k

)
1

2n+1
= Δn+1

h m̂(x) + 1.

Similarly, Δn+1
h ϕ(x) > Δn+1

h m̂(x) − 1. Therefore Δn+1
h ϕ(x) = Δn+1

h m̂(x) and
Δn+1

h q̂(x) = 0 for x ∈ U and h ∈ X such that x + h, . . . , x + (n + 1)h ∈ U .
Theorem 2.4 applied for the function q̂, the space X and the set U implies

that there exists a polynomial function F : X → R of degree n such that
F |U = q̂. Therefore F is bounded from both sides on U , so it is continuous
(Theorem 3.7).

We get ϕ(x) = m̂(x) + q̂(x) ≡ F (x) for x ∈ U .
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Now take c ∈ U and define ψ : X → R by the formula ψ(x) = ϕ(x + c).
Take x ∈ U − c. Then x + c ∈ U , so

ψ(x) = ϕ(x + c) ≡ F (x + c) =: G(x).

Obviously, G is a continuous polynomial function of degree n.
Denote Ω = {x ∈ X : ψ(x) ≡ G(x)}. We know that U − c ⊆ Ω and U − c is

a convex neighbourhood of 0. We show that if W is a convex neighbourhood
of 0, then W ⊆ Ω implies that (1 + 1

n )W ⊆ Ω. Choose arbitrary x ∈ W . From
the convexity of W and 0 ∈ W it follows that 1

nx, . . . , n−1
n x ∈ W . Thus

Δn+1
1
nx

ψ(0) = ψ

(
n + 1

n
x

)
+

n∑
k=0

(−1)n+1−k

(
n + 1

k

)
ψ

(
k

n
x

)

≡ ψ

(
n + 1

n
x

)
+

n∑
k=0

(−1)n+1−k

(
n + 1

k

)
G

(
k

n
x

)

= ψ

(
n + 1

n
x

)
+ Δn+1

1
nx

G(0) − G

(
n + 1

n
x

)

= ψ

(
n + 1

n
x

)
− G

(
n + 1

n
x

)
,

which means that n+1
n x ∈ Ω.

Since limk→+∞(n+1
n )k = +∞, we get X =

⋃
k∈N

(n+1
n )kU ⊆ Ω.

Thus ϕ(x) = ψ(x − c) ≡ G(x − c) = F (x) for x ∈ X. �
Theorem 3.9. Let X be a linear space and let ϕ : X → R be a solution of
the polynomial congruence of degree n. Assume that one of the following two
hypotheses is valid

1. X = Rm, with some positive m and ϕ, is Lebesgue measurable.
2. X is a real Fréchet space and ϕ is a Baire measurable function.

Then ϕ is a decent solution of the polynomial congruence of degree n. Moreover,
ϕ = f + g with f being a continuous polynomial function of degree n and g
being an integer-valued and Lebesgue (resp. Baire) measurable function.

Proof. Let α = 1
2n+2(2n+1−1) . Put A0 = ϕ−1 (Z + [−α, α]) and for k = 1, . . . ,

2n+2(2n+1 − 1) − 2

Ak = ϕ−1 (Z + [kα, (k + 1)α]) .

The function ϕ is Lebesgue measurable in case (1) and Baire measurable in case
(2) measurable, therefore each of the sets Ak, k = 0, 1, . . . , 2n+2(2n+1−1)−2 is
Lebesgue measurable in case (1) and has got a Baire property in case (2). More-
over,

⋃2n+2(2n+1−1)−2
k=0

Ak = X, so some of the sets Ak, k = 0, 1, . . . , 2n+2(2n+1 − 1) − 2, say Ak0 ,
is of positive Lebesgue measure in case (1) and is of the second category in
case (2).
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If k0 = 0, then the previous theorem and Remark 3.5 in case (1) and Remark
3.6 in case (2) implies the decency of ϕ and the continuity of its polynomial
part in a decomposition of ϕ on a polynomial function and an integer-valued
function.

If k0 ∈ {1, . . . , 2n+2(2n+1 − 1) − 2}, then consider the function

ϕ̂ = ϕ −
(

k0 +
1
2

)
α.

Of course, the function ϕ̂ is a solution of the polynomial congruence of degree
n and

ϕ̂−1

(
Z +

[
−1

2
α,

1
2
α

])
=

(
ϕ −

(
k0 +

1
2

)
α

)−1 (
Z +

[
−1

2
α,

1
2
α

])

= ϕ−1 (Z + [k0α, (k0 + 1)α]) = Ak0 .

Therefore, from Remark 3.5 in case (1) and Remark 3.6 in case (2) and the
previous theorem it follows that ϕ̂ is a decent solution of the polynomial con-
gruence and a polynomial part of its decomposition is continuous, but then
also ϕ is a decent solution of the polynomial congruence of degree n with
continuous polynomial part in the decomposition.

We proved that ϕ = f +g, where f is a continuous polynomial function and
g is an integer-valued function. Since f is continuous, it is Lebesgue measurable
in case (1) and Baire measurable in case (2). Therefore, g = ϕ− f is Lebesgue
measurable in case (1) and Baire measurable in case (2), too. �
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ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
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