Aequat. Math. 90 (2016), 1115–1127 © The Author(s) 2016. This article is published with open access at Springerlink.com 0001-9054/16/061115-13 published online June 30, 2016 DOI 10.1007/s00010-016-0427-x

Aequationes Mathematicae

On polynomial congruences

AGATA LEWICKA

Abstract. We deal with functions which fulfil the condition $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ for all x, h taken from some linear space V. We derive necessary and sufficient conditions for such a function to be decent in the following sense: there exist functions $f: V \to \mathbb{R}, g: V \to \mathbb{Z}$ such that $\varphi = f + g$ and $\Delta_h^{n+1} f(x) = 0$ for all $x, h \in V$.

Mathematics Subject Classification. Primary 39B99; Secondary 39A70.

Keywords. Polynomial functions, Polynomial equation modulo integers, Cauchy's equation modulo integers.

1. Introduction

Let V be a linear space over \mathbb{Q} , \mathbb{R} or \mathbb{C} and $n \in \mathbb{N}$ (we assume that $0 \in \mathbb{N}$). The symbol \equiv stands for a congruence modulo \mathbb{Z} (so $a \equiv b \iff a - b \in \mathbb{Z}$, $a, b \in \mathbb{R}$), the symbol [x] denotes the integer part of a real number x and \tilde{x} denotes the fractional part of x (so $x = [x] + \tilde{x}$, $\tilde{x} \in [0, 1)$). Following e.g. [10], we define the difference operator:

Definition 1.1. Let $f: V \to \mathbb{R}$ be a function. Then

$$\begin{split} \Delta_h^0 f &= f, \\ \Delta_h^1 f(x) &= \Delta_h f(x) = f(x+h) - f(x) \quad (x,h \in V), \\ \Delta_h^{p+1} f &= \Delta_h (\Delta_h^p f) \quad (p \in \mathbb{N}). \end{split}$$

A function $f: V \to \mathbb{R}$ which satisfies the condition

$$\Delta_h^{n+1} f(x) = 0 \quad (x, h \in V) \tag{1.1}$$

is called a *polynomial function* of degree n.

The aim of this paper is to examine functions $\varphi: V \to \mathbb{R}$ fulfilling a less restrictive condition than (1.1), namely

🕲 Birkhäuser

A. Lewicka

$$\Delta_h^{n+1}\varphi(x) \in \mathbb{Z} \qquad (x, h \in V). \tag{1.2}$$

We call condition (1.2) polynomial congruence of degree n.

This study is inspired by several works (e.g. [1-4]), in which the so called *Cauchy's congruence* (or *Cauchy equation modulo* \mathbb{Z}) i.e.

$$\varphi(x+y) - \varphi(x) - \varphi(y) \in \mathbb{Z} \qquad (x, y \in V, \ \varphi \colon V \to \mathbb{R})$$
(1.3)

is considered. In these works the problem of decency in the sense of Baker of solutions of (1.3) is discussed (see e.g. [1]; the solution φ of (1.3) is called *decent* iff there exist an additive function $a: V \to \mathbb{R}$ and a function $g: V \to \mathbb{Z}$ such that $\varphi = a + g$).

In many cases Cauchy's congruence can be easily transformed to the congruence $\Delta_h^2 \varphi(x) \in \mathbb{Z}$, $x, h \in V$. To be more precise, if φ fulfills (1.3), then

$$\begin{split} \Delta_h^2 \varphi(x) &= \varphi(x+2h) - 2\varphi(x+h) + \varphi(x) \\ &= (\varphi\left((x+h)+h\right) - \varphi(x+h) - \varphi(h)) - (\varphi(x+h) - \varphi(x) - \varphi(h)) \in \mathbb{Z} \ (x,h \in V). \end{split}$$

Almost conversely, if $\Delta_h^2 \varphi(x) \in \mathbb{Z}$ for $x, h \in V$, then the function $\hat{\varphi} = \varphi - \varphi(0)$ fulfills $\hat{\varphi}(x+y) - \hat{\varphi}(x) - \hat{\varphi}(y) \in \mathbb{Z}$. Indeed, observe first that $\hat{\varphi}(0) = 0$. Moreover, $\Delta_h^2 \varphi(0) = \Delta_h^2 \hat{\varphi}(0) = \hat{\varphi}(2h) - 2\hat{\varphi}(h) + \hat{\varphi}(0) \in \mathbb{Z}$ for $h \in V$, so $\hat{\varphi}(h) \equiv 2\hat{\varphi}(\frac{h}{2})$ for $h \in V$. Therefore,

$$\hat{\varphi}(x+y) - \hat{\varphi}(x) - \hat{\varphi}(y) \equiv 2\hat{\varphi}\left(\frac{x+y}{2}\right) - \hat{\varphi}(x) - \hat{\varphi}(y)$$
$$= -\Delta_{\frac{y-x}{2}}^{2}\hat{\varphi}(x) \in \mathbb{Z} \ (x,h \in V).$$

Obviously, if $\varphi = f + g$, $f: V \to \mathbb{R}$ is a polynomial function of degree n and $g: V \to \mathbb{Z}$, then φ solves the congruence (1.2). In analogy to Baker [1], we call such functions φ decent solutions of (1.2).

Examples of A. Száz and G. Száz from [13] and Godini from [8] prove that there exist non-decent solutions of (1.3). Thus the natural question arises: what conditions should be imposed on the solution of the congruence $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ to ensure its decency.

In the present paper we obtain results which correspond to those of Baron et al. from [2] and results of Baron and Volkmann from [3]. Namely, we present analogues of results from [2,3] for polynomial congruences of degree greater than 1. Below we cite one of the characterizations of decent solutions of the Cauchy's congruence from [2], because we use it in Remark 1.3:

Theorem 1.2. (Baron et al. [2]) A solution $\varphi \colon V \to \mathbb{R}$ of Cauchy's congruence is decent if and only if for every vector $v \in V$ there is a real α such that $\varphi(\xi v) \equiv \xi \alpha$ for all $\xi \in \mathbb{Q}$.

When dealing with polynomial functions the inductional approach may always come in mind. In our situation one could expect that a solution of the congruence $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ is a decent iff for every $h \in V$ the function $V \ni$ $v \longrightarrow \varphi(v+h) - \varphi(v)$ is a decent solution of the polynomial congruence of degree n-1. However, this is not the case as it is visible from the following remark:

Remark 1.3. There exists a function φ such that $\Delta_h^3 \varphi(x) \in \mathbb{Z}$ for all $x, h \in \mathbb{R}$, $\Delta_h \varphi$ is a decent solution of the polynomial congruence of degree 1 for every $h \in V$, but φ is not a decent solution of the polynomial congruence of degree 2.

Proof. Let $\alpha \colon \mathbb{R} \to \mathbb{R}$ be a function fulfilling $\alpha(x+y) - \alpha(x) - \alpha(y) = m(x,y) \in \mathbb{Z}$ for all $x, y \in \mathbb{R}$, which cannot be expressed as a sum of an additive function and an integer-valued function (the existence of such a function is proved in [8], [13]). Then α fulfills the congruence $\Delta_h^2 \alpha(x) \in \mathbb{Z}$, $x, h \in \mathbb{R}$ (which is proved on the previous page).

Define $\varphi \colon \mathbb{R} \to \mathbb{R}$ by the formula $\varphi(x) = \alpha(x) + x^2$. Then of course $\Delta_h^3 \varphi(x) = \Delta_h^3 \alpha(x) = \Delta_h \left(\Delta_h^2 \alpha \right)(x) \in \mathbb{Z}$ for all $x, h \in \mathbb{R}$ and $\Delta_h \varphi(x) =$ $\varphi(x+h) - \varphi(x) = \alpha(x+h) - \alpha(x) + (x+h)^2 - x^2 = 2xh + h^2 + \alpha(h) + m(x,h).$ The function $\mathbb{R} \ni x \longrightarrow 2xh + h^2 + \alpha(h)$ is a polynomial function of degree 1 and the function $\mathbb{R} \ni x \longrightarrow m(x,h)$ is integer-valued, thus the function $\mathbb{R} \ni x \longrightarrow \Delta_h \varphi(x)$ is a decent solution of the polynomial congruence of degree 1 (for every fixed $h \in V$). Suppose that the function φ is a decent solution of the polynomial congruence of degree 2. Then from Theorem 2.2, which is proved in the second part of this paper, it follows that for every $v \in \mathbb{R}$ there exist constants $a_v, b_v, c_v \in \mathbb{R}$ such that for every $\xi \in \mathbb{Q}$ we have $\varphi(\xi v) \equiv a_v \xi^2 + b_v \xi + c_v$. Thus $\alpha(\xi v) = (a_v - v^2)\xi^2 + b_v\xi + c_v + n_v(\xi)$, where $n_v \colon \mathbb{Q} \to \mathbb{Z}$. The expression $\alpha(x+y) - \alpha(x) - \alpha(y)$ is an integer for $x, y \in \mathbb{R}$, so $2(a_v - v^2)\xi\mu - c_v \in \mathbb{Z}$ for all $\xi, \mu \in \mathbb{Q}$. This condition holds only if $a_v = v^2$, $c_v \in \mathbb{Z}$. Then $\alpha(\xi v) \equiv b_v \xi$ for $\xi \in \mathbb{Q}$ and Theorem 1.2 implies that α is a decent solution of Cauchy's congruence, which is in contradiction to our choice of the function α . \square

We make use of the following, easy to check, properties of (decent) solutions of the congruence (1.2):

Remark 1.4. Let $\varphi \colon V \to \mathbb{R}, m \colon V \to \mathbb{Z}$ and $v_0 \in V, c \in \mathbb{R}$. Then:

- (i) φ is a (decent) solution of the congruence (1.2) if and only if the function $\psi: V \longrightarrow \mathbb{R}, \ \psi(v) = \varphi(v + v_0)$ is a (decent) solution of (1.2),
- (ii) φ is a (decent) solution of the congruence (1.2) if and only if the function $\varphi + c$ is a (decent) solution of (1.2),
- (iii) φ is a (decent) solution of the congruence (1.2) if and only if the function $\varphi + m$ is a (decent) solution of (1.2). Hence, in particular, φ is a (decent) solution of the congruence (1.2) if and only if the function $\tilde{\varphi}$ is a (decent) solution of (1.2).

Proof. Ad (i) The first part is a consequence of the equality $\Delta_h^{n+1}\psi(v) = = \Delta_h^{n+1}\varphi(v+v_0).$

Observe that φ is of the form $\varphi = f + g$, with $f: V \to \mathbb{R}$ being a polynomial function of degree n and $g: V \to \mathbb{Z}$ if and only if $\psi = \hat{f} + \hat{g}$ where $\hat{f}(v) =$

 $f(v + v_0)$ is a polynomial function of degree n and $\hat{g}(v) = g(v + v_0)$ is an integer-valued function.

Ad (ii) The first part follows from the identity $\Delta_h^{n+1}(\varphi+c)(v) = \Delta_h^{n+1}\varphi(v)$. The function $\varphi = f+g$, where $f: V \to \mathbb{R}$ is a polynomial function of degree n and $g: V \to \mathbb{Z}$ if and only if we have $\varphi + c = (f+c) + g$, where f+c is a polynomial function of degree n and g is an integer-valued function.

Ad (iii) Obviously

$$\Delta_h^{n+1}(\varphi+m)(v) = \Delta_h^{n+1}\varphi(v) + \Delta_h^{n+1}m(v) \equiv \Delta_h^{n+1}\varphi(v),$$

which proves the first part.

We have $\varphi = f + g$, where $f: V \to \mathbb{R}$ is a polynomial function of degree n and $g: V \to \mathbb{Z}$ if and only if $\varphi + m = f + (g + m)$, which means that $\varphi + m$ can also be split into a polynomial and an integer-valued part. \Box

We can also notice that φ fulfills the congruence $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ for all $x, h \in V$ if and only if the function $\Phi = \pi \circ \varphi$ ($\pi \colon \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ denotes the natural projection of \mathbb{R} onto \mathbb{R}/\mathbb{Z}) is a solution of the Frechét equation $\Delta_h^{n+1}\Phi(x) = \hat{0}$ for all $x, h \in V$, where $\hat{0}$ means the neutral element of the quotient group ($\mathbb{R}/\mathbb{Z}, +$). We recall the well-known result (see e.g. [14], Theorem 9.1, p.70) describing solutions of the Frechét equation in a wide class of spaces. It will be useful for us in our further considerations (Theorem 2.2) and, moreover, it will clarify why we cannot use it for the group \mathbb{R}/\mathbb{Z} (the group \mathbb{R}/\mathbb{Z} is not divisible by n! for n > 1). For the simplicity of the statement we assume that a 0-additive function is an arbitrary function, whose domain is the linear space {0} (see e.g. [7]).

Theorem 1.5. (Székelyhidi [14]) Let $n \in \mathbb{N}$. Let (S, +) be an abelian semigroup with identity and (H, +) be an abelian group uniquely divisible by n!. Then a function $f: S \to H$ fulfills the equation $\Delta_h^{n+1}f(x) = 0$ for all $x, h \in S$ if and only if f is of the form $f = \sum_{i=0}^{n} a^i$, where a^i is a diagonalisation of the *i*-additive and symmetric function $A^i: S^i \to H$.

2. Main result

We start with the result which corresponds to Theorem 2.1 from [2]. In the proof we make use of Theorem 1.5 and the following, very obvious remark:

Remark 2.1. If p is a polynomial from $\mathbb{R}[X]$, which takes only integer values for rational arguments, then p is constantly equal to p(0).

Our first theorem reads as follows:

Theorem 2.2. Let $n \in \mathbb{N}$ and let $\varphi: V \to \mathbb{R}$ fulfill (1.2). Then φ is a decent solution of the polynomial congruence of degree n if and only if for every vector

 $v \in V$ there exists a polynomial p_v of degree smaller than n + 1 with real coefficients so that $\varphi(\xi v) \equiv p_v(\xi)$ for all $\xi \in \mathbb{Q}$.

Proof. Firstly, assume that φ is a decent solution of the polynomial congruence of degree n. Then there exist functions $f: V \to \mathbb{R}, g: V \to \mathbb{Z}$ such that $\varphi = f + g$ and $\Delta_h^{n+1} f(x) = 0$ for all $x, h \in V$. From Theorem 1.5 it follows that $f = \sum_{i=0}^{n} a_i$, where $a_i(v) = A_i(v, \ldots, v)$ for an *i*-additive and symmetric function $A_i: V^i \to \mathbb{R}$. Thus

$$\varphi(\xi v) = f(\xi v) + g(\xi v) = \sum_{i=0}^{n} a_i(\xi v) + g(\xi v) = \sum_{i=0}^{n} A_i(\xi v, \dots, \xi v) + g(\xi v)$$
$$= \sum_{i=0}^{n} A_i(v, \dots, v)\xi^i + g(\xi v) = \sum_{i=0}^{n} a_i(v)\xi^i + g(\xi v) \equiv \sum_{i=0}^{n} a_i(v)\xi^i =: p_v(\xi).$$

Now, assume that for every $v \in V$ there exists $p_v \in \mathbb{R}_n[X]$ such that $\varphi(\xi v) \equiv p_v(\xi)$ for all $\xi \in \mathbb{Q}$. At the beginning, let us consider the case $\varphi(0v) = 0$ for $v \in V$. Then we can choose polynomials $p_v \in \mathbb{R}_n[X]$ in such a way that $p_v(v) = 0$ for $v \in V$. For $v, h \in V$, $\xi \in \mathbb{Q}$ we have $\Delta_{\xi h}^{n+1}\varphi(\xi v) \in \mathbb{Z}$, so

$$0 \equiv \Delta_{\xi h}^{n+1} \varphi(\xi v) = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} \varphi(\xi(v+kh))$$
$$\equiv \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} p_{v+kh}(\xi).$$

From the above congruence it follows that $\sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} p_{v+kh}$ is the polynomial with integer values for rational arguments. Moreover, $p_{v+kh}(0) = 0$ for $k = 0, 1, \ldots, n+1$, so $\sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} p_{v+kh}$ is the polynomial constantly equal to 0. Define the function $f: V \to \mathbb{R}$ by the formula $f(v) = p_v(1)$. Then $\Delta_h^{n+1} f(v) = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} p_{v+kh}(1) = 0$ and $f(v) = p_v(1) \equiv \varphi(v)$. Thus the function $g = \varphi - f$ is integer-valued.

For an arbitrary function φ consider $\hat{\varphi} = \varphi - \varphi(0)$. Using the already proved part of the theorem to the function $\hat{\varphi}$, we obtain that $\hat{\varphi}$ is decent. From Remark 1.4 (ii) it follows that it is equivalent to the decency of the function φ .

Considering (i) of Remark 1.4 we can rewrite Theorem 2.2 in the following manner:

Remark 2.3. Let $\varphi \colon V \to \mathbb{R}$ fulfill the condition $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ for all $x, h \in V$.

Then φ is a decent solution of the polynomial congruence of degree n if and only if for any vectors $v, w \in V$ there exists a polynomial $p_{v,w}$ of degree smaller than n + 1 with real coefficients so that $\varphi(v + \xi w) \equiv p_{v,w}(\xi)$ for all $\xi \in \mathbb{Q}$.

In our main theorem we apply the following result:

Theorem 2.4. (Ger [6]) Let X and Y be two Q-linear spaces and let D be a nonempty Q-convex subset of X. If $algint_{\mathbb{Q}}D \neq \emptyset$ then for every function $f: D \to Y$ fulfilling $\Delta_h^{n+1}f(x) = 0$ for all $x, h \in X$ such that $x, x+(n+1)h \in D$ there exists exactly one function $F: X \to Y$ fulfilling $\Delta_h^{n+1}F(x) = 0$ for all $x, h \in X$ and F|D = f.

Now we present our main result, which provides necessary and sufficient conditions for a function φ fulfilling $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ for all $x, h \in V$ to be a decent solution of this congruence.

Theorem 2.5. Let $\varphi \colon V \to \mathbb{R}$ fulfill the condition $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ for all $x, h \in V$.

Then the following conditions are equivalent:

- (i) φ is a decent solution of the polynomial congruence of degree n,
- (ii) For every vector $v \in V$ there exists a polynomial p_v of degree smaller than n + 1 with real coefficients so that $\varphi(\xi v) \equiv p_v(\xi)$ for all $\xi \in \mathbb{Q}$,
- (iii) For every vector $v \in V$ there exist $\varepsilon > 0$ and a polynomial p_v of degree smaller than n + 1 with real coefficients so that $\varphi(\xi v) \equiv p_v(\xi)$ for all $\xi \in \mathbb{Q} \cap (0, \varepsilon)$,
- (iv) For every vector $v \in V$ there exist $\varepsilon > 0$ and a polynomial p_v of degree smaller than n + 1 with real coefficients so that $\tilde{\varphi}(\xi v) \equiv \tilde{p}_v(\xi)$ for all $\xi \in \mathbb{Q} \cap (0, \varepsilon)$,
- (v) For every vector $v \in V$ there exist $\varepsilon > 0$ and $\alpha \in [0,1]$ such that for every $\xi \in \mathbb{Q} \cap (0,\varepsilon)$ we have $\tilde{\varphi}(\xi v) \in (\alpha, \alpha + \frac{1}{2^{n+1}})$,
- (vi) For every vector $v \in V$ there exists $\varepsilon > 0$ such that the function $\xi \ni \mathbb{Q} \to \tilde{\varphi}(\xi v)$ is monotone on $\mathbb{Q} \cap (0, \varepsilon)$.

Proof. The equivalence $(i) \iff (ii)$ has already been proved. The implication $(ii) \implies (iii)$ is obvious.

Now we show that $(iii) \Longrightarrow (ii)$.

For this aim, denote $\Omega = \{\xi \in \mathbb{Q} : \varphi(\xi v) \equiv p_v(\xi)\}$. From our assumption it follows that $\mathbb{Q} \cap (0, \varepsilon) \subseteq \Omega$.

First, we prove that if $\mathbb{Q} \cap (0, \alpha) \subseteq \Omega$, then $\mathbb{Q} \cap (0, (1 + \frac{1}{n})\alpha) \subseteq \Omega$. Indeed, for fixed $\xi \in \mathbb{Q} \cap [\alpha, (1 + \frac{1}{n})\alpha)$ and arbitrarily taken $h \in \mathbb{Q} \cap (\xi - \alpha, \frac{1}{n+1}\xi)$ put $x = \xi - (n+1)h$. We have $x, x+h, \ldots, x+nh \in \mathbb{Q} \cap (0, \alpha)$ and $x + (n+1)h = \xi$. Therefore

$$0 \equiv \Delta_{hv}^{n+1} \varphi(xv) = \sum_{k=0}^{n+1} \binom{n+1}{k} (-1)^{n+1-k} \varphi((x+kh)v)$$
$$\equiv \varphi((x+(n+1)h)v) + \sum_{k=0}^{n} \binom{n+1}{k} (-1)^{n+1-k} p_v(x+kh)$$
$$= \varphi(\xi v) - p_v(\xi) + \Delta_h^{n+1} p_v(x) = \varphi(\xi v) - p_v(\xi),$$

which means that $\xi \in \Omega$.

From the above we obtain $\bigcup_{k=0}^{+\infty} (0, (1+\frac{1}{n+1})^k \varepsilon) \cap \mathbb{Q} = (0, +\infty) \cap \mathbb{Q} \subseteq \Omega$. For $\xi \in \mathbb{Q} \cap (-\infty, 0]$ put $h = -2\xi + 1$. Then $\xi + h, \xi + 2h, \dots, \xi + (n+1)h \in \Omega$ and by similar considerations as above for $\Delta_{hv}^{n+1} \varphi(\xi v)$, we obtain that $\xi \in \Omega$. (*iii*) $\iff (iv)$

Since $\tilde{\varphi}(\xi v), \tilde{p}_v(\xi) \in [0, 1)$, we have

$$(\varphi(\xi v) \equiv p_v(\xi)) \iff (\tilde{\varphi}(\xi v) \equiv \tilde{p_v}(\xi)) \iff (\tilde{\varphi}(\xi v) = \tilde{p}_v(\xi))$$

for $\xi \in (0, \varepsilon) \cap \mathbb{Q}$. $(v) \Longrightarrow (iv)$ Fix $v \in V$ and take $\xi \in (0, \varepsilon) \cap \mathbb{Q}$, $\eta \in \mathbb{Q}$ such that $\xi + (n+1)\eta \in (0, \varepsilon) \cap \mathbb{Q}$. We have

$$\Delta_{\eta v}^{n+1} \tilde{\varphi}(\xi v)$$

(

$$= \sum_{n+1-k\in E_{n+1}} \binom{n+1}{k} \tilde{\varphi}((\xi+\eta k)v) - \sum_{n+1-k\in O_{n+1}} \binom{n+1}{k} \tilde{\varphi}((\xi+\eta k)v)$$

$$\le \sum_{n+1-k\in E_{n+1}} \binom{n+1}{k} \left(\alpha + \frac{1}{2^{n+1}}\right) - \sum_{n+1-k\in O_{n+1}} \binom{n+1}{k} \alpha$$

$$= \left(\alpha + \frac{1}{2^{n+1}}\right) 2^n - \alpha 2^n = \frac{1}{2},$$

where E_{n+1} denotes the set of all natural even numbers smaller than or equal to n+1 and O_{n+1} denotes the set of all natural odd numbers smaller than or equal to n+1.

Arguing similarly as above one can obtain that $\Delta_{\eta v}^{n+1} \tilde{\varphi}(\xi v) \geq -\frac{1}{2}$ for $\xi \in (0,\varepsilon) \cap \mathbb{Q}$, $\eta \in \mathbb{Q}$ such that $\xi + (n+1)\eta \in (0,\varepsilon) \cap \mathbb{Q}$. Thus $\Delta_{\eta v}^{n+1} \tilde{\varphi}(\xi v) \in [-\frac{1}{2},\frac{1}{2}] \cap \mathbb{Z} = \{0\}$ for $\xi \in (0,\varepsilon) \cap \mathbb{Q}$, $\eta \in \mathbb{Q}$ such that $\xi + (n+1)\eta \in (0,\varepsilon) \cap \mathbb{Q}$. From Theorem 2.4 it follows that there exists a function $F \colon \mathbb{Q} \to Y$ such that $F(\xi) = \tilde{\varphi}(\xi v)$ for $\xi \in \mathbb{Q} \cap (0,\varepsilon)$ and $\Delta_{\eta}^{n+1}F(\xi) = 0$ for all $\xi, \eta \in \mathbb{Q}$. In particular $F(\xi) = \sum_{i=0}^{n} a_i \xi^i$ for $\xi \in \mathbb{Q} \cap (0,\varepsilon)$. This completes the proof.

 $(iv) \Longrightarrow (vi)$

There exists $\varepsilon' \in (0, \varepsilon)$ such that $p_v|_{(0,\varepsilon')}$ is monotone and the function $(0, \varepsilon') \cap \mathbb{Q} \ni \xi \to [p_v(\xi)]$ is constant. Therefore, the function $(0, \varepsilon') \cap \mathbb{Q} \ni \xi \to \tilde{p_v}(\xi) = p_v(\xi) - [p_v(\xi)]$ is monotone, too.

To finish the proof it is enough to demonstrate that $(vi) \Longrightarrow (v)$.

Let $\xi \ni \mathbb{Q} \to \tilde{\varphi}(\xi v)$ be increasing on $\mathbb{Q} \cap (0, \varepsilon)$. Take an arbitrary sequence $(\xi_n)_{n \in \mathbb{N}} \in ((0, \varepsilon) \cap \mathbb{Q})^{\mathbb{N}}$, which is decreasing and with limit 0. Then $(\tilde{\varphi}(\xi_n v))_{n \in \mathbb{N}}$ is monotone, with elements in [0, 1] and say converges to some limit, call it $g \in [0, 1]$. Thus, we have $N \in \mathbb{N}$ such that $0 < g - \tilde{\varphi}(\xi_m v) \leq \frac{1}{2^{n+1}}$ for $m \geq N$ $m \in \mathbb{N}$. From the monotonicity of the function $\xi \ni \mathbb{Q} \to \tilde{\varphi}(\xi v)$ it follows that $g - \frac{1}{2^{n+1}} \leq \tilde{\varphi}(\xi v) \leq g$ for sufficiently small ξ . In case of a decreasing function $\xi \ni \mathbb{Q} \to \tilde{\varphi}(\xi v)$ on $\mathbb{Q} \cap (0, \varepsilon)$ the proof is analogical.

Remark 2.6. Considering part (i) of Remark 1.4 we can replace conditions (ii) - (vi) from Theorem 2.5 with slightly more general ones. For example, the condition (v) may be replaced by the following one:

(v') there exists a point $v_0 \in V$ such that for every vector $v \in V$ there exist $\varepsilon > 0$ and $\alpha \in \mathbb{R}$ such that for every $\xi \in \mathbb{Q} \cap (0, \varepsilon)$ we have $\tilde{\varphi}(v_0 + \xi v) \in (\alpha, \alpha + \frac{1}{2^{n+1}})$.

Proof. Indeed, for fixed $v_0 \in V$ define a function $\psi: V \to \mathbb{R}$ by the formula $\psi(v) = \varphi(v_0 + v)$. From (v') it follows that for every vector $v \in V$ there exist $\varepsilon > 0$ and $\alpha \in \mathbb{R}$ such that for every $\xi \in (0, \varepsilon) \cap \mathbb{Q}$ we have $\tilde{\psi}(\xi v) \in (\alpha, \alpha + \frac{1}{2^{n+1}})$. Moreover, from part (i) of Remark 1.4 it follows that ψ fulfills a polynomial congruence of degree n. Therefore, the already proved part (v) of Theorem 2.5 implies that ψ is a decent solution of the polynomial congruence of degree n. Then also φ is a decent solution of the polynomial congruence of degree n (see part (i) of Remark 1.4).

3. Regular solutions of polynomial congruences

Now we are going to make use of Theorem 2.5 [equivalence (i) and (v)] to obtain that regular (continuous with respect to a suitable topology or measurable with respect to a suitable σ -field) solutions of polynomial congruences are decent.

At first we recall the notions of core topology and \mathbb{Q} -radial continuity of a function:

Definition 3.1. Let X be a linear space over \mathbb{Q} and let $A \subseteq X$. A point $v_0 \in A$ is said to be algebraically interior to A iff for every vector $v \in V$ there exists $\varepsilon > 0$ such that for every $\lambda \in \mathbb{Q}$, $|\lambda| < \varepsilon$ we have $v_0 + \lambda v \in A$.

The set A is called algebraically open iff each of its points is algebraically interior to A.

The family of all algebraically open sets in a linear space X is a topology in X, which is called the core topology.

Definition 3.2. Let $h: V \to \mathbb{R}$ be a function and $v_0 \in V$. Then we say that h is \mathbb{Q} -radial continuous at the point v_0 provided that for every vector $v \in V$ the function $\mathbb{Q} \ni \xi \to h(v_0 + \xi v)$ is continuous at 0.

Corollary 3.3. Let $\varphi \colon V \to \mathbb{R}$ be a solution of (1.2), which is \mathbb{Q} -radial continuous at 0. Then φ is decent.

Proof. We can assume that $\varphi(0) = \frac{1}{2}$ (take $c = \frac{1}{2} - \varphi(0)$ in Remark 1.4 (ii)). Now fix $v \in V$ and choose $\varepsilon > 0$ such that $|\varphi(\xi v) - \varphi(0)| < \frac{1}{2^{n+2}}$ for $\xi \in (-\varepsilon, \varepsilon) \cap \mathbb{Q}$. Then

$$\varphi(\xi v) \in \left(\varphi(0) - \frac{1}{2^{n+2}}, \varphi(0) + \frac{1}{2^{n+2}}\right) = \left(\frac{1}{2} - \frac{1}{2^{n+2}}, \frac{1}{2} + \frac{1}{2^{n+2}}\right) \subseteq \left(\frac{1}{4}, \frac{3}{4}\right),$$

so $[\varphi(\xi v)] = 0$ for $\xi \in (-\varepsilon, \varepsilon) \cap \mathbb{Q}$. Thus $\tilde{\varphi}(\xi v) \in (\tilde{\varphi}(0) - \frac{1}{2^{n+2}}, \tilde{\varphi}(0) + \frac{1}{2^{n+2}})$ for $\xi \in (-\varepsilon, \varepsilon) \cap \mathbb{Q}$, so condition (v) from Theorem 2.5 is fulfilled. \Box

From the Remark 2.6 it follows that it is enough to assume that the solution of the congruence $\Delta_h^{n+1}\varphi(x) \in \mathbb{Z}$ is \mathbb{Q} -radial continuous at some point to get its decency.

Obviously, every function continuous with respect to the core topology in V is \mathbb{Q} -radial continuous at this point, thus it is decent.

Now we focus our attention on Lebesgue measurable and on Baire measurable solutions of (1.2).

Definition 3.4. (see e.g. [5]) Let X be a linear space over \mathbb{R} and let $n \in \mathbb{N}$. For arbitrary $E \subseteq X$ we define the set H(E) as follows

 $H(E) = \{x \in X : \exists_{h \in X} x + kh, x - kh \in E \text{ for } k = 1, 2, \dots, n+1\}.$ Moreover,

$$H^{0}(E) = E,$$

$$H^{1}(E) = H(E),$$

$$H^{k+1}(E) = H(H^{k}(E)), \quad k \in \mathbb{N}.$$

The following remarks (see [5,9]) show important properties of the operation H.

Remark 3.5. (Ger [5]) Suppose K is a field containing the set of rationals and X is a linear space over K. If $E \subseteq X$ is of the second category and with the Baire property, then $intH(E) \neq \emptyset$.

Remark 3.6. (Kemperman [9]) If $E \subseteq \mathbb{R}^m$, $m \in \mathbb{N}$, has got a positive inner Lebesgue measure, then $intH(E) \neq \emptyset$.

In the proof of Theorem 3.8 we will make use of the following results:

Theorem 3.7. (Ger [5]) Let X be a real Hausdorff linear topological space, $\emptyset \neq D \subseteq X$ is a convex and open set and let Y be a real normed space. Suppose that an n-convex function $f: D \to Y$ is bounded on a set $E \subseteq D$. If there exists a nonnegative integer k such that $intH^k(E) \neq \emptyset$, then f is continuous in D.

Theorem 3.8. Let X be a real Hausdorff locally convex linear topological space and let $E \subseteq X$ be such a set that $intH(E) \neq \emptyset$. If $\varphi: V \to \mathbb{R}$ is a solution of the congruence $\Delta_h^{n+1}\varphi(x) \equiv 0$, $x, h \in X$ such that $\varphi(x) \in \mathbb{Z} + (-\alpha, \alpha)$ for $x \in E$ and some $0 < \alpha < \frac{1}{2^{n+1}(2^{n+1}-1)}$, then φ is a decent solution of the polynomial congruence of degree n. Moreover, $\varphi = f + g$ with f being a continuous polynomial function of degree n and g being an integer-valued function. *Proof.* First we prove that $\varphi(x) \in \mathbb{Z} + (-\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}})$ for arguments x taken from some nonempty open subset of X.

From our assumptions it follows that there exist functions $m: E \to \mathbb{Z}$ and $q: E \to (-\alpha, \alpha)$ such that $\varphi|_E = m + q$. Since X is a locally convex linear topological space and $intH(E) \neq \emptyset$, there exists an open and convex set U such that $\emptyset \neq U \subseteq H(E)$. Fix $x \in U$ and choose $h \in X$ such that $x + kh, x - kh \in E$ for k = 1, 2, ..., n + 1. Then

$$\begin{split} \mathbb{Z} \ni \Delta_h^{n+1} \varphi(x) &= (-1)^{n+1} \varphi(x) + \sum_{k=1}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} m(x+kh) \\ &+ \sum_{k=1}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} q(x+kh) < (-1)^{n+1} \varphi(x) + M \\ &+ \sum_{k>0} \binom{n+1}{k} \alpha \\ &= (-1)^{n+1} \varphi(x) + M + (2^{n+1}-1)\alpha, \end{split}$$

where $M = \sum_{k=1}^{n+1} (-1)^{n+1-k} {\binom{n+1}{k}} m(x+kh).$

Similarly, one can show that

$$\mathbb{Z} \ni \Delta_h^{n+1} \varphi(x) > (-1)^{n+1} \varphi(x) + M - (2^{n+1} - 1)\alpha.$$

Putting $N = \Delta_h^{n+1} \varphi(x) - M \in \mathbb{Z}$, we have

$$(-1)^{n+1}\varphi(x) \in N + (-(2^{n+1}-1)\alpha, (2^{n+1}-1)\alpha),$$

so $\varphi(x) \in \mathbb{Z} + (-(2^{n+1}-1)\alpha, (2^{n+1}-1)\alpha) \subseteq \mathbb{Z} + (-\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}})$ for $x \in U$.

Thus there exist functions $\hat{m}: U \to \mathbb{Z}, \hat{q}: U \to (-\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}})$ such that $\varphi|_U = \hat{m} + \hat{q}.$

Now we fix $x \in U$ and choose $h \in X$ such that $x + h, \ldots, x + (n+1)h \in U$. Then we have

$$\begin{split} \Delta_h^{n+1}\varphi(x) &= \Delta_h^{n+1}\hat{m}(x) + \sum_{k=0}^{n+1} (-1)^{n+1-k} \binom{n+1}{k} \hat{q}(x+kh) \\ &< \Delta_h^{n+1}\hat{m}(x) + \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{2^{n+1}} = \Delta_h^{n+1}\hat{m}(x) + 1 \end{split}$$

Similarly, $\Delta_h^{n+1}\varphi(x) > \Delta_h^{n+1}\hat{m}(x) - 1$. Therefore $\Delta_h^{n+1}\varphi(x) = \Delta_h^{n+1}\hat{m}(x)$ and $\Delta_h^{n+1}\hat{q}(x) = 0$ for $x \in U$ and $h \in X$ such that $x + h, \dots, x + (n+1)h \in U$.

Theorem 2.4 applied for the function \hat{q} , the space X and the set U implies that there exists a polynomial function $F: X \to \mathbb{R}$ of degree n such that $F|_U = \hat{q}$. Therefore F is bounded from both sides on U, so it is continuous (Theorem 3.7).

We get $\varphi(x) = \hat{m}(x) + \hat{q}(x) \equiv F(x)$ for $x \in U$.

Now take $c \in U$ and define $\psi: X \to \mathbb{R}$ by the formula $\psi(x) = \varphi(x+c)$. Take $x \in U - c$. Then $x + c \in U$, so

$$\psi(x) = \varphi(x+c) \equiv F(x+c) =: G(x).$$

Obviously, G is a continuous polynomial function of degree n.

Denote $\Omega = \{x \in X : \psi(x) \equiv G(x)\}$. We know that $U - c \subseteq \Omega$ and U - c is a convex neighbourhood of 0. We show that if W is a convex neighbourhood of 0, then $W \subseteq \Omega$ implies that $(1 + \frac{1}{n})W \subseteq \Omega$. Choose arbitrary $x \in W$. From the convexity of W and $0 \in W$ it follows that $\frac{1}{n}x, \ldots, \frac{n-1}{n}x \in W$. Thus

$$\begin{split} \Delta_{\frac{1}{n}x}^{n+1}\psi(0) &= \psi\left(\frac{n+1}{n}x\right) + \sum_{k=0}^{n}(-1)^{n+1-k}\binom{n+1}{k}\psi\left(\frac{k}{n}x\right) \\ &\equiv \psi\left(\frac{n+1}{n}x\right) + \sum_{k=0}^{n}(-1)^{n+1-k}\binom{n+1}{k}G\left(\frac{k}{n}x\right) \\ &= \psi\left(\frac{n+1}{n}x\right) + \Delta_{\frac{1}{n}x}^{n+1}G(0) - G\left(\frac{n+1}{n}x\right) \\ &= \psi\left(\frac{n+1}{n}x\right) - G\left(\frac{n+1}{n}x\right), \end{split}$$

which means that $\frac{n+1}{n}x \in \Omega$. Since $\lim_{k \to +\infty} (\frac{n+1}{n})^k = +\infty$, we get $X = \bigcup_{k \in \mathbb{N}} (\frac{n+1}{n})^k U \subseteq \Omega$. Thus $\varphi(x) = \psi(x-c) \equiv G(x-c) = F(x)$ for $x \in X$. \square

Theorem 3.9. Let X be a linear space and let $\varphi \colon X \to \mathbb{R}$ be a solution of the polynomial congruence of degree n. Assume that one of the following two hypotheses is valid

- 1. $X = \mathbb{R}^m$, with some positive m and φ , is Lebesgue measurable.
- 2. X is a real Fréchet space and φ is a Baire measurable function.

Then φ is a decent solution of the polynomial congruence of degree n. Moreover, $\varphi = f + q$ with f being a continuous polynomial function of degree n and q being an integer-valued and Lebesgue (resp. Baire) measurable function.

Proof. Let $\alpha = \frac{1}{2^{n+2}(2^{n+1}-1)}$. Put $A_0 = \varphi^{-1} (\mathbb{Z} + [-\alpha, \alpha])$ and for $k = 1, \ldots,$ $2^{n+2}(2^{n+1}-1)-2$

$$A_k = \varphi^{-1} \left(\mathbb{Z} + \left[k\alpha, (k+1)\alpha \right] \right).$$

The function φ is Lebesgue measurable in case (1) and Baire measurable in case (2) measurable, therefore each of the sets A_k , $k = 0, 1, \ldots, 2^{n+2}(2^{n+1}-1)-2$ is Lebesgue measurable in case (1) and has got a Baire property in case (2). Moreover, $A_k = X$, so some of the sets A_k , $k = 0, 1, \dots, 2^{n+2}(2^{n+1} - 1) - 2$, say A_{k_0} ,

is of positive Lebesgue measure in case (1) and is of the second category in case (2).

If $k_0 = 0$, then the previous theorem and Remark 3.5 in case (1) and Remark 3.6 in case (2) implies the decency of φ and the continuity of its polynomial part in a decomposition of φ on a polynomial function and an integer-valued function.

If $k_0 \in \{1, \dots, 2^{n+2}(2^{n+1}-1)-2\}$, then consider the function

$$\hat{\varphi} = \varphi - \left(k_0 + \frac{1}{2}\right)\alpha.$$

Of course, the function $\hat{\varphi}$ is a solution of the polynomial congruence of degree n and

$$\hat{\varphi}^{-1}\left(\mathbb{Z} + \left[-\frac{1}{2}\alpha, \frac{1}{2}\alpha\right]\right) = \left(\varphi - \left(k_0 + \frac{1}{2}\right)\alpha\right)^{-1}\left(\mathbb{Z} + \left[-\frac{1}{2}\alpha, \frac{1}{2}\alpha\right]\right)$$
$$= \varphi^{-1}\left(\mathbb{Z} + \left[k_0\alpha, (k_0 + 1)\alpha\right]\right) = A_{k_0}.$$

Therefore, from Remark 3.5 in case (1) and Remark 3.6 in case (2) and the previous theorem it follows that $\hat{\varphi}$ is a decent solution of the polynomial congruence and a polynomial part of its decomposition is continuous, but then also φ is a decent solution of the polynomial congruence of degree n with continuous polynomial part in the decomposition.

We proved that $\varphi = f + g$, where f is a continuous polynomial function and g is an integer-valued function. Since f is continuous, it is Lebesgue measurable in case (1) and Baire measurable in case (2). Therefore, $g = \varphi - f$ is Lebesgue measurable in case (1) and Baire measurable in case (2), too.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- [1] Baker, J.A.: On some mathematical characters. Glas. Mat. Ser. III 25(2), 319–328 (1990)
- [2] Baron, K., Sablik, M., Volkmann, P.: On decent solutions of a functional congruence. Rocznik Nauk. Dydakt. Prace Mat. No. 17, 27–40 (2000)
- [3] Baron, K., Volkmann, P.: On the Cauchy equation modulo Z. Fund. Math. 131(2), 143– 148 (1988)
- [4] Brzdęk, J.: The Cauchy and Jensen differences on semigroups. Publ. Math. Debrecen 48(1-2), 117–136 (1996)
- [5] Ger, R.: n -Convex functions in linear spaces. Acquationes Math. 10(2-3), 172– 176 (1974)
- [6] Ger, R.: On extensions of polynomial functions. Results Math. 26(3-4), 281-289 (1994)
- [7] Gilányi, A.: Solving linear functional equations with computer. Math. Pannon. 9(1), 57– 70 (1998)
- [8] Godini, G.: Set-valued Cauchy functional equation. Rev. Roumaine Math. Pures Appl. 20(10), 1113–1121 (1975)

- [9] Kemperman, J.H.B.: A general functional equation. Trans. Am. Math. Soc. 86, 28– 56 (1957)
- [10] Kuczma, M.: An introduction to the theory of functional equations and inequalities. Second edition. Edited and with a preface by Attila Gilányi. Birkhäuser Verlag, Basel, Boston, Berlin (2009)
- [11] Rätz, J.: Remark at the Eighteenth International Symposium on Functional Equations. In: Proceedings of the Eighteenth International Symposium on Functional Equations, Centre for Information Theory, Faculty of Mathematics, p. 30. University of Waterloo, Waterloo, Ontario, Canada (1980)
- [12] Sablik, M.: A functional congruence revisited. Selected Topics in Functional Equations and Iteration Theory, Proceedings of the Austrian-Polish Seminar, Graz, 1991. Grazer Math. Ber. **316**, 181–200 (1992)
- [13] Száz, Á., Száz, G.: Additive relations. Publ. Math. Debrecen 20, 172–259 (1973)
- [14] Székelyhidi, L.: Convolution type functional equations on topological Abelian groups. World Scientific Publishing Co., Inc., Teaneck (1991)
- [15] Vietoris, L.: Zur Kennzeichung des Sinus und verwandter Funktionen durch Funktionalgleichungen. J. Reine Angew. Math. 186, 1–15 (1944)

Agata Lewicka ul. Mała 25/60 40-757 Katowice Poland e-mail: tnga@poczta.onet.pl

Received: April 10, 2016 Revised: June 10, 2016