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Abstract. We discuss some issues concerning solutions of the functional equation

(M(x, y) − xy) P (x, y) = (1 − y)(M(x, 0) + r̂1ξ2xy)P (x, 0)

+ (1 − x)(M(0, y) + r̂2ξ1xy)P (0, y)

− (1 − x)(1 − y)M(0, 0)P (0, 0)

in the class of analytic functions P mapping D
2

(D stands for the closure of the unit disc D
in the complex plane C) into C. Here rj , sj ∈ (0, 1) for j = 1, 2 are fixed, ξj = rjsj , q̂ = 1−q
for every q ∈ R and

M(x, y) = (r̂1 + r1ŝ1y + ξ1xy)(r̂2 + r2ŝ2x + ξ2xy).

The equation arises in a two-dimensional queueing model for a LAN gateway.
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1. Introduction

During the past five decades a certain class of functional equations (FEs) arose
in connection with numerous issues in queuing theory and communication
networks (see, e.g., [1]). Unfortunately, there is no universal technique for
finding solutions to these FEs, except for some special cases.

The general form of all equations in that class is

C1(x, y)P (x, y) = C2(x, y)P (x, 0) + C3(x, y)P (0, y)

+ C4(x, y)P (0, 0) + C5(x, y), (1.1)
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where Cj , for j = 1, . . . , 5, are given functions in two complex variables x, y.
The unknown function P is defined for x, y ∈ D, where

D := {z ∈ C : |z| < 1}, D := {z ∈ C : |z| ≤ 1}.

It is the probability generating function (PGF) of a sequence of nonnegative
real numbers pm,n (m,n = 0, 1, 2, . . .) with the normalization condition

∞
∑

m,n=0

pm,n = 1; (1.2)

this means that it is always of the following form

P (x, y) =
∞
∑

m,n=0

pm,nxmyn, x, y ∈ D. (1.3)

The value P (0, 0) = p0,0 is, in general, the probability that the underlying
system is empty.

Clearly, P is analytic with respect to either variable separately, that is,
for every fixed x ∈ D the functions P (·, x) and P (x, ·) are analytic in D and
continuous in D.

It worth stating that Malyshev [2] pioneered the approach of transforming
such functional equations to boundary value problems in the early 1970s. The
idea to reduce a functional equation for a generating function to a standard
Riemann–Hilbert boundary value problem stems from the work of Fayolle and
Iasnogorodski [3] (on two parallel M/M/1 queues with coupled processors).
Extensive treatments of the boundary value technique for some functional
equations can be found in Cohen and Boxma [4] and Fayolle et al. [5].

The boundary value problem technique of solving equations of form (1.1)
seems to be the only known one which is somehow universal, that is, has
already been applied for numerous particular forms of (1.1). Unfortunately, it
is connected with many difficulties (see, e.g., [1]). One of them is that very
often it is hard to verify that a description that we obtain in this way really
depicts a solution to a particular equation. Therefore it seems to be desirable
to investigate equations of form (1.1) further to work out some other general
and systematic methods of solving them.

There are many special cases of (1.1) arising in various models of appli-
cations (see [6–12]). In this paper we investigate a particular example of Eq.
(1.1) of the following form

(M(x, y) − xy)P (x, y) = (1 − y)(M(x, 0) + r̂1ξ2xy)P (x, 0)

+ (1 − x)(M(0, y) + r̂2ξ1xy)P (0, y)

− (1 − x)(1 − y)M(0, 0)P (0, 0), (1.4)



Vol. 90 (2016) Functional equation arising in a queuing model 673

where rj , sj ∈ (0, 1) for j = 1, 2 are fixed, ξj = rjsj , q̂ = 1 − q for every q ∈ R

and
M(x, y) = (r̂1 + r1ŝ1y + ξ1xy)(r̂2 + r2ŝ2x + ξ2xy). (1.5)

The equation appears in [13] (see also [14]) in investigations of a two-
dimensional queueing model for a LAN gateway. To the best of our knowledge,
no result on its solutions has been published so far. We present a description of
its solutions in a particular situation, under suitable restrictions on parameters
ri and si.

Note that we can write (1.4) in form (1.1) with

C1(x, y) = (r̂1 + r1ŝ1y + ξ1xy)(r̂2 + r2ŝ2x + ξ2xy) − xy,

C2(x, y) = (1 − y)r̂1(r̂2 + r2ŝ2x + ξ2xy),

C3(x, y) = (1 − x)r̂2(r̂1 + r1ŝ1y + ξ1xy), (1.6)

C4(x, y) = −(1 − x)(1 − y)r̂1 r̂2,

C5(x, y) = 0, x, y ∈ C.

In what follows we always assume that functions C1, C2, C3, C4 have the
forms described by (1.6).

2. A general auxiliary result

We present now some general observations on solutions of (1.4). The form of
the equation makes it possible to consider it for x, y belonging to, e.g., a subset
T of C with 0 ∈ T .

So, let T ⊂ C and 0 ∈ T . Write

K := {(x, y) ∈ T 2 : C1(x, y) = 0},

K0 := {x ∈ T : (x, 0) ∈ K}, K0 := {x ∈ T : (0, x) ∈ K}.
The next very simple theorem provides a useful description of all solutions
P : T 2 → C (in particular, also analytic solutions, for T = D) of (1.4).

Theorem 2.1. If a function P : T 2 → C satisfies Eq. (1.4) for every x, y ∈ T ,
then there exist functions f, g : T → C such that f(0) = g(0),

C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0) = 0, (x, y) ∈ K, (2.1)

and

P (x, y) =
C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0)

C1(x, y)
,

(x, y) ∈ T 2\K; (2.2)

in particular,

P (x, 0) = f(x), P (0, y) = g(y), x ∈ T\K0, y ∈ T\K0. (2.3)
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Moreover, if T = D, then every function P : T 2 → C fulfilling (2.2), with
some continuous functions f, g : T → C such that f(0) = g(0) and (2.1) holds,
satisfies Eq. (1.4) for every x, y ∈ T .

Proof. First assume that P : T 2 → C satisfies Eq. (1.4) for every x, y ∈ T .
Write

f(x) = P (x, 0), g(x) = P (0, x), x ∈ T.

Take (x, y) ∈ K. Then, in view of the definition of K, C1(x, y) = 0 and
consequently

0 =C1(x, y)P (x, y) = C2(x, y)P (x, 0) + C3(x, y)P (0, y) + C4(x, y)P (0, 0)

=C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0).

Thus we have proved (2.1).
Now, take (x, y) ∈ T 2\K. Then C1(x, y) �= 0 and, by the equation,

0 �=C1(x, y)P (x, y)

=C2(x, y)P (x, 0) + C3(x, y)P (0, y) + C4(x, y)P (0, 0)

=C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0).

So, dividing both sides by C1(x, y) we obtain

P (x, y) =
C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0)

C1(x, y)
.

This proves (2.2).
Further, it is easy to check that, by (1.6) and (2.2), for each x ∈ T\K0 (i.e.,

C1(x, 0) �= 0),

P (x, 0) =
C2(x, 0)f(x) + C3(x, 0)g(0) + C4(x, 0)g(0)

C1(x, 0)
= f(x),

and, for each y ∈ T\K0,

P (0, y) =
C2(0, y)f(0) + C3(0, y)g(y) + C4(0, y)g(0)

C1(0, y)
= g(y).

Consequently, we get (2.3).
Assume now that P has form (2.2), f and g are continuous and (2.1) holds.

We show that P is a solution to (1.4).
So, take x, y ∈ T . If (x, y) ∈ K, then C1(x, y) = 0 and (2.1) implies (1.4). If

(x, y) �∈ K, then (2.3) implies that f(x) = P (x, 0) and g(y) = P (0, y). Hence
(1.4) results from condition (2.2), because each of the sets K0 and K0 has at
most one element. �

Theorem 2.1 shows that the main issue in solving Eq. (1.1) in the class of
analytic (or continuous) functions P : D

2 → C is to find all pairs of suitable
(analytic or continuous) functions f, g : D → C satisfying condition (2.1) (such
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functions are uniquely determined for each P in view of (2.3)). So, in the
remaining parts of the paper we focus on condition (2.1).

3. Necessary conditions

In this part we present several simple observations which are useful in further
investigations of solutions to (2.1).

Notice that

K := {(x, y) ∈ D 2 : M(x, y) = xy}.

The condition M(x, y) = xy can be written in the form

(r̂1 + r1ŝ1y + ξ1xy)(r̂2 + r2ŝ2x + ξ2xy) = xy, (3.1)

which means that, for each fixed x, it is a quadratic equation (with respect to
y) of the form

a(x)y2 + b(x)y + c(x) = 0,

where

a(x) ≡ ξ1ξ2x
2 + r1ŝ1ξ2x,

b(x) ≡ r2ŝ2ξ1x
2 + (r̂1ξ2 + r1r2ŝ1ŝ2 + r̂2ξ1 − 1)x + r1ŝ1r̂2, (3.2)

c(x) ≡ r̂1r2ŝ2x + r̂1r̂2, Δ(x) ≡ b(x)2 − 4a(x)c(x).

Clearly a(x) �= 0 for x �= 0,−ŝ1/s1. So, without loss of generality, we may
assume that there exist functions y1, y2 : C\{0,−ŝ1/s1} → C with

a(x)y2 + b(x)y + c(x) = a(x)(y − y1(x))(y − y2(x)),

which means that

(r̂1 + r1ŝ1yj(x) + ξ1xyj(x))(r̂2 + r2ŝ2x + ξ2xyj(x)) = xyj(x) (3.3)

for every x ∈ ̂C := C\{0,−ŝ1/s1} and j = 1, 2. Clearly, if s1 < 1/2, then
−ŝ1/s1 /∈ D and consequently ̂D := D ∩ ̂C = D\{0}.

Note that the set

E := {x ∈ ̂C : y1(x) = y2(x)} (3.4)

is nonempty and has at most four elements, because E ⊂ {x ∈ C : Δ(x) = 0}.
Next, it is easy to check that if x = 1 in (3.1), then

y ∈
{

1,
̂ξ2r̂1
ξ2r1

}

;

if y = 1 in (3.1), then

x ∈
{

1,
̂ξ1r̂2
ξ1r2

}

.
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This means that we can assume that

y−1
1 (1) = {1}, y2(1) =

̂ξ2r̂1
ξ2r1

, y−1
2 (1) =

{

̂ξ1r̂2
ξ1r2

}

. (3.5)

Analogously we obtain that if (−ŝ1/s1, ỹ0) ∈ K, with some ỹ0 ∈ C\{0}, then

ỹ0 =
r̂1(r̂2s1 − r2ŝ1ŝ2)

ŝ1(r̂1ξ2 − 1)
. (3.6)

Also note that if (x̃, 0), (0, ỹ) ∈ K, then (3.3) yields

x̃ = − r̂2
r2ŝ2

, ỹ = − r̂1
r1ŝ1

. (3.7)

Write

Kj := {(x, yj(x)) : x ∈ ̂D} ∩ D
2

= {(x, yj(x)) : x ∈ ̂D, |yj(x)| ≤ 1},

Dj := {x ∈ ̂D : (x, yj(x)) ∈ Kj} = {x ∈ ̂D : |yj(x)| ≤ 1}, j = 1, 2.

Then

Kj = {(x, yj(x)) : x ∈ Dj}, j = 1, 2,

K ⊂ K1 ∪ K2 ∪ {(−ŝ1/s1, ỹ0), (0, ỹ)}.

Clearly, if for instance ŝ1/s1, ỹ /∈ D, then K = K1 ∪ K2.
Moreover, condition (2.1) implies that

r̂1(r̂2 + r2ŝ2x + ξ2xyj(x))(1 − yj(x))f(x)

= −r̂2(r̂1 + r1ŝ1yj(x) + ξ1xyj(x))(1 − x)g(yj(x))

+ r̂1r̂2(1 − x)(1 − yj(x))g(0), x ∈ Dj , j = 1, 2. (3.8)

Consequently, for each j ∈ {1, 2} we obtain

f(x) =
r̂2(1 − x)g(0)

r̂2 + r2ŝ2x + ξ2xyj(x)

− r̂2(r̂1 + r1ŝ1yj(x) + ξ1xyj(x))(1 − x)g(yj(x))
r̂1(1 − yj(x))(r̂2 + r2ŝ2x + ξ2xyj(x))

x ∈ Dj , r̂2 + r2ŝ2x + ξ2xyj(x) �= 0, yj(x) �= 1. (3.9)

4. A particular case

Consider now the particular case when

s1 < 1/2 (4.1)

and

r2 <
1 − r1
2 − s2

. (4.2)
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Note that (4.2) holds, in particular, in the situation when r1 + 2r2 < 1,
because s2 ∈ (0, 1).

Clearly, Eq. (4.2) implies that 1+r2s2 > 2r2+r1. Moreover, 2r1r2 > 2r1ξ2,
whence

1 + r2s2 + 2r1r2 > 2r2 + r1 + 2r1ξ2.

Easy calculations show that this implies

r̂1r̂2 > r1ξ2 + r̂1r2ŝ2

and next

r̂1r̂2 > r1ŝ1ξ2 + ξ1ξ2 + r̂1r2ŝ2.

Consequently

r̂1r̂2 − r̂1r2ŝ2 > r1ŝ1ξ2 + ξ1ξ2,

which yields

r̂1r̂2 − r̂1r2ŝ2|x| > |x|(r1ŝ1ξ2 + ξ1ξ2|x|), |x| ≤ 1.

Hence

|r̂1r̂2 + r̂1r2ŝ2x| > |r1ŝ1ξ2x + ξ1ξ2x
2|, |x| ≤ 1.

This implies that
∣

∣

∣

r̂1r̂2 + r̂1r2ŝ2x

r1ŝ1ξ2x + ξ1ξ2x2

∣

∣

∣ > 1, |x| ≤ 1, x �= 0,

because on account of (4.1) we have

− ŝ1
s1

/∈ D.

Thus, by Vieta’s formulas, we get

|y1(x)y2(x)| =
∣

∣

∣

c(x)
a(x)

∣

∣

∣ > 1, x ∈ ̂D = D\{0}.

Now, we can choose the values of the functions y1 and y2 appropriately;
namely, we take |y1(x)| ≤ |y2(x)| for x ∈ ̂D. Hence |y2(x)| > 1 for x ∈ ̂D and
therefore D2 = ∅. Clearly, then (3.5) and (3.9) yield

f(x) =
r̂2(1 − x)g(0)

r̂2 + r2ŝ2x + ξ2xy1(x)

− r̂2(r̂1 + r1ŝ1y1(x) + ξ1xy1(x))(1 − x)g(y1(x))
r̂1(1 − y1(x))(r̂2 + r2ŝ2x + ξ2xy1(x))

x ∈ D1, r̂2 + r2ŝ2x + ξ2xy1(x) �= 0, x �= 1. (4.3)

Further, let us notice that, in view of (3.3), if

r̂2 + r2ŝ2x0 + ξ2x0y1(x0) = 0
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for some x0 ∈ ̂C, then y1(x0) = 0 and consequently, again by (3.3),

x0 = − r̂2
r2ŝ2

.

So, if r̂2 > r2ŝ2, then x0 �∈ D and therefore (4.3) holds for all x ∈ D1, x �= 1.
Since y1(1) = 1 (see (3.5)), it is easily seen that (3.8) is valid for j = 1 and
x = 1 with any value of f(1). Next, in view of (3.2) and (3.7), we can assume
that

y1(0) = ỹ = − r̂1
r1ŝ1

. (4.4)

Hence, we can take

f(x) =
r̂2(1 − x)g(0)

r̂2 + r2ŝ2x + ξ2xy1(x)

− r̂2(r̂1 + r1ŝ1y1(x) + ξ1xy1(x))(1 − x)g(y1(x))
r̂1(1 − y1(x))(r̂2 + r2ŝ2x + ξ2xy1(x))

(4.5)

for x ∈ D1, x �= 1; then in particular f(0) = g(0).
Thus we have shown that, in this case, condition (2.1) holds if and only if

functions f, g : D → C satisfy (4.5).
If x0 ∈ D (i.e., r̂2 ≤ r2ŝ2), then (3.7) implies that y1(x0) = 0 and conse-

quently

r̂1(r̂2 + r2ŝ2x0 + ξ2x0y1(x0))f(x0) = 0 (4.6)

which is (3.8) for x = x0 and j = 1 and means that also when x0 ∈ D we do not
get any additional restriction on f at x0 [that is f(x0) can be quite arbitrary,
if there is no other conditions on f concerning for instance its regularity]. So,
if (4.5) holds for x ∈ D1, x �= 1, x0, then so does (2.1) also when x0 ∈ D.

This means that we can use Theorem 2.1 to obtain a description of all
continuous or analytic solutions P : D

2 → C of (1.4) (in the case where (4.1)
and (4.2) hold). In this way we get the following main result of this paper.

Theorem 4.1. Assume that (4.1) and (4.2) are valid. A continuous function
P : D 2 → C satisfies Eq. (1.4) for every x, y ∈ D if and only if there exists a
continuous function g : D → C such that

P (x, y) =
C2(x, y)f(x) + C3(x, y)g(y) + C4(x, y)g(0)

C1(x, y)
,

(x, y) ∈ D 2, y �= y1(x), (4.7)

where f is given by (4.5). In particular, g(x) = P (0, x) and f(x) = P (x, 0) for
x ∈ D.

So, to obtain an analytic solution P : D 2 → C of (1.4) we must find a suit-
able analytic function g : D → C such that the function f : D → C, described
by (4.5), is also analytic in D. This task seems to be nontrivial, so we are not
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going to study it in this paper, in which we only want to show some general
results.

5. Final remarks

Observe that Eq. (1.4) remains the same if we exchange x, s1, r1 and y, s2, r2,
respectively. Therefore, the considerations from the previous part can be
repeated (after suitable modifications) also in the case where

s2 < 1/2, r1 <
1 − r2
2 − s1

. (5.1)

Moreover, it is easy to notice that in the previous part it is enough to replace
(4.2) by the weaker assumption that D2 = ∅. The same concerns (5.1).

The remaining situation when Di �= ∅ for i = 1, 2 seems to be much more
complicated. It occurs for some particular values of ri and si. For instance,
according to (3.7),

yj

(

− r̂2
r2ŝ2

)

= 0

for some j ∈ {1, 2}. Then for i ∈ {1, 2}, i �= j, from (3.3) we have

− r̂2
r2ŝ2

∈ D, yi

(

− r̂2
r2ŝ2

)

=
(1 − r̂1ξ2)ŝ2

s2(r2ŝ2r1ŝ1 − ξ1r̂2)
∈ D,

when for example 1 − r̂1ξ2 and r̂2 are small enough, which means that

− r̂2
r2ŝ2

∈ D1 ∩ D2.

We hope to provide some useful results in this case in the future.

Compliance with ethical standards

Funds El-sayed El-hady has been a joint-scholarship holder. One scholarship
was fully funded by the Egyptian Ministry of Higher Education and Scientific
Research, Cairo, Egypt during the period January 25, 2013 till January 24,
2015. He also gets a scholarship number 2014/3/MIP -12 funded by Innsbruck
University (Austria) starting from March 1, 2015.

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/


680 J. Brzdęk et al. AEM
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