A note on the orthogonality equation with two functions

RadosŁaw Łukasik

Abstract

The aim of this paper is to describe the solution (f, g) of the equation $$
\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \quad x, y \in D
$$ where $f, g: D \rightarrow Y, X, Y$ are Hilbert spaces over the same field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}, D$ is a dense subspace of X.

Mathematics Subject Classification. Primary 39B52, 47A05; Secondary 47A62.

Keywords. Orthogonality equation, Hilbert space, adjoint operator.

1. Introduction

Throughout this paper X, Y are Hilbert spaces over the same field $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, $\langle\cdot \mid \cdot\rangle$ denotes the inner product and $\|\cdot\|$ the norm associated with it. We shall not distinguish between the symbols used for X and $Y, D(T)$ denotes the domain of the operator T.

It is known that $h: X \rightarrow Y$ is a solution of the orthogonality equation:

$$
\langle h(x) \mid h(y)\rangle=\langle x \mid y\rangle, \quad x, y \in X
$$

if and only if h is a linear isometry.
Chmieliński [2] studied the generalized orthogonality equation

$$
\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \quad x, y \in X,
$$

with two unknown functions $f, g: X \rightarrow Y$. The form of solutions of the above equation was presented by Lukasik and Wójcik [4]. We would like to present solutions in the case of inner product spaces.

We use some facts from the theory of adjoint operators.
Definition 1. Let $D(f)$ be a linear subspace of $X, f: D(f) \rightarrow Y$ be a linear operator. Further, let

$$
D\left(f^{*}\right)=\left\{y \in Y: \bigvee_{z \in X} \bigwedge_{x \in D(f)}\langle f(x) \mid y\rangle=\langle x \mid z\rangle\right\}
$$

A function $f^{*}: Y \rightarrow X$ is called an adjoint operator iff

$$
\langle f(x) \mid y\rangle=\left\langle x \mid f^{*}(y)\right\rangle, \quad x \in D(f), \quad y \in D\left(f^{*}\right)
$$

Remark $2($ See $[1, \S 39])$. Let $D(f)$ be a dense linear subspace of $X, f: D(f) \rightarrow$ Y be a linear operator. Then the adjoint operator exists and it is unique. Moreover $D\left(f^{*}\right)$ is a linear subspace of Y, f^{*} is a linear operator and

$$
\operatorname{ker} f^{*}=(\operatorname{im} f)^{\perp}, \quad \operatorname{clim} f=\left(\operatorname{ker} f^{*}\right)^{\perp}
$$

Definition 3. Let $D(f)$ be a linear subspace of X. A linear operator $f: D(f) \rightarrow$ Y is called bounded iff there exist $M>0$ such that

$$
\|f(x)\| \leq M\|x\|, \quad x \in D(f)
$$

Remark $4($ See $[1, \S 19])$. Let $D(f)$ be a dense linear subspace of $X, f: D(f) \rightarrow$ Y be a linear and bounded operator. Then f can be uniquely extended to a linear and bounded operator on X.

Definition 5. Let $D(f)$ be a dense linear subspace of $X, f: D(f) \rightarrow Y$ be a linear and injective operator. A function $f^{-1}: \operatorname{im} f \rightarrow X$ given by the formula

$$
f^{-1}(y)=x, \quad y \in \operatorname{im} f, \quad \text { where } x \in D(f) \text { satisfies } y=f(x)
$$

is called an inversion of f.
Remark 6. The inversion of the linear and injective operator is linear and injective.

We also use some lemmas.
Lemma 7. (See [3]) Let $D \neq \emptyset$ be a set, $f, g: D \rightarrow Y$ be arbitrary mappings. Then there exist a subspace Y_{0} of $\mathrm{cl} \operatorname{Lin} \operatorname{im} g$ and mappings $f_{1}, g_{1}: D \rightarrow Y_{0}$, $f_{2}: D \rightarrow(\operatorname{img} g)^{\perp}, g_{2}: D \rightarrow Y_{0}^{\perp} \cap \mathrm{cl} \operatorname{Linim} g$ such that

$$
\begin{aligned}
\left\langle f_{1}(x) \mid g_{1}(y)\right\rangle & =\langle f(x) \mid g(y)\rangle, \quad x, y \in D, \\
f & =f_{1}+f_{2}, \quad g=g_{1}+g_{2}, \\
\mathrm{cl} \operatorname{Linim} f_{1} & =\mathrm{cl} \operatorname{Lin} \operatorname{im} g_{1}=Y_{0} .
\end{aligned}
$$

Lemma 8. (See [2]) Let D be a dense linear subspace of $X, f, g: D \rightarrow Y$ satisfy the equation

$$
\begin{equation*}
\langle f(x) \mid g(y)\rangle=\langle x \mid y\rangle, \quad x, y \in D \tag{1}
\end{equation*}
$$

Then f and g are injective. Moreover, if $\operatorname{clim} g=Y$ then f is linear.
From the above lemmas we almost directly obtain

Theorem 9. Let D be a dense linear subspace of $X, f, g: D \rightarrow Y$ satisfy $E q$. (1). Then there exist a subspace Y_{0} of $\operatorname{cl} \operatorname{Linim} g$, linear, injective mappings $f_{1}, g_{1}: D \rightarrow Y_{0}$ and maps $f_{2}: D \rightarrow(\operatorname{img})^{\perp}, g_{2}: D \rightarrow Y_{0}^{\perp} \cap \operatorname{clLinim} g$ such that

$$
\begin{aligned}
\left\langle f_{1}(x) \mid g_{1}(y)\right\rangle & =\langle x \mid y\rangle, \quad x, y \in D, \\
f & =f_{1}+f_{2}, \quad g=g_{1}+g_{2} \\
\operatorname{clim} f_{1} & =\operatorname{clim} g_{1}=Y_{0} .
\end{aligned}
$$

In the main result we also use some lemma.
Lemma 10. Let D be a dense linear subspace of $X, T: X \rightarrow Y$ be a linear and injective operator such that $\operatorname{clim} T=Y$. Then

$$
D \subset \operatorname{im} T^{*} \Longleftrightarrow D \subset D\left(\left(T^{-1}\right)^{*}\right)
$$

Proof. (\Longrightarrow) Assume that $D \subset \operatorname{im} T^{*}$. Let $y \in D$, then $y=T^{*}(v)$ for some $v \in D\left(T^{*}\right)$. We have

$$
\left\langle T^{-1}(T(x)) \mid y\right\rangle=\langle x \mid y\rangle=\left\langle x \mid T^{*}(v)\right\rangle=\langle T(x) \mid v\rangle, \quad x \in D .
$$

Hence $y \in D\left(\left(T^{-1}\right)^{*}\right)$.
(\Longleftarrow) Assume that $D \subset D\left(\left(T^{-1}\right)^{*}\right)$. Since $T, T^{-1}, T^{-1} \circ T=I d_{D}$ are densely defined, $\left(I d_{D}\right)^{*}=\left(T^{-1} \circ T\right)^{*}$ is an extension of $T^{*} \circ\left(T^{-1}\right)^{*}$. Hence $D=$ $T^{*}\left(\left(T^{-1}\right)^{*}(D)\right) \subset \operatorname{im} T^{*}$.

2. Main result

Theorem 11. Let D be a dense linear subspace of X. Then $f, g: D \rightarrow Y$ satisfy Eq. (1) iff there exist subspaces Y_{0}, Y_{1}, Y_{2} of Y orthogonal each to other, a linear, injective operator $T: D \rightarrow Y_{0}$ and maps $A: D \rightarrow Y_{1}, B: D \rightarrow Y_{2}$ such that

$$
\begin{aligned}
& D \subset \operatorname{im} T^{*}, \quad \operatorname{clim} T=Y_{0}, \\
& f=T+A, \quad g=\left(T^{-1}\right)^{*}+B .
\end{aligned}
$$

Proof. (\Longrightarrow) Assume that $f, g: D \rightarrow Y$ satisfy Eq. (1). In view of Theorem 9 we have the existence of the subspace Y_{0} of $\mathrm{cl} \operatorname{Lin} \operatorname{im} g$, linear, injective mappings $f_{1}, g_{1}: D \rightarrow Y_{0}$ and maps $f_{2}: D \rightarrow(\operatorname{im} g)^{\perp}, g_{2}: D \rightarrow Y_{0}^{\perp} \cap \operatorname{clLinim} g$ such that

$$
\begin{aligned}
\left\langle f_{1}(x) \mid g_{1}(y)\right\rangle & =\langle x \mid y\rangle, \quad x, y \in D, \\
f & =f_{1}+f_{2}, \quad g=g_{1}+g_{2}, \\
\operatorname{clim} f_{1} & =\operatorname{clim} g_{1}=Y_{0} .
\end{aligned}
$$

Let $Y_{1}=(\operatorname{img} g)^{\perp}, Y_{2}=Y_{0}^{\perp} \cap \operatorname{cl} \operatorname{Linim} g, A=f_{2}, B=g_{2}, T=f_{1}$. Hence T^{-1} exists and its domain $\operatorname{im} T=\operatorname{im} f_{1}$ is dense in Y_{0} so there exists the adjoint operator $\left(T^{-1}\right)^{*}$. We observe that

$$
\left\langle T^{-1}(T(x)) \mid y\right\rangle=\langle x \mid y\rangle=\left\langle f_{1}(x) \mid g_{1}(y)\right\rangle=\left\langle T(x) \mid g_{1}(y)\right\rangle, \quad x, y \in D
$$

so $D \subset D\left(\left(T^{-1}\right)^{*}\right)$ and $\left(T^{-1}\right)^{*}(y)=g_{1}(y)$ for $y \in D$.
Hence, in view of Lemma 10 we get $D \subset \operatorname{im} T^{*}$ and also we have

$$
\begin{aligned}
& f=f_{1}+f_{2}=T+A, \\
& g=g_{1}+g_{2}=\left(T^{-1}\right)^{*}+B, \\
& \operatorname{clim} T=\operatorname{clim} f_{1}=Y_{0} .
\end{aligned}
$$

(\Longleftarrow) Assume that there exist subspaces Y_{0}, Y_{1}, Y_{2} of Y orthogonal to each other, a linear, injective operator $T: D \rightarrow Y_{0}$ and maps $A: D \rightarrow Y_{1}, B: D \rightarrow$ Y_{2} such that

$$
\begin{aligned}
& D \subset \operatorname{im} T^{*}, \quad \operatorname{clim} T=Y_{0}, \\
& f=T+A, \quad g=\left(T^{-1}\right)^{*}+B .
\end{aligned}
$$

In view of Lemma 10 we get $D \subset D\left(\left(T^{-1}\right)^{*}\right)$ and we obtain

$$
\begin{aligned}
\langle f(x) \mid g(y)\rangle & =\left\langle T(x)+A(x) \mid\left(T^{-1}\right)^{*}(y)+B(y)\right\rangle=\left\langle T(x) \mid\left(T^{-1}\right)^{*}(y)\right\rangle \\
& =\left\langle T^{-1}(T(x)) \mid y\right\rangle=\langle x \mid y\rangle, \quad x, y \in D
\end{aligned}
$$

Now we show an example that the assumption $D \subset \operatorname{im} T^{*}$ is independent from other assumptions and cannot be omitted in the previous theorem.

Example 12. Let $\left\{e_{n}: n \in \mathbb{N}\right\}$ be a standard orthonormal base of ℓ^{2}, $D=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}: \sum_{n=1}^{\infty} n^{2} x_{2 n}^{2}<\infty\right\}, T: D \rightarrow \ell^{2}$ be given by the formula

$$
T\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n=1}^{\infty} \frac{1}{n} x_{2 n-1} e_{2 n-1}+\sum_{n=1}^{\infty} n x_{2 n} e_{2 n}, \quad\left(x_{n}\right)_{n \in \mathbb{N}} \in D
$$

It is easy to see that D is a dense linear subspace of ℓ^{2}, T is linear, injective and $\operatorname{im} T$ is dense in ℓ^{2} (it contains the standard base).
Let $y \in D\left(T^{*}\right)$ then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n} x_{2 n-1} y_{2 n-1}+\sum_{n=1}^{\infty} n x_{2 n} y_{2 n} \\
& \quad=\langle T(x) \mid y\rangle=\left\langle x \mid T^{*}(y)\right\rangle=\sum_{n=1}^{\infty} x_{n} T^{*}(y)_{n}, \quad x \in D .
\end{aligned}
$$

Putting $x=e_{k}$ for $k \in \mathbb{N}$ we obtain

$$
T^{*}(y)=\sum_{n=1}^{\infty} \frac{1}{n} y_{2 n-1} e_{2 n-1}+\sum_{n=1}^{\infty} n y_{2 n} e_{2 n}
$$

Let $y=\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}$. Then $y \in D$. Suppose that $y=T^{*}(x)$ for some $x \in$ $D\left(T^{*}\right)$. Hence

$$
\sum_{n=1}^{\infty} \frac{1}{n} e_{2 n-1}=y=T^{*}(x)=\sum_{n=1}^{\infty} \frac{1}{n} x_{2 n-1} e_{2 n-1}+\sum_{n=1}^{\infty} n x_{2 n} e_{2 n}
$$

Then we have $x_{2 n-1}=1, x_{2 n}=0$ for $n \in \mathbb{N}$ which gives a contradiction. So we obtain that $D \not \subset \operatorname{im} T^{*}$.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications Inc., New York (1993)
[2] Chmieliński, J.: Orthogonality equation with two unknown functions. Aequ. Math. doi:10.1007/s00010-015-0359-x
[3] Chmieliński, J., Łukasik R., Wójcik P.: On the stability of the orthogonality equation and orthogonality preserving property with two unknown functions. Banach J. Math. Anal. (accepted)
[4] Łukasik, R., Wójcik, P.: Decomposition of two functions in the orthogonality equation. Aequ. Math. doi:10.1007/s00010-015-0385-8

Radosław Łukasik
Institute of Mathematics
University of Silesia
ul. Bankowa 14
40-007 Katowice
Poland
e-mail: rlukasik@math.us.edu.pl
Received: December 29, 2015
Revised: February 26, 2016

