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A note on the orthogonality equation with two functions

Rados�law �Lukasik

Abstract. The aim of this paper is to describe the solution (f, g) of the equation

〈f(x)|g(y)〉 = 〈x|y〉 , x, y ∈ D,

where f, g : D → Y , X,Y are Hilbert spaces over the same field K ∈ {R,C}, D is a dense
subspace of X.
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1. Introduction

Throughout this paper X,Y are Hilbert spaces over the same field K ∈ {R,C},
〈·|·〉 denotes the inner product and ‖·‖ the norm associated with it. We shall
not distinguish between the symbols used for X and Y , D(T ) denotes the
domain of the operator T .

It is known that h : X → Y is a solution of the orthogonality equation:

〈h(x)|h(y)〉 = 〈x|y〉 , x, y ∈ X

if and only if h is a linear isometry.
Chmieliński [2] studied the generalized orthogonality equation

〈f(x)|g(y)〉 = 〈x|y〉 , x, y ∈ X,

with two unknown functions f, g : X → Y . The form of solutions of the above
equation was presented by �Lukasik and Wójcik [4]. We would like to present
solutions in the case of inner product spaces.

We use some facts from the theory of adjoint operators.

Definition 1. Let D(f) be a linear subspace of X, f : D(f) → Y be a linear
operator. Further, let
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D(f∗) =

⎧
⎨

⎩
y ∈ Y :

∨

z∈X

∧

x∈D(f)

〈f(x)|y〉 = 〈x|z〉
⎫
⎬

⎭
.

A function f∗ : Y → X is called an adjoint operator iff

〈f(x)|y〉 = 〈x|f∗(y)〉 , x ∈ D(f), y ∈ D(f∗).

Remark 2 (See [1, § 39]). Let D(f) be a dense linear subspace of X, f : D(f) →
Y be a linear operator. Then the adjoint operator exists and it is unique.
Moreover D(f∗) is a linear subspace of Y , f∗ is a linear operator and

ker f∗ = (im f)⊥, cl im f = (ker f∗)⊥.

Definition 3. Let D(f) be a linear subspace of X. A linear operator f : D(f) →
Y is called bounded iff there exist M > 0 such that

‖f(x)‖ ≤ M ‖x‖ , x ∈ D(f).

Remark 4 (See [1, § 19]). Let D(f) be a dense linear subspace of X, f : D(f) →
Y be a linear and bounded operator. Then f can be uniquely extended to a
linear and bounded operator on X.

Definition 5. Let D(f) be a dense linear subspace of X, f : D(f) → Y be a
linear and injective operator. A function f−1 : im f → X given by the formula

f−1(y) = x, y ∈ im f, where x ∈ D(f) satisfies y = f(x)

is called an inversion of f .

Remark 6. The inversion of the linear and injective operator is linear and
injective.

We also use some lemmas.

Lemma 7. (See [3]) Let D �= ∅ be a set, f, g : D → Y be arbitrary mappings.
Then there exist a subspace Y0 of cl Lin im g and mappings f1, g1 : D → Y0,
f2 : D → (im g)⊥, g2 : D → Y ⊥

0 ∩ cl Lin im g such that

〈f1(x)|g1(y)〉 = 〈f(x)|g(y)〉 , x, y ∈ D,

f = f1 + f2, g = g1 + g2,

cl Lin im f1 = cl Lin im g1 = Y0.

Lemma 8. (See [2]) Let D be a dense linear subspace of X, f, g : D → Y satisfy
the equation

〈f(x)|g(y)〉 = 〈x|y〉 , x, y ∈ D. (1)

Then f and g are injective. Moreover, if cl im g = Y then f is linear.

From the above lemmas we almost directly obtain
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Theorem 9. Let D be a dense linear subspace of X, f, g : D → Y satisfy Eq.
(1). Then there exist a subspace Y0 of cl Lin im g, linear, injective mappings
f1, g1 : D → Y0 and maps f2 : D → (im g)⊥, g2 : D → Y ⊥

0 ∩ cl Lin im g such
that

〈f1(x)|g1(y)〉 = 〈x|y〉 , x, y ∈ D,

f = f1 + f2, g = g1 + g2,

cl im f1 = cl im g1 = Y0.

In the main result we also use some lemma.

Lemma 10. Let D be a dense linear subspace of X, T : X → Y be a linear and
injective operator such that cl im T = Y . Then

D ⊂ im T ∗ ⇐⇒ D ⊂ D((T−1)∗).

Proof. (=⇒) Assume that D ⊂ im T ∗. Let y ∈ D, then y = T ∗(v) for some
v ∈ D(T ∗). We have

〈
T−1(T (x))

∣
∣y

〉
= 〈x|y〉 = 〈x|T ∗(v)〉 = 〈T (x)|v〉 , x ∈ D.

Hence y ∈ D((T−1)∗).
(⇐=) Assume that D ⊂ D((T−1)∗). Since T, T−1, T−1 ◦ T = IdD are densely
defined, (IdD)∗ = (T−1 ◦ T )∗ is an extension of T ∗ ◦ (T−1)∗. Hence D =
T ∗((T−1)∗(D)) ⊂ im T ∗. �

2. Main result

Theorem 11. Let D be a dense linear subspace of X. Then f, g : D → Y satisfy
Eq. (1) iff there exist subspaces Y0, Y1, Y2 of Y orthogonal each to other, a
linear, injective operator T : D → Y0 and maps A : D → Y1, B : D → Y2 such
that

D ⊂ im T ∗, cl im T = Y0,

f = T + A, g = (T−1)∗ + B.

Proof. (=⇒) Assume that f, g : D → Y satisfy Eq. (1). In view of Theorem 9
we have the existence of the subspace Y0 of cl Lin im g, linear, injective map-
pings f1, g1 : D → Y0 and maps f2 : D → (im g)⊥, g2 : D → Y ⊥

0 ∩ cl Lin im g
such that

〈f1(x)|g1(y)〉 = 〈x|y〉 , x, y ∈ D,

f = f1 + f2, g = g1 + g2,

cl im f1 = cl im g1 = Y0.
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Let Y1 = (im g)⊥, Y2 = Y ⊥
0 ∩ cl Lin im g, A = f2, B = g2, T = f1. Hence T−1

exists and its domain im T = im f1 is dense in Y0 so there exists the adjoint
operator (T−1)∗. We observe that

〈
T−1(T (x))

∣
∣y

〉
= 〈x|y〉 = 〈f1(x)|g1(y)〉 = 〈T (x)|g1(y)〉 , x, y ∈ D,

so D ⊂ D((T−1)∗) and (T−1)∗(y) = g1(y) for y ∈ D.
Hence, in view of Lemma 10 we get D ⊂ im T ∗ and also we have

f = f1 + f2 = T + A,

g = g1 + g2 = (T−1)∗ + B,

cl im T = cl im f1 = Y0.

(⇐=) Assume that there exist subspaces Y0, Y1, Y2 of Y orthogonal to each
other, a linear, injective operator T : D → Y0 and maps A : D → Y1, B : D →
Y2 such that

D ⊂ im T ∗, cl im T = Y0,

f = T + A, g = (T−1)∗ + B.

In view of Lemma 10 we get D ⊂ D((T−1)∗) and we obtain

〈f(x)|g(y)〉 =
〈
T (x) + A(x)

∣
∣(T−1)∗(y) + B(y)

〉
=

〈
T (x)

∣
∣(T−1)∗(y)

〉

=
〈
T−1(T (x))

∣
∣y

〉
= 〈x|y〉 , x, y ∈ D.

�

Now we show an example that the assumption D ⊂ im T ∗ is independent
from other assumptions and cannot be omitted in the previous theorem.

Example 12. Let {en : n ∈ N} be a standard orthonormal base of �2,
D = {(xn)n∈N ∈ �2 :

∑∞
n=1 n2x2

2n < ∞}, T : D → �2 be given by the for-
mula

T ((xn)n∈N) =
∞∑

n=1

1
n

x2n−1e2n−1 +
∞∑

n=1

nx2ne2n, (xn)n∈N ∈ D.

It is easy to see that D is a dense linear subspace of �2, T is linear, injective
and im T is dense in �2 (it contains the standard base).
Let y ∈ D(T ∗) then

∞∑

n=1

1
n

x2n−1y2n−1 +
∞∑

n=1

nx2ny2n

= 〈T (x)|y〉 = 〈x|T ∗(y)〉 =
∞∑

n=1

xnT ∗(y)n, x ∈ D.
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Putting x = ek for k ∈ N we obtain

T ∗(y) =
∞∑

n=1

1
n

y2n−1e2n−1 +
∞∑

n=1

ny2ne2n.

Let y =
∑∞

n=1
1
ne2n−1. Then y ∈ D. Suppose that y = T ∗(x) for some x ∈

D(T ∗). Hence
∞∑

n=1

1
n

e2n−1 = y = T ∗(x) =
∞∑

n=1

1
n

x2n−1e2n−1 +
∞∑

n=1

nx2ne2n.

Then we have x2n−1 = 1, x2n = 0 for n ∈ N which gives a contradiction. So
we obtain that D �⊂ im T ∗.
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