Aequat. Math. 90 (2016), 961–965 © The Author(s) 2016. This article is published with open access at Springerlink.com 0001-9054/16/050961-5 published online March 18, 2016 DOI 10.1007/s00010-016-0419-x

Aequationes Mathematicae

A note on the orthogonality equation with two functions

RADOSŁAW ŁUKASIK

Abstract. The aim of this paper is to describe the solution (f, g) of the equation

 $\langle f(x)|g(y)\rangle = \langle x|y\rangle, \quad x,y \in D,$

where $f, g: D \to Y, X, Y$ are Hilbert spaces over the same field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, D$ is a dense subspace of X.

Mathematics Subject Classification. Primary 39B52, 47A05; Secondary 47A62.

Keywords. Orthogonality equation, Hilbert space, adjoint operator.

1. Introduction

Throughout this paper X, Y are Hilbert spaces over the same field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, $\langle \cdot | \cdot \rangle$ denotes the inner product and $\| \cdot \|$ the norm associated with it. We shall not distinguish between the symbols used for X and Y, D(T) denotes the domain of the operator T.

It is known that $h: X \to Y$ is a solution of the orthogonality equation:

 $\left\langle h(x)|h(y)\right\rangle =\left\langle x|y\right\rangle ,\quad x,y\in X$

if and only if h is a linear isometry.

Chmieliński [2] studied the generalized orthogonality equation

$$\langle f(x)|g(y)\rangle = \langle x|y\rangle, \quad x, y \in X,$$

with two unknown functions $f, g: X \to Y$. The form of solutions of the above equation was presented by Łukasik and Wójcik [4]. We would like to present solutions in the case of inner product spaces.

We use some facts from the theory of adjoint operators.

Definition 1. Let D(f) be a linear subspace of $X, f: D(f) \to Y$ be a linear operator. Further, let

🕲 Birkhäuser

$$D(f^*) = \left\{ y \in Y \colon \bigvee_{z \in X} \bigwedge_{x \in D(f)} \langle f(x) | y \rangle = \langle x | z \rangle \right\}.$$

A function $f^*: Y \to X$ is called an adjoint operator iff

$$\langle f(x)|y\rangle = \langle x|f^*(y)\rangle, \quad x \in D(f), \quad y \in D(f^*).$$

Remark 2 (See $[1, \S 39]$). Let D(f) be a dense linear subspace of $X, f: D(f) \to Y$ be a linear operator. Then the adjoint operator exists and it is unique. Moreover $D(f^*)$ is a linear subspace of Y, f^* is a linear operator and

$$\ker f^* = (\operatorname{im} f)^{\perp}, \quad \operatorname{cl} \operatorname{im} f = (\ker f^*)^{\perp}.$$

Definition 3. Let D(f) be a linear subspace of X. A linear operator $f: D(f) \to Y$ is called bounded iff there exist M > 0 such that

$$||f(x)|| \le M ||x||, \quad x \in D(f).$$

Remark 4 (See $[1, \S 19]$). Let D(f) be a dense linear subspace of $X, f: D(f) \to Y$ be a linear and bounded operator. Then f can be uniquely extended to a linear and bounded operator on X.

Definition 5. Let D(f) be a dense linear subspace of $X, f: D(f) \to Y$ be a linear and injective operator. A function $f^{-1}: \operatorname{im} f \to X$ given by the formula

 $f^{-1}(y) = x, y \in \operatorname{im} f$, where $x \in D(f)$ satisfies y = f(x)

is called an inversion of f.

Remark 6. The inversion of the linear and injective operator is linear and injective.

We also use some lemmas.

Lemma 7. (See [3]) Let $D \neq \emptyset$ be a set, $f, g: D \to Y$ be arbitrary mappings. Then there exist a subspace Y_0 of cl Lin im g and mappings $f_1, g_1: D \to Y_0$, $f_2: D \to (\operatorname{im} g)^{\perp}, g_2: D \to Y_0^{\perp} \cap \operatorname{cl Lin im} g$ such that

$$\langle f_1(x)|g_1(y)\rangle = \langle f(x)|g(y)\rangle, \quad x, y \in D,$$

$$f = f_1 + f_2, \quad g = g_1 + g_2,$$

$$cl \operatorname{Lin} \operatorname{im} f_1 = cl \operatorname{Lin} \operatorname{im} g_1 = Y_0.$$

Lemma 8. (See [2]) Let D be a dense linear subspace of X, $f, g: D \to Y$ satisfy the equation

$$\langle f(x)|g(y)\rangle = \langle x|y\rangle, \quad x, y \in D.$$
 (1)

Then f and g are injective. Moreover, if $\operatorname{clim} g = Y$ then f is linear.

From the above lemmas we almost directly obtain

962

Theorem 9. Let D be a dense linear subspace of X, $f, g: D \to Y$ satisfy Eq. (1). Then there exist a subspace Y_0 of cl Lin im g, linear, injective mappings $f_1, g_1: D \to Y_0$ and maps $f_2: D \to (\operatorname{im} g)^{\perp}, g_2: D \to Y_0^{\perp} \cap \operatorname{cl Lin im} g$ such that

$$\begin{aligned} \langle f_1(x)|g_1(y)\rangle &= \langle x|y\rangle, \quad x,y \in D, \\ f &= f_1 + f_2, \quad g = g_1 + g_2, \\ \operatorname{cl} \operatorname{im} f_1 &= \operatorname{cl} \operatorname{im} g_1 = Y_0. \end{aligned}$$

In the main result we also use some lemma.

Lemma 10. Let D be a dense linear subspace of $X, T: X \to Y$ be a linear and injective operator such that $\operatorname{clim} T = Y$. Then

$$D \subset \operatorname{im} T^* \iff D \subset D((T^{-1})^*).$$

Proof. (\Longrightarrow) Assume that $D \subset \operatorname{im} T^*$. Let $y \in D$, then $y = T^*(v)$ for some $v \in D(T^*)$. We have

$$\langle T^{-1}(T(x)) | y \rangle = \langle x | y \rangle = \langle x | T^*(v) \rangle = \langle T(x) | v \rangle, \quad x \in D.$$

Hence $y \in D((T^{-1})^*)$.

(⇐) Assume that $D \subset D((T^{-1})^*)$. Since $T, T^{-1}, T^{-1} \circ T = Id_D$ are densely defined, $(Id_D)^* = (T^{-1} \circ T)^*$ is an extension of $T^* \circ (T^{-1})^*$. Hence $D = T^*((T^{-1})^*(D)) \subset \operatorname{im} T^*$.

2. Main result

Theorem 11. Let D be a dense linear subspace of X. Then $f, g: D \to Y$ satisfy Eq. (1) iff there exist subspaces Y_0, Y_1, Y_2 of Y orthogonal each to other, a linear, injective operator $T: D \to Y_0$ and maps $A: D \to Y_1, B: D \to Y_2$ such that

$$D \subset \operatorname{im} T^*$$
, $\operatorname{cl} \operatorname{im} T = Y_0$,
 $f = T + A$, $g = (T^{-1})^* + B$

Proof. (\Longrightarrow) Assume that $f, g: D \to Y$ satisfy Eq. (1). In view of Theorem 9 we have the existence of the subspace Y_0 of cl Lin im g, linear, injective mappings $f_1, g_1: D \to Y_0$ and maps $f_2: D \to (\operatorname{im} g)^{\perp}, g_2: D \to Y_0^{\perp} \cap \operatorname{cl} \operatorname{Lin} \operatorname{im} g$ such that

$$\begin{aligned} \langle f_1(x)|g_1(y)\rangle &= \langle x|y\rangle \,, \quad x,y \in D, \\ f &= f_1 + f_2, \quad g = g_1 + g_2, \\ \mathrm{cl} &\inf f_1 = \mathrm{cl} &\inf g_1 = Y_0. \end{aligned}$$

Let $Y_1 = (\operatorname{im} g)^{\perp}$, $Y_2 = Y_0^{\perp} \cap \operatorname{cl} \operatorname{Lin} \operatorname{im} g$, $A = f_2$, $B = g_2$, $T = f_1$. Hence T^{-1} exists and its domain $\operatorname{im} T = \operatorname{im} f_1$ is dense in Y_0 so there exists the adjoint operator $(T^{-1})^*$. We observe that

$$\langle T^{-1}(T(x))|y\rangle = \langle x|y\rangle = \langle f_1(x)|g_1(y)\rangle = \langle T(x)|g_1(y)\rangle, \quad x, y \in D,$$

so $D \subset D((T^{-1})^*)$ and $(T^{-1})^*(y) = g_1(y)$ for $y \in D$.

Hence, in view of Lemma 10 we get $D \subset \operatorname{im} T^*$ and also we have

$$f = f_1 + f_2 = T + A,$$

$$g = g_1 + g_2 = (T^{-1})^* + B,$$

cl im T = cl im f_1 = Y_0.

(\Leftarrow) Assume that there exist subspaces Y_0, Y_1, Y_2 of Y orthogonal to each other, a linear, injective operator $T: D \to Y_0$ and maps $A: D \to Y_1, B: D \to Y_2$ such that

$$D \subset \operatorname{im} T^*, \quad \operatorname{cl} \operatorname{im} T = Y_0,$$

 $f = T + A, \quad g = (T^{-1})^* + B.$

In view of Lemma 10 we get $D \subset D((T^{-1})^*)$ and we obtain

$$\langle f(x)|g(y)\rangle = \langle T(x) + A(x)|(T^{-1})^*(y) + B(y)\rangle = \langle T(x)|(T^{-1})^*(y)\rangle$$

= $\langle T^{-1}(T(x))|y\rangle = \langle x|y\rangle, \quad x, y \in D.$

Now we show an example that the assumption $D \subset \operatorname{im} T^*$ is independent from other assumptions and cannot be omitted in the previous theorem.

Example 12. Let $\{e_n : n \in \mathbb{N}\}$ be a standard orthonormal base of ℓ^2 , $D = \{(x_n)_{n \in \mathbb{N}} \in \ell^2 : \sum_{n=1}^{\infty} n^2 x_{2n}^2 < \infty\}, T : D \to \ell^2$ be given by the formula

$$T((x_n)_{n \in \mathbb{N}}) = \sum_{n=1}^{\infty} \frac{1}{n} x_{2n-1} e_{2n-1} + \sum_{n=1}^{\infty} n x_{2n} e_{2n}, \quad (x_n)_{n \in \mathbb{N}} \in D.$$

It is easy to see that D is a dense linear subspace of ℓ^2 , T is linear, injective and im T is dense in ℓ^2 (it contains the standard base). Let $y \in D(T^*)$ then

$$\sum_{n=1}^{\infty} \frac{1}{n} x_{2n-1} y_{2n-1} + \sum_{n=1}^{\infty} n x_{2n} y_{2n}$$
$$= \langle T(x) | y \rangle = \langle x | T^*(y) \rangle = \sum_{n=1}^{\infty} x_n T^*(y)_n, \quad x \in D.$$

Vol. 90 (2016)

Putting $x = e_k$ for $k \in \mathbb{N}$ we obtain

$$T^*(y) = \sum_{n=1}^{\infty} \frac{1}{n} y_{2n-1} e_{2n-1} + \sum_{n=1}^{\infty} n y_{2n} e_{2n}.$$

Let $y = \sum_{n=1}^{\infty} \frac{1}{n} e_{2n-1}$. Then $y \in D$. Suppose that $y = T^*(x)$ for some $x \in D(T^*)$. Hence

$$\sum_{n=1}^{\infty} \frac{1}{n} e_{2n-1} = y = T^*(x) = \sum_{n=1}^{\infty} \frac{1}{n} x_{2n-1} e_{2n-1} + \sum_{n=1}^{\infty} n x_{2n} e_{2n}.$$

Then we have $x_{2n-1} = 1$, $x_{2n} = 0$ for $n \in \mathbb{N}$ which gives a contradiction. So we obtain that $D \not\subset \operatorname{im} T^*$.

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover Publications Inc., New York (1993)
- [2] Chmieliński, J.: Orthogonality equation with two unknown functions. Aequ. Math. doi:10.1007/s00010-015-0359-x
- [3] Chmieliński, J., Łukasik R., Wójcik P.: On the stability of the orthogonality equation and orthogonality preserving property with two unknown functions. Banach J. Math. Anal. (accepted)
- [4] Lukasik, R., Wójcik, P.: Decomposition of two functions in the orthogonality equation. Aequ. Math. doi:10.1007/s00010-015-0385-8

Radosław Lukasik Institute of Mathematics University of Silesia ul. Bankowa 14 40-007 Katowice Poland e-mail: rlukasik@math.us.edu.pl

Received: December 29, 2015 Revised: February 26, 2016