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Hyperstability of general linear functional equation
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Abstract. Our purpose is to investigate criteria for hyperstability of linear type functional
equations. We prove that a function satisfying the equation approximately in some sense,
must be a solution of it. We give some conditions on coefficients of the functional equa-
tion and a control function which guarantee hyperstability. Moreover, we show how our
outcomes may be used to check whether the particular functional equation is hyperstable.
Some relevant examples of applications are presented.
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1. Introduction

Let X,Y be linear spaces over the field F ∈ {R,C}. The functional equation

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A = 0, (1.1)

where g : X → Y, A, aij ∈ F, Ai ∈ F\{0}, i ∈ {1, . . . , m}, j ∈ {1, . . . , n},
generalizes simultaneously a lot of quite known equations, for example:

linear equationf(ax + by) = Af(x) + Bf(y);
quadratic equationf(x + y) + f(x − y) = 2f(x) + 2f(y);
equation of the p-Wright affine functionf(px + (1 − p)y)+f((1 − p)x+py)

= f(x) + f(y);
Fréchet equationf(x + y + z) + f(x) + f(y) + f(z)

= f(x + y) + f(x + z) + f(y + z),

where a, b, A,B, p ∈ F\{0, 1}.
The stability and hyperstability of the particular cases of the functional

equation (1.1), among others those mentioned above were studied by many
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authors (cf., e.g., [1,2,6–10,12,13,17–19]). Stability of the general Eq. (1.1)
was considered in [3].

The first well known hyperstability result appeared probably in [4] and
concerned some ring homomorphisms. However, the term hyperstability was
introduced much later (in the meaning applied here probably in [16]; see also
[14,15] or [10]).

We say that the equation (1.1) is θ-hyperstable in the class of functions
g : X → Y (with a control function θ : (X\{0})n → Y ), if g : X → Y
satisfying the inequality

∥∥∥∥∥∥

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A

∥∥∥∥∥∥
≤ θ(x1, . . . , xn), x1, . . . , xn ∈ X\{0},

fulfills Eq. (1.1) for all x1, . . . , xn ∈ X\{0}.
In the paper we prove, applying the fixed point approach, criteria for the

θ-hyperstability of (1.1) under some natural assumptions on θ. In this way we
obtain sufficient conditions for the θ-hyperstability of a wide class of functional
equations and control functions θ. Moreover, we show how our outcomes may
be used to check whether the particular functional equation is θ-hyperstable.

Our investigations have been motivated by a problem of optimality of some
estimations arising in stability studies.

From now on, we assume that X,Y are normed spaces over a field F ∈
{R,C} and the coefficients in Eq. (1.1) are such that

A = 0 or

(
A �= 0 and

m∑

i=1

Ai �= 0

)
.

Denote

X0 := X\{0}, F0 := F\{0}, R+ := [0,∞),

N≤k := {1, . . . , k}, k ∈ N,

Nk := {l ∈ N ∪ {0} : l ≥ k}, k ∈ N ∪ {0}.

Notation Y D stands for the set of functions f : D → Y .
The equation of the p-Wright affine function will be called shortly the p-Wright
equation.

2. The main result

We start with the result concerning the hyperstability of Eq. (1.1). We show,
under some suitable assumptions, that a function satisfying Eq. (1.1) approx-
imately (in some sense) must be actually a solution to it.
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Theorem 2.1. Let the functions g : X → Y , ω : F0 → R+, θ : Xn
0 → R+ satisfy

the inequality

θ(βx1, . . . , βxn) ≤ ω(β)θ(x1, . . . , xn), β ∈ F0, x1, . . . , xn ∈ X0, (2.1)

and the estimation
∥∥∥∥∥∥

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A

∥∥∥∥∥∥
≤ θ(x1, . . . , xn), x1, . . . , xn ∈ X0. (2.2)

If there exist ∅ �= I ⊂ N≤m and a sequence {(ck1 , . . . , c
k
n)}k∈N of elements of Fn

0

such that

βk
i :=

n∑

j=1

aijc
k
j ∈ F0, i ∈ N≤m, k ∈ N, (2.3)

βk
i = 1, i ∈ I, AI :=

∑

i∈I

Ai �= 0, lim
k→∞

∑

i/∈I

∣∣∣∣
Ai

AI

∣∣∣∣ ω(βk
i ) < 1, (2.4)

lim
k→∞

θ(ck1x, . . . , cknx) = 0, (2.5)

then g satisfies

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A = 0, x1, . . . , xn ∈ X0. (2.6)

Proof. Note that without loss of generality we can assume that Y is a Banach
space, because otherwise we can replace it by its completion. The proof will
be divided into two steps. First assume that A = 0.

Assume that ∅ �= I ⊂ N≤m and the sequence {(ck1 , . . . , c
k
n)}k∈N of the

elements of Fn
0 are such that the conditions (2.3), (2.4) and (2.5) hold. From

(2.4) we get that there exists k0 ∈ N such that

γk :=
∑

i/∈I

∣∣∣∣
Ai

AI

∣∣∣∣ ω(βk
i ) < 1, k ∈ Nk0 . (2.7)

For each k ∈ Nk0 we define

Tkξ(x) :=
∑

i/∈I

−Ai

AI
ξ(βk

i x), ξ ∈ Y X0 , x ∈ X0,

Λkδ(x) :=
∑

i/∈I

∣∣∣∣
−Ai

AI

∣∣∣∣ δ(βk
i x), δ ∈ R+

X0 , x ∈ X0,

εk(x) :=
θ(ck1x, . . . , cknx)

|AI |
, x ∈ X0.
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Taking x ∈ X0 and substituting xj = ckjx, j ∈ N≤n in (2.2) we have
∥∥∥∥∥g(x) −

∑

i/∈I

−Ai

AI
g(βk

i x)

∥∥∥∥∥ ≤ θ(ck1x, . . . , cknx)
|AI |

, x ∈ X0. (2.8)

Thus (2.8) takes the form

‖g(x) − Tkg(x)‖ ≤ εk(x), x ∈ X0.

It is easy to prove by induction that for every x ∈ X0 and l ∈ N0

Λl
kε(x) ≤ εk(x)γl

k.

Therefore, using the fact that γk < 1, we have

ε∗
k(x) :=

∞∑

n=0

(Λn
kεk)(x) ≤ εk(x)

∞∑

n=0

γn
k =

εk(x)
1 − γk

, x ∈ X0.

Note that the operators Tk and Λk satisfy the assumptions of Theorem 1 in [5].
Applying this version of the fixed point theorem we obtain that there exists a
unique fixed point Gk : X0 → Y of Tk such that

‖g(x) − Gk(x)‖ ≤ θ(ck1x, . . . , cknx)
|AI |(1 − γk)

, x ∈ X0 (2.9)

holds and Gk(x) = limn→∞(T n
k g)(x) for x ∈ X0.

Now, we show that Gk is a solution of Eq. (2.6) (with A = 0).
First we prove that for every l ∈ N0 and every x1, . . . , xn ∈ X0

∥∥∥∥∥∥

m∑

i=1

Ai(T l
kg)

⎛

⎝
n∑

j=1

aijxj

⎞

⎠

∥∥∥∥∥∥
≤ γl

kθ(x1, . . . , xn). (2.10)

Clearly, the case l = 0 is just (2.2). Next, fix l ∈ N0 and assume that (2.10)
holds for every x1, . . . , xn ∈ X0. Then for every x1, . . . , xn ∈ X0 we get

m∑

i=1

Ai(T l+1
k g)

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ =
m∑

i=1

AiTk(T l
kg)

⎛

⎝
n∑

j=1

aijxj

⎞

⎠

=
m∑

i=1

Ai

∑

p/∈I

−Ap

AI
(T l

kg)

⎛

⎝βk
p

n∑

j=1

aijxj

⎞

⎠

=
∑

p/∈I

−Ap

AI

⎡

⎣
m∑

i=1

Ai(T l
kg)

⎛

⎝
n∑

j=1

aij(βk
pxj)

⎞

⎠

⎤

⎦ .
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Consequently, applying the inductive assumption and (2.1) we have
∥∥∥∥∥∥

m∑

i=1

Ai(T l+1
k g)

⎛

⎝
n∑

j=1

aijxj

⎞

⎠

∥∥∥∥∥∥
≤

∑

p/∈I

∣∣∣∣
−Ap

AI

∣∣∣∣ γl
kθ(β

k
px1, . . . , β

k
pxn)

≤
∑

p/∈I

∣∣∣∣
−Ap

AI

∣∣∣∣ γl
kω(βk

p )θ(x1, . . . , xn)

= γl+1
k θ(x1, . . . , xn).

Thus, by induction we have shown that (2.10) holds for l∈N0 and x1, . . . , xn

∈ X0. Letting l → ∞ in (2.10), we obtain that Gk satisfies Eq. (2.6) (with
A = 0).
Consequently, we get the sequence {Gk}k∈Nk0

of functions satisfying (1.1) and
(2.9) for k ∈ Nk0 . Therefore g is a solution of (2.6), since it is a pointwise limit
of the sequence {Gk}k∈Nk0

.
If A �= 0 and

∑m
i=1 Ai �= 0 we define a function h : X0 → Y in the following

way h(x) := g(x) + A∑m
i=1 Ai

. From (2.2)
∥∥∥∥∥∥

m∑

i=1

Aih

⎛

⎝
n∑

j=1

aijxj

⎞

⎠

∥∥∥∥∥∥
≤ θ(x1, . . . , xn), x1, . . . , xn ∈ X0,

and consequently, according to our previous considerations, the function h
satisfies (2.6) with A = 0, and hence g is a solution of (2.6), which finishes the
proof. �

3. Criteria for θ-hyperstability and applications

For the purpose of checking the θ-hyperstability we use the above Theorem 2.1.
Namely, we give sufficient conditions for the θ-hyperstability of a wide class
of functional equations and control functions θ. In the following two theorems
(Theorems 3.2 and 3.8), criteria for determining whether a functional equation
of the form (1.1) is θ-hyperstable are stated.

To present the first one we need the following natural assumptions on the
control function θ.
(a) Let θ : Xn

0 → R+, ω : F0 → R+ satisfy (2.1).
(b) limk→∞θ(βk

1x, . . . , βk
nx) = 0 provided that limk→∞|βk

j | = +∞, j ∈ N≤n.
(c) limk→∞ω(βk) = 0 provided that limk→∞|βk| = +∞.

Remark 3.1. It is easily seen that functions
(i) θ1(x1, . . . , xn) = C

∑n
j=1 ‖cjxj‖kj ;

(ii) θ2(x1, . . . , xn) = C max{‖cjxj‖kj : j ∈ {1, . . . , n}};
(iii) θ3(x1, . . . , xn) = C �n

j=1 ‖xj‖kj ;
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(iv) θ4(x1, . . . , xn) = C �n
j=1 ‖xj‖tj + D

∑n
j=1 ‖cjxj‖kj ;

with some C,D ∈ (0,+∞), cj ∈ F0 and with all negative kj , tj fulfill (a)–(c)
with a suitable function ω. For example in case (iii) we can take ω3(β) =
|β|

∑n
j=1 kj , for β ∈ F0, in case (iv) we may take

ω4(β) :=
{

|β|max{k1,...,kn,t} for |β| ≥ 1
|β|min{k1,...,kn,t} for |β| < 1

,

where t =
∑n

j=1 tj .

Now we are in a position to present the above mentioned theorem.

Theorem 3.2. Let the hypotheses (a)–(c) hold and let g : X → Y fulfill (2.2).
If there exist i0 ∈ N≤m and j0 ∈ N≤n such that

ai0j0 �= 0,
∑

j �=j0

ai0j �= 0, (3.1)

and
∑

j �=j0

∣∣∣∣
ai0j0 ai0j

aij0 aij

∣∣∣∣ �= 0, for i �= i0, (3.2)

then g satisfies (2.6).

Proof. Assume that i0 and j0 satisfy the conditions (3.1), (3.2) and put βk
i :=∑n

j=1 aijc
k
j . Take any l ∈ N such that

l ≥ 1∑
j �=j0

ai0j
and l ≥ max

i�=i0

{
− aij0

ai0j0

∑
j �=j0

aij − aij0

∑
j �=j0

ai0j

}
.

(3.3)
We define the sequence {(ck1 , . . . , c

k
n)}k∈N as follows

ckj :=

{
k + l for j �= j0
1−(k+l)

∑
j �=j0

ai0j

ai0j0
for j = j0

.

Observe that ckj ∈ F0 for j ∈ N≤n, k ∈ N. It is easy to check that

βk
i =

{
1 for i = i0
aij0+(k+l)

[
ai0j0

∑
j �=j0

aij−aij0

∑
j �=j0

ai0j

]

ai0j0
for i �= i0

, k ∈ N.

Since the conditions (3.2) and (3.3) are satisfied and

ai0j0

∑

j �=j0

aij − aij0

∑

j �=j0

ai0j =
∑

j �=j0

∣∣∣∣
ai0j0 ai0j

aij0 aij

∣∣∣∣ ,

we have βk
i ∈ F0 for i ∈ N≤m and limk→∞ |βk

i | = +∞ for i �= i0.
According to our considerations and the conditions (a)–(c), the assumptions

of Theorem 2.1 are fulfilled with I = {i0}, which completes the proof. �
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Remark 3.3. Note that in the case of a functional equation of two variables
(n = 2), the condition (3.1) means that ai01 �= 0, ai02 �= 0. The condition
(3.2) says that rows (ai01, ai02), (ai1, ai2) of the matrix [aij ] of coefficients are
linearly independent for i �= i0.

The coefficients of the equations mentioned in the introduction satisfy (3.1)
and (3.2), and from the above theorem we obtain that the linear equation (es-
pecially Cauchy and Jensen equations), quadratic equation, p-Wright equation,
Fréchet equation are θ-hyperstable in the class of functions g : X → Y with
each function θ : Xn

0 → R+ (for n = 2 or n = 3, respectively) satisfying the
conditions (a)–(c).

For example we present the results for the linear equation, p-Wright equa-
tion and Fréchet equation. For these equations we have even stronger results,
g satisfying the equation approximately on X0 is a solution of it on X.

Corollary 3.4. Suppose that a, b, A,B ∈ F0. Let the function θ fulfill conditions
(a)–(c) with n = 2. If g : X → Y satisfies the estimation

‖g(ax + by) − Ag(x) − B(y)‖ ≤ θ(x, y), x, y ∈ X0,

then g is a solution of the linear equation on X.

Proof. Take the matrix

[aij ] =

⎡

⎣
a b
1 0
0 1

⎤

⎦

of the coefficients of the linear equation. Then the vectors (a, b), (ai1, ai2) are
linearly independent for every i ∈ {2, 3}. From Theorem 3.2 and Remark 3.3 it
follows that g satisfies the linear equation for all x, y ∈ X0. It is easy to check,
that g fulfills the linear equation on the whole space X. �
Corollary 3.5. Assume that p ∈ F\{0, 1, 1

2}. Let the function θ fulfill conditions
(a)–(c) with n = 2. If g : X → Y satisfies the estimation

‖g(px + (1 − p)y) + g((1 − p)x + py) − g(x) − g(y)‖ ≤ θ(x, y), x, y ∈ X0,

then g is a solution of the p-Wright equation on X.

Proof. Take the matrix

[aij ] =

⎡

⎢⎢⎣

p 1 − p
1 − p p

1 0
0 1

⎤

⎥⎥⎦

of the coefficients of the p-Wright equation. Then the vectors (p, 1−p), (ai1, ai2)
are linearly independent for every i ∈ {2, 3, 4}. By Theorem 3.2 and Remark
3.3, g satisfies the p-Wright equation for all x, y ∈ X0. It is easy to check that
g is a solution of the p-Wright equation on X. �
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For equations with a greater number n of variables and a greater m, this
method requires more calculations, but is still not complicated. As an example,
consider the Fréchet equation. For the convenience of the reader, we first prove
that a function satisfying the Fréchet equation on X0, fulfills it on the whole
space X, since it is not as obvious as in the cases of linear and p-Wright
equations.

Lemma 3.6. If g : X → Y satisfies

g(x+y+z)+g(x)+g(y)+g(z) = g(x+y)+g(x+z)+g(y+z), x, y, z ∈ X0,
(3.4)

then it satisfies the Fréchet equation on the whole space X.

Proof. Note that it is enough to show that g(0) = 0.
Putting in (3.4) y = z = x, and then y = 2x, z = −x we get

g(3x) + 3g(x) = 3g(2x), x ∈ X0,
2g(2x) + g(−x) = g(3x) + g(0), x ∈ X0,

respectively, and hence

g(2x) = 3g(x) + g(−x) − g(0), x ∈ X0.

Replacing y by x and z by −x in (3.4) yields

3g(x) + g(−x) = g(2x) + 2g(0), x ∈ X0.

Adding the above equalities we conclude that g(0) = 0, which completes the
proof. �

Corollary 3.7. Let the function θ fulfill conditions (a)–(c) with n = 3. If g :
X → Y satisfies

‖g(x + y + z) + g(x) + g(y) + g(z) − g(x + y) − g(x + z) − g(y + z)‖
≤ θ(x, y, z), x, y, z ∈ X0,

then g is a solution of the Fréchet equation on X.

Proof. Take a matrix

[aij ]T =

⎡

⎣
1 1 0 0 1 1 0
1 0 1 0 1 0 1
1 0 0 1 0 1 1

⎤

⎦

the transpose of the matrix of coefficients of this equation and let i0 = j0 = 1.
An easy computation shows that for every i �= 1 the following sum of minors

∣∣∣∣
a11 a12

ai1 ai2

∣∣∣∣ +
∣∣∣∣
a11 a13

ai1 ai3

∣∣∣∣

of [aij ] is nonzero. Theorem 3.2 and Lemma 3.6 complete the proof. �



Vol. 90 (2016) Hyperstability of general linear functional equation 535

Theorem 3.2 gives sufficient but not necessary conditions for the θ-hypersta-
bility of functional equations of the form (1.1) with control function θ satisfying
the conditions (a)–(c). If the coefficients aij are such that the conditions (3.1),
(3.2) are not satisfied with any i0 ∈ N≤m, j0 ∈ N≤n, then we know noth-
ing about the θ-hyperstability of this equation, which is demonstrated in the
following examples.

Example. The coefficients of the p-Wright equation for p = 1
2 do not satisfy

(3.2) for any i0 ∈ {1, . . . , 4}. On the other hand, this equation can be written
as a Jensen equation

f
(x + y

2

)
=

1
2
f(x) +

1
2
f(y),

and from Corollary 3.4, we get that the Jensen equation is θ-hyperstable with
each function θ : X2

0 → R+ satisfying the conditions (a)–(c).

Example. The coefficients of a special case of the equation of the (p, q)-Wright
function generalization of the p-Wright equation

f(px − py) + f(py − px) = f(x) + f(y) (3.5)

do not satisfy (3.2) for any i0 ∈ {1, . . . , 4}. Moreover, this equation is not
θ-hyperstable with the function θ(x, y) = |x|−2l+1 + |y|−2l+1 for l ∈ N. Indeed,
the function

f(x) =
{

x−2l+1 for x �= 0
0 for x = 0 ,

satisfies the inequality

|f(px − py) + f(py − px) − f(x) − f(y)| = |x−2l+1 + y−2l+1|
≤ |x|−2l+1 + |y|−2l+1 = θ(x, y),

and is not a solution of (3.5).

From Theorem 2.1, we derive another criterion for the θ-hyperstability of
Eq. (1.1) with a particular form of the control function, namely for θ = θ3
with C > 0, kj ∈ R such that

∑n
j=1 kj < 0. Note that in this case we do not

need to assume that all kj are negative real numbers (in contrast to Theorem
3.2, where the condition (b) must be satisfied).

Theorem 3.8. Assume that C > 0, kj ∈ R are such that
∑n

j=1 kj < 0. Let
g : X → Y fulfill the estimation

∥∥∥∥∥∥

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + A

∥∥∥∥∥∥
≤ C �n

j=1 ‖xj‖kj , x1, . . . , xn ∈ X0.
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If there exist i0 ∈ N≤m and j0 ∈ N≤n such that
∑

j �=j0

kj < 0, ai0j0 �= 0,
∑

j �=j0

ai0j = 0 and
∑

j �=j0

aij �= 0 for i �= i0,

(3.6)

then g satisfies (2.6).

Proof. Assume that i0 ∈ N≤m and j0 ∈ N≤n satisfy the condition (3.6) and
define

ckj :=
{

k for j �= j0
1

ai0j0
for j = j0

, k ∈ N.

Then there exists k0 ∈ N such that βk
i :=

∑n
j=1 aijc

k
j ∈ F0 for k ∈ Nk0 , i ∈

N≤m. It is easy to check that the assumptions of Theorem 2.1 are fulfilled with
I = {i0} and the sequence {(ck1 , . . . , c

k
n)}k∈Nk0

, which completes the proof. �

Applying Theorem 3.8, we obtain that the linear equation (especially Cauchy,
Jensen equation), quadratic equation, p-Wright equation are θ3-hyperstable
(with C ≥ 0 and ki < 0) in the class of functions g : X → Y . For example we
present the following results for the p-Wright equation and Fréchet equation.

Corollary 3.9. Let C ≥ 0, k1 + k2 < 0. If g : X → Y satisfies

‖g(px + (1 − p)y) + g((1 − p)x + py) − g(x) − g(y)‖
≤ C‖x‖k1‖y‖k2 , x, y ∈ X0,

then it is a solution of the p-Wright equation on X.

Proof. Since k1 + k2 < 0, one of k1, k2 must be negative. Assume that k1 < 0.
Applying Theorem 3.8 with i0 = 4 and j0 = 2 we obtain that g satisfies the
p-Wright equation for all x, y ∈ X0. It may be shown that then g must fulfill
the p-Wright equation. �

Corollary 3.10. Let C ≥ 0, k1 + k2 + k3 < 0. If g : X → Y satisfies

‖g(x + y + z) + g(x) + g(y) + g(z) − g(x + y) − g(x + z) − g(y + z)‖
≤ C‖x‖k1‖y‖k2‖z‖k3 , x, y, z ∈ X0,

then it is a solution of the Fréchet equation on X.

Proof. Since k1+k2+k3 < 0, there exists j0 ∈ {1, 2, 3} such that
∑

j �=j0
kj < 0.

Putting i0 = j0 + 1 and applying Theorem 3.8 and Lemma 3.6, we obtain our
claim. �

Finally we use the above outcomes, in order to get the θ-hyperstability
of the linear equation with θ(x, y) = C‖x‖p‖y‖q, for all p, q ∈ R such that
p + q �= 0. For this purpose, we prove an analogon of Lemma 3.6 for the linear
equation (see also [11, Lemma 4.7]).
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Lemma 3.11. If g : X → Y satisfies

f(ax + by) = Af(x) + Bf(y) + A0, x, y ∈ X0, (3.7)

then it satisfies the linear equation on X.

Proof. Replacing in (3.7) x by bx, y by −ax and then x by bx, y by ax we get

f(0) = Af(bx) + Bf(−ax) − A0, x ∈ X0, (3.8)

and
f(2abx) = Af(bx) + Bf(ax) − A0, x ∈ X0. (3.9)

From (3.8) and (3.9) for the even fe and odd fo parts of f we get fe(2abx) =
fe(0), and Afo(bx) = Bfo(ax), fo(2abx) = Afo(bx) + Bfo(ax), for x ∈ X0,
respectively. Thus

fo(x) = 2Bfo

( x

2b

)
= 2Afo

( x

2a

)
, x ∈ X0.

Hence, using (3.7) for the odd part of f we obtain

fo(x) + fo(y) = 2Afo

( x

2a

)
+ 2Bfo

( y

2b

)
= 2fo

(
a

x

2a
+ b

y

2b

)
= 2fo

(x + y

2

)
,

for x, y ∈ X0. Therefore, for x ∈ X0

2fo(x) = fo(3x) + fo(−x) and 2fo(2x) = fo(3x) + fo(x),

consequently fo(2x) = 2fo(x). In this way we obtain that fo is an additive
function such that

fo(bx) = Bfo(x) and fo(ax) = Afo(x), x ∈ X,

and fe ≡ α is constant so that

α = (A + B)α + A0,

which completes the proof. �

Corollary 3.12. Let p, q ∈ R, a, b, A,B ∈ F0, A0 ∈ F, C ≥ 0 and A0 = 0 or
(A0 �= 0 and A + B �= 1) and f : X → Y fulfill the estimation

‖f(ax + by) − Af(x) − Bf(y) − A0‖ ≤ C‖x‖p‖y‖q, x, y ∈ X0.

If one of the following conditions is satisfied

(a) p + q < 0,
(b) p + q > 0, q > 0, |A| �= |a|p+q,
(c) p + q > 0, p > 0, |B| �= |b|p+q,

then f satisfies the equation

f(ax + by) = Af(x) + Bf(y) + A0, x, y ∈ X. (3.10)



538 A. Bahyrycz, J. Olko AEM

Proof. On account of the above lemma, it suffices to prove that the function
f satisfies (3.7).
If case (a) holds, then it is enough to use Theorem 3.8 for i0 = 2, j0 = 1.
The cases (b) and (c) are symmetric, so we prove only case (b).
If |a|p+q < |A|, then setting in Theorem 2.1 I = {2} and

ckj :=
{

1 for j = 1
− a

bk for j = 2 ,

we get that f satisfies (3.7), because limk→∞ 1
|A| |a(1− 1

k )|p+q+|BA || a
bk |p+q) < 1

and limk→∞ 1
|A| |

a
bk |q‖x‖p+q = 0.

If |a|p+q > |A|, then setting in Theorem 2.1 I = {1} and

ckj :=

⎧
⎨

⎩

1
a − 1

ak for j = 1

1
bk for j = 2

,

yields that f satisfies (3.7), since limk→∞|A|
∣∣ 1
a

(
1 − 1

k

)∣∣p+q+ |B|
∣∣ 1
bk

∣∣p+q
<1 and

limk→∞ 1
|A|

∣∣ 1
a

(
1 − 1

k

)∣∣p∣∣ 1
bk

∣∣q‖x‖p+q = 0. �

4. Final remarks

Note that our results correspond to the new ones concerning hyperstability.
For example it has been proven that the Cauchy and linear equations are
θ1-hyperstable with k1 = k2 < 0 (in [8] and [17], respectively). In our consid-
erations k1, k2 < 0 may be different. Corollary 3.12 generalizes [10, Theorem
20], where only the cases (b) and (c) with p, q ∈ R+ were considered. For more
examples see e.g. [1,2,10,18].

From [11, Theorem 2.2] we obtain the following hyperstability result for a
generalization of (1.1), where the constant A is replaced by a function.

Corollary 4.1. Assume that a functional equation of the form (1.1) is θ-hyper-
stable with some θ : Xn

0 → Y in the class of functions mapping X into Y . Let
g : X → Y , d : Xn → Y be functions satisfying the inequality
∥∥∥∥∥∥

m∑

i=1

Aig

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + d(x1, . . . , xn)

∥∥∥∥∥∥
≤ θ(x1, . . . , xn), x1, . . . , xn ∈ X0.

(4.1)

If the functional equation

m∑

i=1

Aif

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ + d(x1, . . . , xn) = 0, x1, . . . , xn ∈ X (4.2)

has a solution, then g is a solution of (4.2) on X0.
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The hyperstability results have various interesting consequences. For in-
stance, note that we get at once the following a bit surprising corollary.

Corollary 4.2. Assume that a functional equation of the form (1.1) is θl-
hyperstable with some l ∈ {1, 2, 3} in the class of functions mapping X into Y.
Then for every function g : X → Y , either g satisfies Eq. (2.6) or the following
condition is fulfilled

sup
(x1,...,xn)∈Xn

0

‖
∑m

i=1 Aig(
∑n

j=1 aijxj) + A‖
θl(x1, . . . , xn)

= ∞.

Our considerations can be used in further research on θ-hyperstability. It is
interesting to investigate the hyperstability of other functional equations of the
form (1.1), as well as seek other conditions guaranteeing the θ-hyperstability
of specified equations and control functions θ.

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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[6] Brzdęk, J.: Stability of the equation of the p-Wright affine functions. Aequationes
Math. 85, 497–503 (2013)
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[9] Brzdęk, J.: A hyperstability result for the Cauchy equation. Bull. Aust. Math. Soc.
(2013). doi:10.1017/S0004972713000683
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[12] Cǎdariu, L., Radu, V.: Fixed point and the stability of Jensen’s functional equation. J.
Inequal. Pure Appl. Math. 2. Art. ID 4 (2003)

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1155/2013/496361
http://dx.doi.org/10.1007/s00010-014-0317-z
http://dx.doi.org/10.1017/S0004972713000683
http://dx.doi.org/10.1155/2013/401756
http://dx.doi.org/10.1007/s00010-014-0274-6


540 A. Bahyrycz, J. Olko AEM

[13] Daróczy, Z., Lajkó, K., Lovas, R.L., Maksa, G., Páles, Zs.: Functional equations involv-
ing means. Acta Math. Hung. 166, 79–87 (2007)

[14] Gselmann, E.: Hyperstability of a functional equation. Acta Math. Hung. 124, 179–
188 (2009)

[15] Maksa, G.: The stability of the entropy of degree alpha. J. Math. Anal. Appl. 346, 17–
21 (2008)
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