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Hyperstability of general linear functional equation
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Abstract. Our purpose is to investigate criteria for hyperstability of linear type functional
equations. We prove that a function satisfying the equation approximately in some sense,
must be a solution of it. We give some conditions on coefficients of the functional equa-
tion and a control function which guarantee hyperstability. Moreover, we show how our
outcomes may be used to check whether the particular functional equation is hyperstable.
Some relevant examples of applications are presented.
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1. Introduction

Let X,Y be linear spaces over the field F € {R, C}. The functional equation

> Aig [ D aiz; | +A=0, (1.1)
i=1 j=1

where g: X — Y, A,a;; € F, A, € F\{0}, i € {1,...,m}, j € {1,...,n},
generalizes simultaneously a lot of quite known equations, for example:
linear equationf(ax + by) = Af(x) + Bf(y);
quadratic equationf(xz +y) + f(z —y) = 2f(x) + 2f(y);
equation of the p-Wright affine functionf(px + (1 — p)y)+f((1 — p)z+py)
= flz) + f(y);
Fréchet equationf(z +y + 2) + f(z) + f(y) + f(2)
=flz+ty)+fl@+2)+fly+2),
where a,b, A, B,p € F\{0, 1}.

The stability and hyperstability of the particular cases of the functional
equation (1.1), among others those mentioned above were studied by many
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authors (cf., e.g., [1,2,6-10,12,13,17-19]). Stability of the general Eq. (1.1)
was considered in [3].

The first well known hyperstability result appeared probably in [4] and
concerned some ring homomorphisms. However, the term hyperstability was
introduced much later (in the meaning applied here probably in [16]; see also
[14,15] or [10]).

We say that the equation (1.1) is #-hyperstable in the class of functions
g: X — Y (with a control function ¢ : (X\{0})" — Y),ifg: X — Y
satisfying the inequality

ZAig Zaijxj + A\ <O(x1,...,25), x1,..., 2, € X\{0},
i=1 j=1

fulfills Eq. (1.1) for all zq,..., 2, € X\{0}.

In the paper we prove, applying the fixed point approach, criteria for the
O-hyperstability of (1.1) under some natural assumptions on 6. In this way we
obtain sufficient conditions for the #-hyperstability of a wide class of functional
equations and control functions 6. Moreover, we show how our outcomes may
be used to check whether the particular functional equation is #-hyperstable.

Our investigations have been motivated by a problem of optimality of some
estimations arising in stability studies.

From now on, we assume that X,Y are normed spaces over a field F €
{R,C} and the coefficients in Eq. (1.1) are such that

A=0 or (A#O and iAi;éO>.

i=1
Denote
Xo = X\{O}v Fo := F\{O}a Ry = [Oa OO);
NSkZ:{l,...,k}, keN,
N :={leNU{0}:1>k}, keNuU{0}.
Notation Y? stands for the set of functions f: D — Y.

The equation of the p-Wright affine function will be called shortly the p-Wright
equation.

2. The main result

We start with the result concerning the hyperstability of Eq. (1.1). We show,
under some suitable assumptions, that a function satisfying Eq. (1.1) approx-
imately (in some sense) must be actually a solution to it.
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Theorem 2.1. Let the functionsg: X — Y, w:Fog— Ry, 0: X§ — Ry satisfy
the inequality

9(5’131,. c 7ﬂxn) < W(ﬂ)a(l‘l,. s ,xn>7 6 € ]FOa TlyeeosTp € XOa (21)

and the estimation

ZAig Zaija:j + A|| <O0(xq,...,z,), Z1,..,xn € Xo. (2.2)
i=1 j=1

If there exist ) # I C N<,,, and a sequence {(c¥,...,cE)}ren of elements of T2
such that

ﬁlk = Zaijc§ € Fy, 1€ Ngm, k€N, (23)

j=1
BE=1, i€l, Aj:=)» A;#0 nmzﬁw(ﬂk)a (2.4)
1 ) ) . ) ks o0 : AI (3 )
el i1
klim O(cka, ... ckx)=0, (2.5)

then g satisfies
m n
ZAig Zai]‘x]’ +A=0, T1,...,T, € Xo. (26)
i=1 j=1

Proof. Note that without loss of generality we can assume that Y is a Banach
space, because otherwise we can replace it by its completion. The proof will
be divided into two steps. First assume that A = 0.

Assume that ) # I C Ng, and the sequence {(c},...,c%)}ren of the
elements of F{} are such that the conditions (2.3), (2.4) and (2.5) hold. From
(2.4) we get that there exists kg € N such that

Ve = Z
igl
For each k € N, we define

w(BF) <1, keN,. (2.7)

3

A;
Ar

776&('1:) = Z _A[Illg( f.]f), f € YXO) RS X07

il
'y
Ard(z) = | kr), deRYY e X,
igr |
O(ckz,... ckx)
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Taking x € Xy and substituting x; = c?:c, j € N<,, in (2.2) we have
glz) =y —
gl
Thus (2.8) takes the form
lg(z) = Trg(@)|| < er(x), € Xo.
It is easy to prove by induction that for every x € Xy and [ € Ny
ALe(z) < ex(@)-

Therefore, using the fact that v < 1, we have

0(0’1“95, co k)

|Ag] ’

Y di(6ha) zeXo.  (28)

o0 o0

i@) = S (e @) <en() S op = 2 s e x,

1=

n=0 n=0

Note that the operators 7, and Ay, satisfy the assumptions of Theorem 1 in [5].
Applying this version of the fixed point theorem we obtain that there exists a
unique fixed point Gy : Xg — Y of 7, such that

O(ckz,... ckx)

[Arl(1 =)

holds and G (z) = lim,,— (7g)(x) for z € X,.
Now, we show that G}, is a solution of Eq. (2.6) (with A = 0).

l9(z) = Gi(2)] < z € Xo (2.9)

First we prove that for every [ € Ny and every z1,...,2, € Xj
Z (TLg) Zaljxj <ALO(z1, ..., 2p). (2.10)
i=1
Clearly, the case [ = 0 is just (2.2). Next, fix | € Ny and assume that (2.10)
holds for every x1,...,x, € Xy. Then for every x1,...,x, € Xy we get
m m n
> ATy Zazﬂa = 2 AT(TLg) | 3 aise;
i=1 i=1 j=1
n
WD I IC R 7 pres
i=l p¢l j=1

->

p¢l

m
* |2 AdTig) Zau
i=1
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Consequently, applying the inductive assumption and (2.1) we have

i TlJrl Z i, < Z
i=1

p¢l

’7k ﬁkxlw"aﬁgmn)

<Z Ahow( ﬂk) (1., 2n)
p¢l
= 7?19(1‘1, cey X))

Thus, by induction we have shown that (2.10) holds for I €Ny and x1, ..., 2,
€ Xj. Letting I — oo in (2.10), we obtain that G}, satisfies Eq. (2.6) (with
A=0).

Consequently, we get the sequence {G}ren,, of functions satisfying (1.1) and
(2.9) for k € Ny, . Therefore g is a solution of (2.6), since it is a pointwise limit
of the sequence {Gk}keNkO-

If A#0and )" | A; # 0 we define a function h : Xy — Y in the following
way h(x) := g(z) + ﬁ. From (2.2)

m n
ZAJ’L Zaijxj §9($1,...,$n), T1,...,T, € Xo,

and consequently, according to our previous considerations, the function h
satisfies (2.6) with A = 0, and hence g is a solution of (2.6), which finishes the
proof. O

3. Criteria for -hyperstability and applications

For the purpose of checking the 8-hyperstability we use the above Theorem 2.1.
Namely, we give sufficient conditions for the 6-hyperstability of a wide class
of functional equations and control functions . In the following two theorems
(Theorems 3.2 and 3.8), criteria for determining whether a functional equation
of the form (1.1) is f-hyperstable are stated.
To present the first one we need the following natural assumptions on the

control function 6.

(a) Let 0: X — R4, w:Fg — Ry satisfy (2.1).

(b) limp—f(Bx,...,3Fx) = 0 provided that limkﬁoowjk\ = +o00, j € Ng,,.

(¢) limg—oow(Br) = 0 provided that limg_,|Bk| = +00.

Remark 3.1. Tt is easily seen that functions

(1) 91(.1?1, s 7]"71) = CZ?:l chxj||kj;

(i) Oo(x1,...,7,) = Cmax{|cjz;||* : 5 € {1,...,n}}
(iii) O3(x1,...,2y) =C M7y l|l1|%7 5
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(iv) Oa(z1,-. 2n) = C Ty s ll% + D X0 lleja; ||
with some C, D € (0,4+00), ¢; € Fy and with all negative k;,t; fulfill (a)—(c)
with a suitable function w. For example in case (iii) we can take ws(f) =
|5|EJT'L:1 ki for 8 € Fy, in case (iv) we may take

- |ﬁ|max{k1 ..... kn,t} for |6‘ >1
W4(6) = { |ﬂ|min{k1,.‘.,kn,t} for 8| <1

where t = 3" ;.

Jj=1
Now we are in a position to present the above mentioned theorem.

Theorem 3.2. Let the hypotheses (a)—(c) hold and let g : X —'Y fulfill (2.2).
If there exist igp € N<,,, and jo € N<,, such that

aiojo §é 0, Z aioj # O, (31)
J#3jo
and
S |indo o\ b0, for i, (32)
QAijo  Qij

J#3jo
then g satisfies (2.6).

Proof. Assume that ip and jo satisfy the conditions (3.1), (3.2) and put 3¥ :=

>y aijc}. Take any | € N such that

1 a
[> ————— and [ >max<{ — J0 .
2 itio Qiog iio { Qigjo Do jie Vij — Dijo D_jtjo Vioj }
(3.3)
We define the sequence {(c, ..., cF)} ey as follows
& k +l fOI‘j 7& jo
R U TE)D 0
J # for j = jo
Observe that c? € [Fy for j € N, k € N. It is easy to check that
1 for i =iy
E_
ﬁi = aijo+(k+1) [aiojo ijjo.aij—aijo Zj;éjo ﬂioj] for i # io s k € N.
070
Since the conditions (3.2) and (3.3) are satisfied and
_ Qigjo  Qioj
@ Qi — Qs P 7
r0J0 Z ) ©jo Z 207 Z @iy a;j

J#Jjo J#Jo J#jo

we have ﬁf € Fy for ¢ € N<yp, and limy_, o |ﬂf| = 400 for i # ip.
According to our considerations and the conditions (a)—(c), the assumptions
of Theorem 2.1 are fulfilled with I = {iy}, which completes the proof. O
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Remark 3.3. Note that in the case of a functional equation of two variables
(n = 2), the condition (3.1) means that a;,;1 # 0, a;,2 # 0. The condition
(3.2) says that rows (ai,1,@iy2), (@1, a;2) of the matrix [a;;] of coefficients are
linearly independent for i # 4.

The coefficients of the equations mentioned in the introduction satisfy (3.1)
and (3.2), and from the above theorem we obtain that the linear equation (es-
pecially Cauchy and Jensen equations), quadratic equation, p-Wright equation,
Fréchet equation are f-hyperstable in the class of functions g: X — Y with
each function §: X — R4 (for n = 2 or n = 3, respectively) satisfying the
conditions (a)—(c).

For example we present the results for the linear equation, p-Wright equa-
tion and Fréchet equation. For these equations we have even stronger results,
g satisfying the equation approximately on X is a solution of it on X.

Corollary 3.4. Suppose that a,b, A, B € Fy. Let the function 0 fulfill conditions
(a)—(c) withn=2. If g: X =Y satisfies the estimation

lg(az +by) — Ag(x) = B(y)l < 0(x,y), =,y € Xo,
then g is a solution of the linear equation on X.

Proof. Take the matrix

of the coefficients of the linear equation. Then the vectors (a,b), (a;1, a;2) are
linearly independent for every ¢ € {2,3}. From Theorem 3.2 and Remark 3.3 it
follows that g satisfies the linear equation for all x,y € Xj. It is easy to check,
that ¢ fulfills the linear equation on the whole space X. O

Corollary 3.5. Assume that p € F\{0,1, 3}. Let the function 6 fulfill conditions
(a)—(c) withn=2. If g: X — Y satisfies the estimation

lg(pz + (1 = p)y) + 9((1 = p)z +py) — g(x) —gW)| < O(z,y), @,y € Xo,
then g is a solution of the p-Wright equation on X.

Proof. Take the matrix

p l—p
[CL"]: l—p p
Y 1 0
0 1

of the coefficients of the p-Wright equation. Then the vectors (p, 1—p), (a1, a;2)
are linearly independent for every i € {2,3,4}. By Theorem 3.2 and Remark
3.3, g satisfies the p-Wright equation for all z,y € Xj. It is easy to check that
g is a solution of the p-Wright equation on X. 0
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For equations with a greater number n of variables and a greater m, this
method requires more calculations, but is still not complicated. As an example,
consider the Fréchet equation. For the convenience of the reader, we first prove
that a function satisfying the Fréchet equation on Xy, fulfills it on the whole
space X, since it is not as obvious as in the cases of linear and p-Wright
equations.

Lemma 3.6. If g : X — Y satisfies

g(@+y+2)+g(@)+9(y)+9(2) = g(x+y)+g(z+2)+g(y+2z),  z,y,2 € Xo,
(3.4)
then it satisfies the Fréchet equation on the whole space X .

Proof. Note that it is enough to show that g(0) = 0.
Putting in (3.4) y = z = z, and then y = 2z, z = —z we get

9(3z) + 3g(x) = 3g(2x), x € Xy,
29(2z) + g(—z) = g(3z) + ¢(0), z € X,

respectively, and hence

9(2z) = 3g(x) + g(—x) —g(0),  z € Xo.
Replacing y by = and z by —z in (3.4) yields

3g9(x) + g(—x) = g(2x) +29(0), =z € Xo.

Adding the above equalities we conclude that g(0) = 0, which completes the
proof. O

Corollary 3.7. Let the function 6 fulfill conditions (a)—(c) with n = 3. If g :
X — Y satisfies

lg(z +y+2)+g()+9(y) +9(2) —g(x+y) —g(x+2) — gy + 2)|
<O(z,y,z), z,9,2¢€ Xo,

then g is a solution of the Fréchet equation on X.

Proof. Take a matrix

1 100110
[a]"=11 0 1 0 1 0 1
1001011

the transpose of the matrix of coefficients of this equation and let ig = jo = 1.
An easy computation shows that for every ¢ # 1 the following sum of minors

ail; a2 a11 a3

of [a;;] is nonzero. Theorem 3.2 and Lemma 3.6 complete the proof. O
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Theorem 3.2 gives sufficient but not necessary conditions for the #-hypersta-
bility of functional equations of the form (1.1) with control function 0 satisfying
the conditions (a)—(c). If the coefficients a;; are such that the conditions (3.1),
(3.2) are not satisfied with any iy € N<,, jo € N<,, then we know noth-
ing about the #-hyperstability of this equation, which is demonstrated in the
following examples.

Ezample. The coefficients of the p-Wright equation for p = % do not satisfy
(3.2) for any ig € {1,...,4}. On the other hand, this equation can be written
as a Jensen equation

F(E5Y) = 57@) + 5 f)

and from Corollary 3.4, we get that the Jensen equation is 6-hyperstable with
each function §: X2 — R, satisfying the conditions (a)—(c).

Ezample. The coefficients of a special case of the equation of the (p, ¢)-Wright
function generalization of the p-Wright equation

f(px —py) + fpy —px) = f(z) + f(y) (3.5)

do not satisfy (3.2) for any ig € {1,...,4}. Moreover, this equation is not
6-hyperstable with the function 0(z,y) = |z|~2*! + |y| =2+ for | € N. Indeed,
the function

72 for 2 £ 0

f(‘”)_{o forx=0"

satisfies the inequality

|[f(px = py) + F(py = po) = f(@) = fly)] = |22 4y~
< a7y T = (2, y),

and is not a solution of (3.5).

From Theorem 2.1, we derive another criterion for the 6-hyperstability of
Eq. (1.1) with a particular form of the control function, namely for 6 = 05
with C' > 0, k; € R such that 2?21 k; < 0. Note that in this case we do not
need to assume that all k; are negative real numbers (in contrast to Theorem
3.2, where the condition (b) must be satisfied).

Theorem 3.8. Assume that C' > 0, k; € R are such that Z?:l ki < 0. Let
g: X =Y fulfill the estimation

m n

ZAZ'Q Zaijl‘]’ + A S O H?:l ||.’13j||kj7 T1ye--,Tnp S Xo.
i=1 7j=1
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If there exist ig € N<,, and jo € N<,, such that

Z kj <0, Qi o 7é 0, Z Qi = 0 and Z Q5 7£ 0 fOT’ 7 7é 10,
J#3jo J#jo J#3jo
(3.6)
then g satisfies (2.6).

Proof. Assume that ig € N<,,, and jo € N<,, satisfy the condition (3.6) and
define

ke N.

k for j # jo
—L_ for j =jo°
1070

k.
Cj =

Then there exists kg € N such that 3F := 22:1 aijc;? € Fy for k € Ng,, @ €
N<,,. It is easy to check that the assumptions of Theorem 2.1 are fulfilled with

I = {io} and the sequence {(c¥, ..., cﬁ)}keNko, which completes the proof. O

Applying Theorem 3.8, we obtain that the linear equation (especially Cauchy,
Jensen equation), quadratic equation, p-Wright equation are #3-hyperstable
(with C > 0 and k; < 0) in the class of functions g: X — Y. For example we
present the following results for the p-Wright equation and Fréchet equation.

Corollary 3.9. Let C >0, k1 + ko < 0. If g: X — Y satisfies
lg(pz + (1 = p)y) +g((1 — p)z +py) — g9(x) — g(y)||
< Cllef*yl*, =,y € Xo,
then it is a solution of the p- Wright equation on X.
Proof. Since k1 + ko < 0, one of kq, ko must be negative. Assume that k; < 0.
Applying Theorem 3.8 with ig = 4 and jo = 2 we obtain that g satisfies the

p-Wright equation for all x,y € Xg. It may be shown that then g must fulfill
the p-Wright equation. O

Corollary 3.10. Let C >0, k1 + ko + k3 <0. If g: X — Y satisfies
gz +y+2) +g9(x) + 9(y) + 9(2) —9(x +y) —g(z +2) —g(y + 2|
< Cllz® yl*=z]*,  2,y,2 € Xo,
then it is a solution of the Fréchet equation on X.
Proof. Since k1+ka+ks < 0, there exists jo € {1,2,3} such that 3, . k; <0.

Putting iy = jo + 1 and applying Theorem 3.8 and Lemma 3.6, we obtain our
claim. O

Finally we use the above outcomes, in order to get the #-hyperstability
of the linear equation with 6(x,y) = C||z|/?|ly||?, for all p,¢ € R such that
p+q # 0. For this purpose, we prove an analogon of Lemma 3.6 for the linear
equation (see also [11, Lemma 4.7]).
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Lemma 3.11. If g: X — Y satisfies
flaz +by) = Af(z) + Bf(y) + Ao, z,y € Xo, (3.7)
then it satisfies the linear equation on X.
Proof. Replacing in (3.7) x by bz, y by —ax and then x by bz, y by ax we get
f(0) = Af(bx) + Bf(—ax) — Ay, x € Xo, (3.8)

and
f(2abz) = Af(bx) + Bf(ax) — Ao, z € Xp. (3.9

From (3.8) and (3.9) for the even f. and odd f, parts of f we get f.(2abx) =
£(0), and Af,(bx) = Bfo(az), fo(2abe) = Af,(bx) + Bf,(az), for € Xo,
respectively. Thus

folz) = QBfO(%) - 2Af0(2%>7 z € Xo.

Hence, using (3.7) for the odd part of f we obtain

Fole) + foly) = 241, () + 280 (2) =27 (ag- +02) =25, (T2,

for x,y € Xg. Therefore, for x € X

2f0(‘r) = fo(?’x) + fo(_l‘) and 2f0(2x) = fo(Sx) + fo(m)’

consequently f,(2x) = 2f,(x). In this way we obtain that f, is an additive
function such that

fo(bx) = Bf,(z) and fo(ax) = Af,(z), reX,
and f. = «a is constant so that
a=(A+ B)a+ Ay,
which completes the proof. O
Corollary 3.12. Let p,q € R, a,b,A,B € Fy, Ag € F, C >0 and Ay =0 or
(Ag#0 and A+ B #1) and f: X — 'Y fulfill the estimation
| flaz +by) — Af(x) - Bf(y) — Aoll < CllalPllyl’, @,y € Xo.
If one of the following conditions is satisfied

(a) p+q<0,
(b) p+q>0,q>0, |A|l #|alPT9,
() p+q>0,p>0,|B|#|bjPT9,

then f satisfies the equation
flaz +by) = Af(z) + Bf(y) + Ao, @,y € X. (3.10)
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Proof. On account of the above lemma, it suffices to prove that the function
f satisfies (3.7).

If case (a) holds, then it is enough to use Theorem 3.8 for ig = 2, jo = 1.
The cases (b) and (c) are symmetric, so we prove only case (b).

If |a|P™? < | A, then setting in Theorem 2.1 I = {2} and

c?::{la ior]:il7

—E or j =2

we get that f satisfies (3.7), because limkﬂooﬁm(l—%)|p+q+|%||&|p+q) <1
and limkamﬁ|&|q||x”p+q =0.

If |a|P™? > | A, then setting in Theorem 2.1 I = {1} and

11 .
. = forj=1
cj = X . ,

ik for j =2

yields that f satisfies (3.7), since limy_oo|Al| (1 — %)’pﬂ—i— |B|’i|p+q< 1 and
limp—oo a7 |2 (1= 2) " |55 " )P+ = 0. O

4. Final remarks

Note that our results correspond to the new ones concerning hyperstability.
For example it has been proven that the Cauchy and linear equations are
01-hyperstable with k1 = ko < 0 (in [8] and [17], respectively). In our consid-
erations k1, ke < 0 may be different. Corollary 3.12 generalizes [10, Theorem
20], where only the cases (b) and (¢) with p, ¢ € Ry were considered. For more
examples see e.g. [1,2,10,18].

From [11, Theorem 2.2] we obtain the following hyperstability result for a
generalization of (1.1), where the constant A is replaced by a function.

Corollary 4.1. Assume that a functional equation of the form (1.1) is 0-hyper-
stable with some 0 : X' — Y in the class of functions mapping X into Y. Let
g: X =Y, d: X" =Y be functions satisfying the inequality

m n
ZAZg Zaijxj +d(f£1,...,l’n) §9(:E1,...,:cn), xl,...,CCnEXQ.
i=1 j=1

(4.1)

If the functional equation

ZAZ-f Zaijxj +d(z1,...,2,) =0, L1, Tp €X (4.2)
i=1 j=1

has a solution, then g is a solution of (4.2) on Xj.
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The hyperstability results have various interesting consequences. For in-
stance, note that we get at once the following a bit surprising corollary.

Corollary 4.2. Assume that a functional equation of the form (1.1) is 0;-
hyperstable with some l € {1,2,3} in the class of functions mapping X into Y.
Then for every function g : X — 'Y, either g satisfies Eq. (2.6) or the following
condition is fulfilled
1300 Aig(3o)_ aijzy) + Al
sup = 00
(x1,...,xn)EXY 91(I1,...7xn)

Our considerations can be used in further research on #-hyperstability. It is
interesting to investigate the hyperstability of other functional equations of the
form (1.1), as well as seek other conditions guaranteeing the 6-hyperstability
of specified equations and control functions 6.

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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