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Abstract. It is known that the Power Means tend to the maximum of their arguments
when the exponents tend to +∞. We give certain necessary and sufficient conditions for
a 1-parameter family of quasi-arithmetic means generated by functions satisfying certain
smoothness conditions to have an analogous property. Our results are deeply connected with
operators introduced by Mikusiński and Páles in the late 1940s and late 1980s, respectively.
The main result is a generalization of the author’s earlier results.
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1. Introduction

There are several directions of exploration concerning means in mathematical
analysis. Definitely the most frequent are inequalities among various families
of means. It can be seen in the by-now-classical monography [1].

In the present paper we are going to discuss a limit property holding true in
certain 1-parameter families of the enormously vast family of quasi-arithmetic
means, introduced in the series of nearly simultaneous papers [2,4,6] as a
generalization of Power Means. Namely, for any continuous, strictly monotone
function f : U → R (U – an interval) one may define, for every vector of entries
a = (a1, . . . , ar) ∈ Ur, r ∈ N, with weights w = (w1, . . . , wr), where wi > 0 for
i = 1, . . . , r and w1 + · · · + wr = 1, the quasi–arithmetic mean

A[f ](a,w) := f−1
(
w1f(a1) + w2f(a2) + · · · + wrf(ar)

)
.

For U = (0,+∞) and f := pα, where

pα(x) =

{
xα α �= 0,

ln(x) α = 0,

one thus obtains the αth power mean.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00010-015-0398-3&domain=pdf
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We will now discuss some limit properties in this very rich family of means.
It is well known that, for the pα above and every all-positive-components vector
a with corresponding weights w,

lim
α→−∞ A[pα](a,w) = min(a), lim

α→+∞ A[pα](a,w) = max(a).

More generally, for a given sequence of means (Mn)n∈N one could study (when-
ever it exists) the pointwise limit limn→∞ Mn. In many families this limit is
either the maximum or minimum. As mentioned before, this property is known
best for the family of Power Means, but it is also pertinent to Gini means, Bon-
ferroni means, mixed means etc. (These families, except for Power Means, are
not quasi-arithmetic.)

It is much different for general quasi-arithemetic means. Some results con-
cerning quasi-arithmetic means were proved by Kolesarova [3]. We proved in [8]
certain results under an additional smoothness condition (the generating func-
tion is twice differentiable, having a nowhere vanishing first derivative). An-
other result is closely related to the previous result of Páles [7] (cf. Lemma 2.1),
announced by him during a private conversation.

We will discuss when the family of quasi-arithmetic means generated by
(fn)n∈N, fn : U → R tends to the maximum pointwise. More precisely

lim
n→∞ A[fn](a,w) = max(a)

for every admissible a and w. Hereafter such a family will be called max-
family. Analogously we define min-family. These definitions are adapatable to
many different means, but very often some natural adaptation is required (e.g.,
omitting weights, restricting the vector of arguments to a fixed length etc). For
example, in this terminology, (A[pn])n∈N is a max-family, while (A[p−n])n∈N is
a min-family.

We are going to present three necessary and sufficient conditions for the
family of quasi-arithmetic means to be a max-family (each time a requiring
different smoothness assumption).

2. Auxiliary results

In order to simplify many proofs in the present note we will restrict our con-
sideration just to the two variable case. It will be denoted briefly by

A[f ]
ξ (x, z) := A[f ]

(
(x, z), (ξ, 1 − ξ)

)

= f−1(ξf(x) + (1 − ξ)f(z)), x, z ∈ U, ξ ∈ (0, 1).

We will prove the following equivalence-type lemma, involving -[general]
weighted quasi-arithmetic means,-quasi-arithmetic means of two variables and
-some operator introduced by Páles [7].
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Lemma 2.1. Let (fn)n∈N be a family of continuous, strictly monotone functions
defined on an interval U . Then the following conditions are equivalent

(i) (fn) is a max-family,
(ii) limn→∞ A[fn]

ξ (x, z) = max(x, z) for x, z ∈ U and ξ ∈ (0, 1),

(iii) limn→∞
fn(x)−fn(y)
fn(z)−fn(y) = 0 for all x, y, z ∈ U , x < y < z.

Proof. The implication (i) ⇒ (ii) is trivial. For the converse implication, notice
that A[fn] is symmetric for each n ∈ N (one needs to simultaneously change
entries and weights). Moreover, for every function fn, vector a ∈ Ur satisfying
a1 ≤ a2 ≤ · · · ≤ ar and corresponding weights w, we have (using the brief
notation introduced in the beginning of the present section)

max(a) ≥ A[fn](a,w) ≥ A[fn]
wr

(ar, a1) .

Then, passing to the limit,

lim
n→∞ A[fn](a,w) = max(a1, ar) = ar = max(a).

(ii) ⇔ (iii) Let us assume that each fn is increasing (replacing fn by −fn

if necessary; cf. Remark 2.3). Then

fn(x) − fn(y)
fn(z) − fn(y)

< 0 for every n ∈ N and x, y, z ∈ U satisfying x < y < z.

Whence, for x, y, z ∈ U satisfying x < y < z and ξ ∈ (0, 1), one simply gets

y < A[fn]
ξ (x, z) ⇐⇒ fn(y) < ξfn(x) + (1 − ξ)fn(z)

⇐⇒ fn(x) − fn(y)
fn(z) − fn(y)

> ξ−1
ξ ,

⇐⇒ fn(x) − fn(y)
fn(z) − fn(y)

∈
(

ξ−1
ξ , 0

)
.

Upon passing y → z and ξ → 1 we obtain the (⇐) and the (⇒) part of proof,
respectively. Standard consideration involving the definition of limit is omitted
here. �

Now we are going to recall some specification of Mikusiński’s result [5]. He
and, independently, �Lojasiewicz (cf. [5, footnote 2]) established a handy tool
allowing us to compare quasi-arithmetic means. It is expressed in terms of the
operator

Af :=
f ′′

f ′

defined for every twice differentiable function having a nowhere vanishing first
derivative. They proved (in a much more general framework) the following
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Lemma 2.2. Let U be an interval, f, g : U → R be twice differentiable functions
with nowhere vanishing first derivatives. Then the following conditions are
equivalent:

• Af (x) ≤ Ag(x) for every x ∈ U ,
• A[f ](a,w) ≤ A[g](a,w) for every admissible a, w,
• A[f ]

ξ (x, y) ≤ A[g]
ξ (x, y) for every admissible x, y, and ξ.

The operator A is so central that, to make the notation more compact,
we will call a function [to be] D2 if it is twice differentiable with a nowhere
vanishing first derivative – in fact it is the weakest possible assumption needed
to define the operator A.

Remark 2.3. Lemma 2.2 has its own ‘equal-type’ version. Namely, in the set-
ting of the previous lemma the following conditions are equivalent:

• Af (x) = Ag(x) for every x ∈ U ,
• A[f ](a,w) = A[g](a,w) for every admissible a, w,
• A[f ]

ξ (x, y) = A[g]
ξ (x, y) for every admissible x, y, and ξ,

• f = αg + β for some α, β ∈ R, α �= 0.

Let us define, for a family (fn)n∈N, the following properties:

• D2 if fn is D2 for all n,
• increasing if A[fn](a,w) ≥ A[fm](a,w) for every n ≥ m and admissible a

and w [by Lemma 2.2 we obtain some equivalent definitions],
• lower bounded if all functions are differentiable, have nowhere vanishing

derivatives and there exists a universal constant C ∈ R satisfying f ′
n(y)/f ′

n(x) ≥
eC(y−x) for all n ∈ N and x, y ∈ U , x < y.

We also define their duals: min-, decreasing and upper bounded family. In
fact each result presented in this paper has its dual wording, which are omitted,
but may be similarly established and proved. Notice that the mapping f(x) �→
f(−x) is a natural transformation between relevant definitions [and results].
Boundedness of a family is connected with the scale {Ep}p∈R of log - exp means
(a subclass of quasi-arithmetic means with constant Mikusiński’s operator; cf.
[1, p. 269], [8]) defined for every a ∈ R

k (k ∈ N+) with corresponding weights
w as

Ep(a,w) :=

{
1
p ln (w1 · ep·a1 + w2 · ep·a2 + · · · + wk · ep·ak) , if p �= 0,

w1a1 + · · · + wkak, if p = 0.

Then, in view of Lemma 2.2, the family (fn)n∈N of differentiable, strictly
monotone functions defined on a common interval is lower bounded if and only
if there exists a universal constant C ∈ R satisfying

A[fn](a,w) ≥ EC(a,w) for all admissible a, w and n ∈ N.
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For a D2-family it will be also handy to write

X∞ :=
{

x ∈ U : lim
n→∞ Afn

(x) = +∞
}

. (2.1)

Notice that the set X∞ depends on the family (fn)n∈N, but in each usage of
this notion the familly will be known. Let us recall the major result from [8]:

Proposition 2.4. Let U be a closed, bounded interval, (fn)n∈N be an increasing
D2-family defined on U .

• If X∞ = U then (fn) is a max-family.
• If (fn) is a max-family then X∞ is a dense subset of U .

The proof enclosed in [8] was not written precisely enough. Because of
that this proposition will be reproved in Sect. 4.2 as one of the applications
of Theorem 3.1. Moreover, there appears a natural question: how to close the
gap between necessary and sufficient conditions (in [8] it was stated as an open
problem).

The answer is fairly non-trivial. Precisely, the fact whether the family is
a max-family cannot be completely characterized by the properties of X∞
(compare Propositions 4.1 and 4.3). Some examples, counter-examples as well
as the strengthening of Proposition 2.4 will be given in Sect. 4.1.

3. Main result

We prove the following equivalence-type result for the family of differentiable
functions to be max.

Theorem 3.1. Let U be an interval, (fn)n∈N be a lower bounded family defined
on U . Then the following conditions are equivalent

(i) (fn)n∈N is a max-family;
(ii) limn→∞

f ′
n(q)

f ′
n(p) = +∞ for all p, q ∈ U , p < q.

If, additionally, (fn)n∈N is a D2-family, there is an extra condition

(iii) limn→∞
∫ q

p
Afn

(x)dx = +∞ for all p, q ∈ U , p < q

equivalent to (i) and (ii).

We will now prove Theorem 3.1. Throughout the proof we will assume that
the constant C appearing in the definition of lower bounded family is negative.
When the familly is D2 then the equivalence (ii) ⇐⇒ (iii) is obvious. The
equivalence (i) ⇐⇒ (ii) will be shown in the following two subsections.
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3.1. Proof of (i) ⇒ (ii)

Let us assume that there exist x, z ∈ U , x < z such that

lim inf
n→∞

f ′
n(z)

f ′
n(x)

< +∞.

Then there exist H̄ > 0 and a subsequence (n1, n2, . . .) satisfying

f ′
nk

(z)
f ′

nk
(x)

< H̄, k ∈ N.

In particular, by the lower boundedness property, for every k ∈ N and p, q ∈
[x, z],

f ′
nk

(q)
f ′

nk
(p)

=
f ′

nk
(z)

f ′
nk

(x)
· f ′

nk
(x)

f ′
nk

(p)
· f ′

nk
(q)

f ′
nk

(z)
≤ f ′

nk
(z)

f ′
nk

(x)
eC(x−p)eC(q−z) ≤ H̄e2C(x−z).

Hence, with H := H̄e2C(x−z),

f ′
nk

(q)
f ′

nk
(p)

< H, for all k ∈ N and p, q ∈ [x, z].

Fix y ∈ (x, z) and (by Remark 2.3) assume f ′
n(y) = 1, fn(y) = 0 for all

n ∈ N or, equivalently,

fn(τ) =
∫ τ

y

f ′
n(t)

f ′
n(y)

dt, n ∈ N, τ ∈ U. (3.1)

Then one has fnk
(τ) ≤ H ·(τ −y) for τ ∈ (y, z). In particular, by the continuity

of fnk
,

fnk
(z) ≤ H · (z − y), k ∈ N. (3.2)

Moreover, for every k ∈ N we have the following implications:

f ′
nk

(y)/f ′
nk

(t) ≤ H, t ∈ (x, y),

f ′
nk

(t)/f ′
nk

(y) ≥ 1
H , t ∈ (x, y),

f ′
nk

(t) ≥ 1
H , t ∈ (x, y),

∫ y

x

f ′
nk

(t)dt ≥ y−x
H ,

−fnk
(x) ≥ y−x

H ,

fnk
(x) ≤ x−y

H . (3.3)

Since x−y
H < 0, there exists ξ ∈ (0, 1) such that

ξ x−y
H + (1 − ξ)H(z − y) < 0.

Whence, by (3.2) and (3.3),

ξfnk
(x) + (1 − ξ)fnk

(z) < 0, k ∈ N.
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But, by (3.1), fnk
is increasing and fnk

(y) = 0. Lastly, applying f−1
nk

to both
sides,

A[fnk
]

ξ (x, z) < y, k ∈ N.

Thus (fn)n∈N is not a max-family.

3.2. Proof of (ii) ⇒ (i)

For the most part of this proof we will be dealing with a certain property
of a quasi-arithmetic mean generated by a differentiable fuction f (having a
nowhere vanishing first derivative) satisfying

f ′(y)
f ′(x)

≥ eC·(y−x) for some C and all x, y ∈ U, y > x. (3.4)

Note that the inequality above has already appeared in the definition of lower
bounded family. Let us firstly establish the following

Lemma 3.2. Let U be an interval, f : U → R be a differentiable function with
a nowhere vanishing derivative satisfying (3.4) for some C < 0. Let us take
ξ ∈ (0, 1) and x, y, z ∈ U satisfying x < y < z. Then there exists Φ =
Φ(ξ, C, ε, x, y) such that for every ε ∈ (0, z − y)

f ′(z − ε)
f ′(y)

≥ Φ ⇒ A[f ]
ξ (x, z) ≥ y.

It could be observed that Lemma 3.2 implies the part (ii) ⇒ (i) of The-
orem 3.1. Indeed, by the definition, A[f ]

ξ (x, z) = A[f ]
1−ξ (z, x). So let us as-

sume without loss of generality that x < z. Take an arbitrary y ∈ (x, z) and
ε ∈ (0, z − y). There exists ny such that

f ′
n(z − ε)
f ′

n(y)
≥ Φ(ξ, C, ε, x, y) for every n > ny.

Thus, by Lemma 3.2,

A[fn]
ξ (x, z) ≥ y for every n > ny.

Lastly, upon passing y → z, one gets

lim
n→∞ A[fn]

ξ (x, z) = z.
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3.3. Proof of Lemma 3.2

In view of Remark 2.3, let us assume without loss of generality (like it was
already done in (3.1) ) that

f(τ) =
∫ τ

y

f ′(t)
f ′(y)

dt for τ ∈ U.

We will establish a certain lower bound for f(x) and, later, for f(z). Since
f ′(y) = 1, inequality (3.4) implies (for x = τ)

f ′(τ) ≤ eC(τ−y), τ ∈ (x, y).

Whence

f(y) − f(x) =
∫ y

x

f ′(τ)dτ ≤
∫ y

x

eC(τ−y)dτ = 1
C (1 − eC(x−y)).

Therefore, by f(y) = 0,

f(x) ≥ 1
C (eC(x−y) − 1).

A bound for f(z) looks fairly different. Fix ε ∈ (0, z − y). One has

f(z) =
∫ z

y

f ′(t)
f ′(y)

dt

≥
∫ z

z−ε

f ′(t)
f ′(y)

dt

=
f ′(z − ε)

f ′(y)

∫ z

z−ε

f ′(t)
f ′(z − ε)

dt

≥ f ′(z − ε)
f ′(y)

∫ z

z−ε

eC(t−z+ε)dt

=
1
C

· f ′(z − ε)
f ′(y)

(
eCε − 1

)
.

We are going to prove that A[f ]
ξ (x, z) ≥ y for a sufficiently large value of

f ′(z − ε)/f(y). Indeed, we have a series of (⇐) implications:

A[f ]
ξ (x, z) ≥ y

⇐ ξf(x) + (1 − ξ)f(z) ≥ f(y)

⇐ ξ
C · (eC(x−y) − 1) + 1−ξ

C · f ′(z − ε)
f ′(y)

(
eCε − 1

) ≥ 0

⇐ f ′(z − ε)
f ′(y)

≥ − ξ
1−ξ · eC(x−y) − 1

eCε − 1
=: Φ(ξ, C, ε, x, y).

In the last ⇐ implication it was important that ξ ∈ (0, 1), C < 0, and
ε > 0.
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4. Applications

4.1. Relations between max-family and X∞ set

We are heading now toward a possible strengthening of Proposition 2.4. We
will present vary situations in a sequence of propositions (examples). Let us
denote by λ, Hd and dimH the Lebesgue measure, d-dimensional Hausdorff
measure, and Hausdorff dimension, respectively. Moreover, the definition (2.1)
will be used.

Proposition 4.1. Let U be an interval, V be an arbitrary subset of U . If there
exists an open interval W ⊂ U such that λ(V ∩ W ) = 0 then there exists an
increasing D2-family (fn)n∈N, fn : U → R, n ∈ N, which is not a max-family,
although X∞ ⊃ V .

Proof. Without loss of generality, let us assume U = W . We will construct an
increasing D2-family (fn)n∈N, fn : U → R, n ∈ N satisfying (i) ‖Afn

‖L1(U) < 1
for any n ∈ N and (ii) X∞ ⊃ V . Then, by Theorem 3.1, this family will not
be max.

By the regularity of the Lebesgue measure, there exist open sets (Gk)∞
k=0

and (Hk)∞
k=0 satisfying (i) V � Gk � Hk ⊆ Gk−1, k ∈ N+, (ii) G0 ⊂ U and

(iii) λ(Hk) < 1
2k , k ∈ N. It follows from Tietze’s theorem that there exists a

family (sk)∞
k=1, sk : U → [0, 1] of continuous functions

sk(x) =

{
1 x ∈ Gk,

0 x ∈ U\Hk.

Then ‖sk‖L1(U) < 1
2k for any k ∈ N. Let us define

Afn
:= s1 + s2 + · · · + sn.

One has ‖Afn
‖L1(U) < 1 for any n ∈ N. Whence, by Theorem 3.1, (fn)n∈N

is not a max-family. Nevertheless Afn
(x) = n for each n ∈ N and x ∈ V . In

particular, X∞ ⊃ V . �
Proposition 4.2. Let U be an interval, (fn)n∈N, fn : U → R, n ∈ N be an
increasing D2-family. If λ(X∞ ∩ V ) > 0 for each open subset V ⊂ U , then
(fn) is a max-family.

Proof. Assume Afn
(x) > C for some C < 0, all x ∈ U , and all n ∈ N. Fix

a, b ∈ U , a < b. We have λ(X∞ ∩ [a, b]) > 0. For every M > 0, one has
⋃

n∈N

{x ∈ U : Afn
(x) > M} ⊃ X∞.

In particular, by the regularity of the Lebesgue measure and monotonicity of
n �→ Afn

, there exists nM such that

λ
(
[a, b] ∩ X∞\{x ∈ U : AfnM

(x) > M}) < 1/M.
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Equivalently,

λ
(
[a, b] ∩ X∞ ∩ {x ∈ U : AfnM

(x) > M}) > λ
(
[a, b] ∩ X∞

) − 1/M.

Whence,
b∫

a

AfnM
(x)dx ≥ C · (b − a) + M · λ

({x ∈ U : AfnM
(x) > M})

≥ C · (b − a) + M · λ
(
[a, b] ∩ X∞ ∩ {x ∈ U : AfnM

(x) > M})

≥ C · (b − a) + M · (λ(
[a, b] ∩ X∞

) − 1/M
)

= C · (b − a) − 1 + M · λ
(
[a, b] ∩ X∞

)
.

Upon taking a limit M → +∞ one gets

lim
M→∞

b∫

a

AfnM
(x)dx = +∞ for every a, b ∈ U, a < b.

Therefore, by the monotonicity property,

lim
n→∞

b∫

a

Afn
(x)dx = +∞ for every a, b ∈ U, a < b.

So, by Theorem 3.1, (fn)n∈N is a max-family. �
Proposition 4.3. Let U be an interval. There exists an increasing max-family
(fn)n∈N, fn : U → R satisfying dimH(X∞) = 0.

Proof. Let us enumerate all rational numbers contained in a set U :

Q ∩ U = (q1, q2, . . .).

Let B(x, r) := {y ∈ R : |x − y| < r} and

Qk =
k⋃

i=1

B

(
qi,

1
k2 · 2i

)
, Q̂k =

k⋃

i=1

B

(
qi,

2
k2 · 2i

)
.

Then both Qk and Q̂k are finite sums of open intervals, λ(Qk) ≤ 1
k2 , and

λ(Q̂k) ≤ 2
k2 . For each k ∈ N there exists a continuous function ck : U → [0, k2],

ck =

{
k2 Qk,

0 U\Q̂k.

Consider a D2-family (fn)n∈N defined on U satisfying Afn
= c1 + · · · + cn,

n ∈ N. Fix x, y ∈ U , x < y. By Theorem 3.1, to show that (fn)n∈N is a
max-family, it is sufficient to prove that

lim
n→∞

∫ y

x

Afn
(u)du = +∞. (4.1)
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Let us take qi ∈ Q∩ (x, y) and k0 such that B(qi,
1

k2
0·2i ) ⊂ (x, y). Then, for

k > max(i, k0) =: k1, one gets
∫ y

x

ck(u)du ≥
∫

B(qi,1/(k2·2i))

ck(u)du =
∫

B(qi,1/(k2·2i))

k2du > 21−i.

Therefore, for n > k1,
∫ y

x

Afn
(u)du ≥

n∑

k=k1+1

∫ y

x

ck(u)du > (n − k1)21−i.

Whence (4.1) holds. So (fn) is a max-family.
We will now prove that the Hausdorff dimension of the set X∞ equals 0.

Indeed,

c1(x) + · · · + cn−1(x) < n3 for every n ∈ N and x ∈ U.

Thus,

X∞ ⊆
∞⋂

n=1

∞⋃

k=n

supp ck ⊆
∞⋂

n=1

∞⋃

k=n

Q̂k.

Therefore, by the definition of Q̂k, one obtains

X∞ ⊆
∞⋃

k=n

Q̂k =
n⋃

i=1

B

(
qi,

2
n2 · 2i

)
∪

∞⋃

i=n+1

B

(
qi,

2
i2 · 2i

)
, n ∈ N.

Whence, for every d > 0 and n ∈ N, one gets

Hd(X∞) ≤
n∑

i=1

(
4

n2 · 2i

)d

+
∞∑

i=n+1

(
4

i2 · 2i

)d

≤ 4d

n2d

∞∑

i=1

1
2id

=
4d

n2d(1 − 2−d)
.

As n → ∞, we get Hd(X∞) = 0 for every d > 0. So dimH(X∞) = 0. �

Remark 4.4. It is known that X∞ is a Gδ-set for every max-family (cf. [8,
pp.204–205]. Therefore, X∞ could not be the set of rational numbers.

4.2. New proof of Proposition 2.4

The first part is simply implied by Proposition 4.2. To prove the second part,
we shall show that if X∞ were not dense, then there would exist a closed,
non-trivial (different from one point) interval I such that

MI := sup
x∈I

lim
n→∞ Afn

(x) < +∞.
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If this is so, one would get

sup
n∈N

∫

I

Afn
(x)dx < |I| · MI < +∞

and, by Theorem 3.1, the family (fn) would not be a max-family.
Assume to the contrary that for every closed, non-trivial interval I one has

MI = +∞.
Then for every closed, non-trivial interval I0 ⊂ U one can find a sequence

I0 ⊃ I1 ⊃ . . . of closed, non-trivial intervals satisfying

lim
n→∞ Afn

(x) > j, for every j ∈ N ∪ {0} and x ∈ Ij .

Indeed, for every j ∈ N ∪ {0}, in view of MIj
= +∞, there exist xj ∈ Ij

and nj such that Afnj
(xj) > j + 1. In particular, one can take some closed

neighbourhood Ij+1 � xj , Ij+1 ⊂ Ij , satisfying

Afnj
(x) > j + 1 for every x ∈ Ij+1.

Whence, X∞ ⊃ ⋂∞
j=0 Ij �= ∅, so that X∞ ∩ I0 �= ∅. As I0 was arbitrary,

X∞ is dense.

Open Access. This article is distributed under the terms of the Creative Commons Attribut-
ion 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.
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