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Two general theorems on superstability of functional equations
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Abstract. We prove that the superstability of some functional equations (e.g., of Cauchy,
d’Alembert, Wilson, Reynolds, and homogeneity) is a consequences of two simple theorems.
In this way we generalize several classical superstability results.
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Throughout this note, N, R and C stand, as usual, for the sets of positive
integers, reals and complex numbers, respectively. Moreover N0 := N∪ {0}, K
is either the field R or C, X is a normed linear space over K, and S and T are
nonempty sets.

We show that, under suitable assumptions, unbounded solutions of some
functional inequalities actually must be solutions of the corresponding func-
tional equations. This phenomenon is connected with the well known problem
of stability of functional equations, which started with a question of Ulam and
Hyers solution to it (see [17]; for more details see [15,18,21]). It seems that for
the first time it has been discovered by Baker et al. [6], during the study of
the stability of the exponential equation

f(x + y) = f(x)f(y). (1)

Namely, they have proved that if f is a function mapping a real vector space
X into R, satisfying

|f(x + y) − f(x)f(y)| ≤ δ, ∀x, y ∈ X

with some real δ > 0, then f is either bounded or exponential. That property of
functional equations is now usually called superstability and has already been
investigated in numerous papers (see, e.g., [2–5,7,9–11,14,16,19,20,28–35]) for
numerous functional equations.
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Let aj ∈ K and gj : T × S → S for j ∈ N. Looking closer at the known
results concerning the superstability of various particular cases of the equation

∞∑

j=1

ajf(gj(t, s)) = h(t)f(s) (2)

(with unknown functions f : S → X and h : T → K) one may notice that there
are many similarities between the ideas they are based on. Therefore we could
expect some more general theorems from which many of those superstability
outcomes could be derived. In this paper we prove two such simple theorems
and show examples of their consequences.

We write

F :=
{

f : S → X :
∞∑

j=1

ajf(gj(t, s)) is uniformly convergent in T × S

}
.

Clearly F = XS , if there is M ∈ N such that aj = 0 for j > M .

Theorem 1. Suppose that h : T → K, f ∈ F , N ∈ N, εj : S → R for
j ∈ N, δ > 0,

∥∥∥∥
l∑

j,k=1

ajak[f(gj(t2, gk(t1, s))) − f(gk(t1, gj(t2, s)))]
∥∥∥∥ ≤ εl(s),

∀t1, t2 ∈ T, s ∈ S, l ∈ N, l ≥ N (3)

and
∥∥∥∥

∞∑

j=1

ajf(gj(t, s)) − h(t)f(s)
∥∥∥∥ ≤ δ, ∀t ∈ T, s ∈ S. (4)

Then one of the following two conditions holds.
(i) h is bounded.
(ii) h and f satisfy Eq. (2) and there is M ∈ N such that

ajf(gj(t, s)) = 0, ∀s ∈ S, t ∈ T, j > M. (5)

Proof. Assume that h is unbounded. Since f ∈ F , there exists M ∈ N, M ≥ N ,
such that

∥∥∥∥
∞∑

j=M+m

ajf(gj(t, s))
∥∥∥∥ ≤ δ, ∀t ∈ T, s ∈ S, m ∈ N0.

Consequently, for each t ∈ T, s ∈ S, m ∈ N0,
∥∥∥∥

M+m∑

j=1

ajf(gj(t, s)) − h(t)f(s)
∥∥∥∥ ≤

∥∥∥∥
∞∑

j=1

ajf(gj(t, s)) − h(t)f(s)
∥∥∥∥

+
∥∥∥∥

∞∑

j=M+m+1

ajf(gj(t, s))
∥∥∥∥ ≤ 2δ. (6)
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Let (tn : n ∈ N) be a sequence in T with h(tn) �= 0 for n ∈ N and
limn→∞ |h(tn)| = ∞. Then (6) implies that

f(s) = lim
n→∞

M+m∑

i=1

ai

h(tn)
f(gi(tn, s)), ∀s ∈ S, m ∈ N0. (7)

Next, replacing s by gk(tn, s) in (6), we obtain
∥∥∥∥

M+m∑

j=1

ajf(gj(t, gk(tn, s))) − h(t)f(gk(tn, s))
∥∥∥∥

≤ 2δ, ∀t ∈ T, s ∈ S, m ∈ N0, k ∈ N. (8)

Consequently, using (7), (3) and (8), for t ∈ T, s ∈ S, m ∈ N0, we get

M+m∑

j=1

ajf(gj(t, s))

=
M+m∑

j=1

aj lim
n→∞

1
h(tn)

M+m∑

k=1

akf
(
gk(tn, gj(t, s))

)

= lim
n→∞

1
h(tn)

M+m∑

k=1

ak

M+m∑

j=1

ajf
(
gj(t, gk(tn, s))

)

= lim
n→∞

1
h(tn)

M+m∑

k=1

ak

[ M+m∑

j=1

ajf
(
gj(t, gk(tn, s))

) − h(t)f(gk(tn, s))
]

+ lim
n→∞ h(t)

M+m∑

k=1

ak

h(tn)
f(gk(tn, s)) = h(t)f(s),

which implies (5). Hence f and h satisfy Eq. (2). �

Corollary 1. Assume that N ∈ N, δ > 0, X = K, S = T , (3) holds, and f ∈ F
satisfies

∣∣∣∣
∞∑

j=1

ajf(gj(t, s)) − f(t)f(s)
∣∣∣∣ ≤ δ, ∀s, t ∈ S. (9)

Then one of the following two conditions holds.

(i) There is M ∈ N such that (5) holds and f is an unbounded solution of the
equation

∞∑

j=1

ajf(gj(t, s)) = f(t)f(s). (10)
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(ii) f is bounded and, in the case a :=
∑∞

j=1 |aj | < ∞,

|f(x)| ≤ a +
√

a2 + 4δ

2
, ∀x ∈ S. (11)

Proof. In view of Theorem 1 it is enough to consider the case when f is
bounded. Let

σ := sup {|f(x)| : x ∈ S}. (12)

Then there exists a sequence (yn : n ∈ N) of elements of S such that limn→∞
|f(yn)| = σ, and for n ∈ N

|f(yn)|2 ≤ δ +
∞∑

j=1

|aj ||f(gj(yn, yn))| ≤ δ + aσ.

Letting n → ∞ we have σ2 − aσ − δ ≤ 0, so

σ ≤ a +
√

a2 + 4δ

2
.

�

Remark 1. Actually, as it is easily seen in the proof of Theorem 1 (and Corol-
lary 1), the assumption that f ∈ F can be weakened. Namely it is enough to
assume that there is M ∈ N such that, for each k ∈ N, k ≥ M , there is Lk ∈ R

with
∥∥∥∥

∞∑

j=k

ajf(gj(t, s))
∥∥∥∥ ≤ Lk, ∀t ∈ T, s ∈ S.

The same applies to the next Theorem 2 and Corollary 2.

Remark 2. If
∑∞

i=1 ai =
∑∞

i=1 |ai|, then estimation (11) is sharp, because (3)
and (9) hold with f(t) = 1

2 (a +
√

a2 + 4δ) for t ∈ S.

Remark 3. One can easily see that estimation (11) in particular cases is the
same as obtained by Baker in [5] for the exponential functional equation (if
a1 = 1 and aj = 0 for j > 1) and d’Alembert’s equation (if a1 = a2 = 1

2 and
aj = 0 for j > 2).

Example 1. Below we give some examples of functions gi satisfying (3).

(i) Let (G,+) be an abelian semigroup, λ : S → G be surjective, and � :
G → S be a selection of λ (i.e., λ(�(x)) = x for x ∈ G). Let γj : T → G
and gj(t, s) = �(γj(t) + λ(s)) for j ∈ N, t ∈ T, s ∈ S. Then (3) holds for
any f ∈ XS (with N = 1 and εl(s) = 0 for s ∈ S).
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In the simplified case: S = G and λ(s) = s for s ∈ S, Eqs. (2) and (10)
take the forms

∞∑

j=1

ajf(γj(t) + s) = h(t)f(s),

∞∑

j=1

ajf(γj(t) + s) = f(t)f(s).

The following functional equations are particular cases of them: the expo-
nential Cauchy Eq. (1) and the multiplicative Cauchy equation f(xy) =
f(x)f(y), their partially pexiderized versions f(xy) = f(x)h(y) and f(x+
y) = f(x)h(y), d’Alembert’s equation

f(x + y) + f(x − y) = 2f(x)f(y) (13)

and its generalized version f(x+y)+f(x+ τ(y)) = f(x)h(y) (considered
in [4,22]; see also Example 2), the functional equation

f(x + f(y)) = f(x)f(y) (14)

(which is related with the Reynolds operator; see, e.g., [13,25]) and the
following pexiderization of it: f(x+ g(y)) = h(y)f(x). The superstability
of Eq. (14) has been proved in [27].

(ii) Let Y be a module over a commutative ring F, ξ : S → Y be a surjection,
� : Y → S be a selection of ξ, and γj : T → F for j ∈ N. Let gj(t, s) =
�(γj(t)ξ(s)) for t ∈ T, s ∈ S. Then it is easy to check that (3) holds for
any f ∈ XS (with N = 1 and εl(s) = 0 for s ∈ S).
In the simplified case: S = Y and ξ(s) = s for s ∈ S, Eq. (2) takes the
form

∞∑

j=1

ajf(γj(t)s) = h(t)f(s);

the superstability of the following particular case of it, the homogeneity
functional equation f(γ(t)s) = h(t)f(s), has been investigated, e.g., in
[19,20,34,35]. Clearly, the homogeneity equation may be considered a
pexiderization of the equation f(f(x)y) = f(x)f(y), also connected with
the Reynolds operator; in [8] it has been suggested to name that last
equation: the Reynolds equation.

(iii) Let ξ : S → (0,∞) be a surjection, � : (0,∞) → S be a selection of ξ,
and γj : T → R for j ∈ N. Let gj(t, s) = �(ξ(s)γj(t)) for s ∈ S, t ∈ T .
Then it is easy to check that (3) holds for any f ∈ XS (with N = 1 and
εl(s) = 0 for s ∈ S).
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If S = (0,∞) and ξ(s) = s for s ∈ S, Eq. (2) takes the form

∞∑

j=1

ajf
(
sγj(t)

)
= h(t)f(s)

and the special case of it is the functional equation f(st) = tf(s); its
superstability has been proved in [20,35].

(iv) Let (V, ·) be a groupoid (i.e., V is a nonempty set endowed with a binary
operation · : G2 → G) with (an)m = amn for a ∈ V, m, n ∈ N (where
a1 = a and an+1 = an ·a for n ∈ N), γj : T → N for j ∈ N, ξ : S → V be a
surjection and � : V → S be a selection of ξ. Write gj(t, s) = �

(
ξ(s)γj(t)

)

for j ∈ N, t ∈ T, s ∈ S. Then it is easy to check that (3) holds for any
f ∈ XS (with N = 1 and εl(s) = 0 for s ∈ S). Clearly, if (V, ·) is a group,
then we can take γj : T → Z.

(v) Let (G,+) be an abelian groupoid and g : G × S → S be a solution of
the translation equation g(t1, g(t2, s)) = g(t1 + t2, s) (for more informa-
tion on the translation equation see, e.g., [26]). Clearly g(t2, g(t1, s)) =
g(t1, g(t2, s)) for every t1, t2 ∈ G, s ∈ S, which means that (3) holds for
any f ∈ XS (with N = 1 and εl(s) = 0 for s ∈ S).

(vi) The last example is somewhat trivial. Namely, let λi : S → S and
gi(t, s) = λi(s) for i ∈ N, t, s ∈ S. Then (3) holds with N = 1 and
εl(s) = ‖∑l

i,j=1 aiaj [f(λj(λi(s))) − f(λi(λj(s)))]‖ for l ∈ N, s ∈ S.
Note that in this case, for any r ∈ S with f(r) �= 0, inequality (4) implies
that

|h(t)| ≤ 1
‖f(r)‖

(
δ +

∥∥∥∥
∞∑

j=1

ajf(λj(r))
∥∥∥∥

)
, ∀t ∈ T,

whence f(s) = 0 for each s ∈ S or h is bounded.

The next theorem concerns the case T = S.

Theorem 2. Let X be locally compact, T = S, N ∈ N, gi : S2 → S and
εi : S2 → R for i ∈ N, and δ : S → R. Suppose that f ∈ F and h : S → K

satisfy the inequalities
∥∥∥∥

l∑

i,j=1

aiaj

[
f(gi(t, gj(s, r))) − f(gi(gj(t, s), r))

]∥∥∥∥

≤ εl(t, s), ∀t, s, r ∈ S, l ∈ N, l ≥ N, (15)
∥∥∥∥

∞∑

i=1

aif(gi(t, s)) − h(t)f(s)
∥∥∥∥ ≤ δ(t), ∀t, s ∈ S. (16)

Then the following two conditions hold.
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(i) If f is unbounded, then h is a solution of the functional equation

∞∑

j=1

ajh(gj(t, s)) = h(t)h(s), ∀t, s ∈ S (17)

and there exists M ∈ N with ajh(gj(t, s)) = 0 for t, s ∈ S, j > M .
(ii) If 0 < C := sups∈S ‖f(s)‖ < ∞ and a :=

∑∞
j=1 |aj | < ∞, then

|h(t)| ≤ a +
δ(t)
C

, ∀t ∈ S. (18)

Proof. First assume that C := sups∈S ‖f(s)‖ < ∞ and a :=
∑∞

j=1 |aj | < ∞.
Then, for every s, t ∈ S,

‖h(t)f(s)‖ ≤
∥∥∥∥

∞∑

i=1

aif(gi(t, s))
∥∥∥∥ + δ(t) ≤ aC + δ(t),

whence |h(t)|C ≤ aC + δ(t) and consequently we obtain (18).
Now, suppose that f is unbounded and take a real L > 0. Since f ∈ F ,

there exists M(L) ∈ N, M(L) ≥ N , such that
∥∥∥∥

∞∑

i=M(L)+m

aif(gi(t, s))
∥∥∥∥ ≤ L, ∀t, s ∈ S, m ∈ N0.

Hence

∥∥∥∥
M(L)+m∑

i=1

aif(gi(t, s)) − h(t)f(s)
∥∥∥∥ ≤

∥∥∥∥
∞∑

i=1

aif(gi(t, s)) − h(t)f(s)
∥∥∥∥

+
∥∥∥∥

∞∑

i=M(L)+m+1

aif(gi(t, s))
∥∥∥∥ ≤ δ(t) + L, ∀s, t ∈ S,m ∈ N0. (19)

Let (sn : n ∈ N) be a sequence in S with f(sn) �= 0 for n ∈ N and
limn→∞ ‖f(sn)‖ = ∞. Since X is locally compact and consequently the unit
ball in X is compact, without loss of generality (it is enough to replace (sn :
n ∈ N) by a suitable subsequence) we can assume that there is x ∈ X with
‖x‖ = 1 and x = limn→∞ 1

‖f(sn)‖f(sn). So, by (19),

h(t)x = lim
n→∞

1
‖f(sn)‖

M(L)+m∑

i=1

aif(gi(t, sn)), ∀m ∈ N0, t ∈ S. (20)

Further, (15) and (19) imply that, for every u, v ∈ S, m ∈ N0 with m ≥
M(L),
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∥∥∥∥
m∑

i,j=1

aiajf(gi(gj(u, v), sn)) − h(u)
m∑

j=1

ajf(gj(v, sn))
∥∥∥∥ ≤ εm(u, v)

+
∥∥∥∥

m∑

i,j=1

aiajf(gi(u, gj(v, sn))) − h(u)
m∑

j=1

ajf(gj(v, sn))
∥∥∥∥

≤ εm(u, v) +
m∑

j=1

|aj |
∥∥∥∥

m∑

i=1

aif(gi(u, gj(v, sn))) − h(u)f(gj(v, sn))
∥∥∥∥

≤ εm(u, v) + (δ(u) + L)
m∑

j=1

|aj |

and consequently
∥∥∥∥

m∑

j=1

aj

∑m
i=1 aif(gi(gj(u, v), sn))

‖f(sn)‖ − h(u)
∑m

i=1 aif(gi(v, sn))
‖f(sn)‖

∥∥∥∥

≤ 1
‖f(sn)‖

(
εm(u, v) + (δ(u) + L)

m∑

i=1

|aj |
)

.

Letting n → ∞ we obtain
m∑

j=1

ajh(gj(u, v)) = h(u)h(v) ∀u, v ∈ S,m ∈ N0, m ≥ M(L).

Clearly, this yields ajh(gj(t, s)) = 0 for t, s ∈ S, j > M(L).
Thus we have proved that h is a solution of Eq. (17). �

Remark 4. In the situation where
∑∞

i=1 ai =
∑∞

i=1 |ai|, estimation (18) is
sharp, because (15) and (16) hold for h(t) = a + δ(t)

C and f(t) = x0 for t ∈ S,
with every x0 ∈ X, ‖x0‖ = C.

We also have the subsequent.

Corollary 2. Assume that T = S, N ∈ N, gi : S2 → S and εi : S2 → R for
i ∈ N, δ : S → R, X = K, (15) holds, and f ∈ F satisfies

∣∣∣∣
∞∑

j=1

ajf(gj(t, s)) − f(t)f(s)
∣∣∣∣ ≤ δ(t), ∀s, t ∈ S. (21)

Then the following two conditions hold.
(i) If f is unbounded, then it is a solution of Eq. (17) and there exists M ∈ N

with ajf(gj(t, s)) = 0 for t, s ∈ S, j > M .
(ii) If 0 < C := sups∈S |f(s)| < ∞ and a :=

∑∞
j=1 |aj | < ∞, then

|f(t)| ≤ a +
δ(t)
C

, ∀t ∈ S; (22)
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moreover, in the case Δ := sups∈S δ(s) < ∞,

C ≤ a +
√

a2 + 4Δ
2

. (23)

Proof. It is enough to use Theorem 2 with h = f and argue as in the proof of
Corollary 1.

�

Remark 5. If
∑∞

i=1 ai =
∑∞

i=1 |ai|, then without additional assumptions es-
timation (23) cannot be improved, because (15) and (21) hold with f(t) =
1
2 (a +

√
a2 + 4Δ) and δ(t) = Δ for t ∈ S.

It seems that it is also the case for (22), for take a,C ∈ (0,∞), a < C, S :=
[a,C], g1(t, s) := s, f(t) := t and δ(t) := C(t − a) for t, s ∈ S. Then it is easy
to check that (15) and (21) are valid with a1 := a and aj := 0 (and any gj)
for j > 1.

Example 2. (i) Let (S,+) be an abelian semigroup, ci ∈ S and gi(t, s) =
t+ s+ ci for i ∈ N, t, s ∈ S. Then (15) holds for any f ∈ XS (with N = 1
and εl(t, s) = 0 for t, s ∈ S) and functional Eq. (2) has the form

∞∑

i=1

aif(t + s + ci) = h(t)f(s); (24)

in particular, (17) has then the form (see [33]):
∑∞

i=1 aih(t + s + ci) =
h(t)h(s).

(ii) Let a1 = a2, aj = 0 for j > 2, (S,+) be an abelian semigroup, τ : S → S
be a homomorphism with τ(τ(s)) = s for s ∈ S. Then, in either of the
following two cases:
• g1(t, s) = t + s, g2(t, s) = τ(t) + s for t, s ∈ S;
• g1(t, s) = t + s, g2(t, s) = t + τ(s) for t, s ∈ S,

condition (15) holds for any f ∈ XS (with N = 1 and εl(t, s) = 0 for
t, s ∈ S), and Eq. (2) takes (with a1 = 1) one of the forms:

f(t + s) + f(τ(t) + s) = h(t)f(s), (25)
f(t + s) + f(t + τ(s)) = h(t)f(s). (26)

Those two equations are partial pexiderizations of a generalization of the
d’Alembert functional Eq. (13). Their superstability has been discussed
in [4,22]; one can easily derive [4, Theorems 1, 2] and [22, Theorems 1, 4]
from our Theorem 2; independently, results analogous to those in [22], with
τ(s) = −s, have been obtained by Tyrala [36]. [In the case τ(s) = −s, Eq.
(25) is known as Wilson’s first generalization of d’Alembert’s functional
equation and Eq. (26) is a particular case of Wilson’s second generalization
of d’Alembert’s functional equation (see [1]; cf. also [37])].

(iii) In the case where a1 = 1 and aj = 0 for j > 1, (S, ·) is a semigroup,
μ : S → S is a homomorphism with μ ◦ μ = μ, and g1(t, s) = μ(t) · μ(s),
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condition (15) holds for every f : S → X (with N = 1 and εl(t, s) = 0
for t, s ∈ S) and, if in particular μ(s) = s for s ∈ S, (2) has the form
f(t·s) = h(t)f(s), which is a partial pexiderization of the equation h(t·s) =
h(t)h(s). In this case, from Theorem 2, we obtain a new characterization
of multiplicative functions h : S → K.

(iv) Let (G, 
) be a semigroup, λ : S → G be surjective and ξi : G → S be a
selection of λ for i ∈ N. Write gi(t, s) = ξi(λ(t) 
 λ(s)) for i ∈ N, t, s ∈ S.
Then it is easy to check that (15) holds for every f ∈ XS (with N = 1
and εl(t, s) = 0 for t, s ∈ S).

(v) We finish with a somewhat trivial example. Namely, let λi : S → S and
gi(t, s) = λi(t) for i ∈ N, t, s ∈ S. Then (15) holds with N = 1 and
εl(t, s) = ‖∑l

i,j=1 aiaj [f(λi(t)) − f(λi(λj(t)))]‖ for l ∈ N, t, s ∈ S.

Finally, from Theorems 1 and 2 we immediately obtain the following corol-
lary.

Corollary 3. Let X be locally compact, T = S, N ∈ N, conditions (3) and (15)
be valid with suitable εl, and δ > 0. Suppose that f ∈ F and h : S → K satisfy

∥∥∥∥
∞∑

i=1

aif(gi(t, s)) − h(t)f(s)
∥∥∥∥ ≤ δ, ∀t, s ∈ S. (27)

Then one of the following three conditions holds.
(i) f and h satisfy the functional equations

∞∑

i=1

aih(gi(t, s)) = h(t)h(s), (28)

∞∑

i=1

aif(gi(t, s)) = h(t)f(s) (29)

and there is M ∈ N with ajh(gj(t, s)) = 0 and ajf(gj(t, s)) = 0 for
t, s ∈ S, j > M .

(ii) f is unbounded, h is a bounded solution of Eq. (28) with |h(t)| ≤ ∑∞
i=1 |ai|

for t ∈ S, and there is M ∈ N with ajh(gj(t, s)) = 0 for t, s ∈ S, j > M .
(iii) f and h are bounded and, in the case a :=

∑∞
i=1 |ai| < ∞, |h(t)| ≤ a + δ

C
for t ∈ S, where 0 < C := supt∈S ‖f(t)‖.

Remark 6. It seems that, in the general situation, we cannot expect much more
information on f in statement (ii) of Corollary 3, statement (i) of Theorem
2, and in Theorem 1 for bounded h. For instance, if s0 ∈ S, h(t) = 0 and
g1(t, s) = s0 for s, t ∈ S, then (3) and (15) are valid with aj = 0 (and any gj)
for j > 1 and every function f : S → X satisfies (27) with δ = ‖a1f(s0)‖.

However, in some special cases we can get a further characterization of
f ; for some details see, e.g., [12,21,22,36]. We will discuss that problem in
subsequent publications.
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Remark 7. The functions gj , given in Example 2(i), satisfy condition (3), as
well; the same applies to Example 2(iii), provided the semigroup S is commu-
tative. Furthermore, one can easily check that also the first pair of functions
g1, g2, defined in Example 2(ii), fulfils (3) (with a1 = a2 and aj = 0 for j > 2).

Some information on functional equations similar to (3) can be found, e.g.,
in [23,24].
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Podchora̧żych 2, 30-084 Kraków
Poland
e-mail: jbrzdek@up.krakow.pl



Vol. 89 (2015) Two general theorems on superstability of functional equations 783

Adam Najdecki
Faculty of Mathematics and Natural Sciences
University of Rzeszów
Rejtana 16A, 35-959 Rzeszow
Poland
e-mail: najdecki@ur.edu.pl

Bing Xu
Department of Mathematics
Sichuan University
Chengdu, 610064 Sichuan
People’s Republic of China
e-mail: bxu@scu.edu.cn

Received: November 16, 2013


	Two general theorems on superstability of functional equations
	Abstract
	Acknowledgments
	Open Access
	References




