
Aequat. Math. 88 (2014), 169–173
c© The Author(s) 2014. This article is published
with open access at Springerlink.com
0001-9054/14/010169-5
published online January 3, 2014
DOI 10.1007/s00010-013-0246-2 Aequationes Mathematicae

A note on d’Alembert’s functional equation on a restricted
domain

Anna Bahyrycz and Janusz Brzdȩk

Abstract. Let A be a subgroup of a commutative group (G, +) and P be a quadratically
closed field. We give the full description of all pairs of functions f : G → P and g : A → P
such that f(x + y) + f(x − y) = 2f(x)g(y) for (x, y) ∈ G × A.

Mathematics Subject Classification (2010). 39B52, 39B55.

Keywords. d’Alembert’s functional equation, cosine function, restricted domain, quadrati-

cally closed field.

In [4] we gave a full description of functions f mapping a commutative group
(G,+) into a quadratically closed field P and satisfying the condition

f(x + y) + f(x − y) = 2f(x)f(y) (1)

for all (x, y) ∈ A×G, where A is a subgroup of G. With this note we would like
to complement those results and provide a description of functions f fulfilling
(1) for all (x, y) ∈ G×A; those two issues seem to be very similar, but actually
they differ significantly (see Remark 1). Next, it is natural to generalize the
problem and consider it for Wilson’s first generalization of (1)

f(x + y) + f(x − y) = 2f(x)g(y), (2)

that is to investigate functions f : G → P and g : A → P such that (2)
holds for (x, y) ∈ G × A. Note yet that, with g(x) ≡ 1, equation (2) becomes
Jensen’s equation, which is much better known in its equivalent (under suitable
assumptions) form f

(
1
2 (x + y)

)
= 1

2 (f(x)+f(y)). For further information and
some recent results concerning the equations mentioned above see [1–9].

Throughout this paper (G,+) is a commutative group, A is a subgroup of G,
and P is a field that is quadratically closed (i.e., for each a ∈ P there is b ∈ P
with a = b2). If charP �= 2, then for a function m : G → P,me and mo denote
the even and odd parts of m, respectively, i.e., me(x) = 1

2 (m(x)+m(−x)) and
mo(x) = 1

2 (m(x)−m(−x)) for x ∈ G. Moreover, for a ∈ G and D ⊂ G we write
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2D := {2x : x ∈ D}, a + D := {a + b : b ∈ D}, and a − D := {a − b : b ∈ D}.
We need the following result from [1, Lemma 3].

Theorem 1. Let char P �= 2. Functions f, g : G → P, f(G) �= {0}, satisfy (2)
for all x, y ∈ G if and only if one of the following two statements holds.
(i) There are an exponential m : G → {−1, 1} (i.e., m(x+y) = m(x)m(y) for

x, y ∈ G), α ∈ P and an additive L : G → P (i.e., L(x+y) = L(x)+L(y)
for x, y ∈ G) with f(x) = m(x)(L(x) + α) and g(x) = m(x) for x ∈ G.

(ii) There are an exponential m : G → P\{0} and constants β, γ ∈ P such
that f(x) = βme(x) + γmo(x) and g(x) = me(x) for x ∈ G.

In what follows, if S is a subgroup of G, then we say that a function ξ,
mapping the factor group G/S into G, is a lifting provided ξ([y]) ∈ [y] for
y ∈ G, where [y] := y + S. We begin with the case when char P �= 2.

Theorem 2. Functions f : G → P, f(G) �= {0}, and g : A → P satisfy (2) for
(x, y) ∈ G × A if and only if one of the following two statements is valid.
(α) There are an exponential μ : A → {−1, 1}, a family of additive functions

Lσ : A → P for σ ∈ G/A, a lifting ξ : G/A → G with ξ([0]) = 0, and a
function α : G/A → P with f(w) = μ(w−ξ([w]))(L[w](w−ξ([w]))+α([w]))
for w ∈ G and g = μ.

(β) There exist an exponential m : A → P\{0}, a lifting ξ : G/A → G
with ξ([0]) = 0, and functions β, γ : G/A → P such that g = me and
f(w) = β([w])me(w − ξ([w])) + γ([w])mo(w − ξ([w])) for w ∈ G.

Proof. Let f, g satisfy (2) for (x, y) ∈ G × A. Then, with y = 0 in (2), we
obtain g(0) = 1. Next, replacing y with −y in (2) we get 2f(x)g(−y) = f(x −
y) + f(x + y) = 2f(x)g(y) for (x, y) ∈ G × A, which means that g is even.
Write hx(a) = f(x + a) for (x, a) ∈ G × A. Then

hx(b + a) + hx(b − a) = 2hx(b)g(a), a, b ∈ A, x ∈ G. (3)

Let ξ : G/A → G be a lifting with ξ([0]) = 0 and Hs := hξ(s) for s ∈ G/A.
Then

f(w) = f(ξ([w]) + w − ξ([w])) = H[w](w − ξ([w])), w ∈ G. (4)

Moreover, by (3), Hs(b + a) + Hs(b − a) = 2Hs(b)g(a) for a, b ∈ A, s ∈ G/A.
If g(A) ⊂ {−1, 1}, then Theorem 1, with f = Hs, yields g = μ and Hs(a) =

μ(a)(Ls(a) + α(s)) for a ∈ A, s ∈ G/A, with some family of additive functions
Ls : A → P (for s ∈ G/A), an exponential μ : A → {−1, 1} and some
α : G/A → P . Hence and from (4) we obtain the form of f described in (α).

If there is a ∈ A with g(a) �= 0 and g(a)2 �= 1, then by Theorem 1(ii), for
each s ∈ G/A, there exist an exponential ms : A → P and β1(s), γ1(s) ∈ P
such that g = ms

e and Hs(a) = β1(s)ms
e(a)+γ1(s)ms

o(a) for a ∈ A, s ∈ G/A.
Clearly, with m := m[0], we have

ms(a) ∈ {m(a),m(−a)}, a ∈ A, s ∈ G/A. (5)
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Suppose that there are s ∈ G/A and a, b ∈ A with ms(a) = m(a) �= m(−a)
and ms(b) = m(−b) �= m(b). Then ms(a + b) = ms(a)ms(b) �= m(a)m(b) =
m(a + b) and ms(a + b) = ms(a)ms(b) �= m(−a)m(−b) = m(−a − b), which
contradicts (5). Thus we have proved that ms = m or ms = m◦ ι for s ∈ G/A,
where ι : A → A is given by: ι(a) = −a for a ∈ A. Note yet that (m◦ι)o = −mo.
Whence and from (4), f(w) = β([w])me(w−ξ([w]))+γ([w])mo(w−ξ([w])) for
w ∈ G, where β(s) = β1(s) and γ(s) = −γ1(s) if ms = m ◦ ι and γ(s) = γ1(s)
if ms = m. This completes the proof of the necessary condition.

Now we show the sufficient condition. Write fs(a) := f(ξ(s) + a) for a ∈
A, s ∈ G/A. Then, from Theorem 1, we obtain that fs(a + b) + fs(a − b) =
2fs(a)g(b) for a, b ∈ A. Hence f(x+y)+f(x−y) = f[x](x−ξ([x])+y)+f[x](x−
ξ([x]) − y) = 2f(ξ([x]) + x − ξ([x]))g(y) = 2f(x)g(y) for x ∈ G, y ∈ A. �

Theorem 2 (with f = g) yields at once the following.

Corollary 1. A function f : G → P, f(G) �= {0}, fulfils (1) for (x, y) ∈ G × A
if and only if either

f(w) = μ(w − ξ([w]))
(
L[w]

(
w − ξ([w])

)
+ α([w])

)
, w ∈ G (6)

with an exponential μ : A → {−1, 1}, a family of additive functions Lσ : A → P
for σ ∈ G/A, a lifting ξ : G/A → G, and a function α : G/A → P such that
ξ([0]) = 0, α([0]) = 1 and L[0](y) = 0 for y ∈ A, or

f(w) = β([w])me

(
w − ξ([w])

)
+ γ([w])mo

(
w − ξ([w])

)
, w ∈ G (7)

with an exponential m : A → P , a lifting ξ : G/A → G, and some functions
β, γ : G/A → P such that ξ([0]) = 0, β([0]) = 1, and γ([0]) = 0.

Remark 1. Next, let A �= G, f : G → P, f(A) = {0}, f(G\A) = {1}, and
g : A → P, g(A) = {1}. Then (2) holds for all (x, y) ∈ G × A. But g cannot be
extended to a function g0 : G → P such that f(x+ y)+ f(x− y) = 2f(x)g0(y)
for all (x, y) ∈ G2, because f(0 + w) + f(0 − w) = 2 �= 0 = 2f(0)g(w) for
w ∈ G\A.

The situation when a pair of functions f, g : G → P satisfies (2) for all
(x, y) ∈ A × G appears to be significantly different from that considered in
this paper and it seems that the methods used here cannot be applied for it,
except the case f = g, which can be easily reduced to the case when (1) holds
for all (x, y) ∈ G×A, because then f must be even (it is enough to take x = 0
in (1)). This and Corollary 1 yield a description of the necessary form of all
f : G → P satisfying (1) for (x, y) ∈ A × G. However, a reasonably simple
description of the sufficient form of all such f seems to be a nontrivial task
(as we see in [4]) and therefore the results in [4] cannot be easily derived from
Corollary 1.

We end the paper with the case char P = 2, when (2) takes the form

f(x + y) + f(x − y) = 0. (8)
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Theorem 3. Let char P = 2 and B ⊂ G,B �= ∅. Then f : G → P satisfies (8)
for (x, y) ∈ G × B if and only if there is γ : G/S0 → P with f(x) = γ([x]) for
x ∈ G, where S0 denotes the subgroup of G that is generated by the set 2B.

Proof. Let f satisfy (8) for all (x, y) ∈ G × B and A0 := {y ∈ G : f(x + y) =
f(x) for x ∈ G}. Then, for all y, z ∈ A0, x ∈ G, f(x+y−z) = f(x+y−z+z) =
f(x + y) = f(x), whence y − z ∈ A0. So, A0 is a subgroup of G.

Let S0 denote the subgroup of G that is generated by 2B. Taking y ∈ B and
replacing x with x+ y in (8) we get f(x+ 2y)+ f(x) = 0, whence f(x+ 2y) =
−f(x) = f(x) for x ∈ G, y ∈ B. This implies that 2B ⊂ A0, whence S0 ⊂ A0.
Consequently f(x + y) = f(x) for x ∈ G, y ∈ S0. So, we may define a function
γ : G/S0 → P by γ([x]) = f(x) for x ∈ G.

To complete the proof, suppose that there is γ : G/S0 → P with f(x) =
γ([x]) for x ∈ G. Take x ∈ G and y ∈ B. Then x+y− (x−y) = 2y ∈ 2B ⊂ S0,
which means that [x + y] = [x − y] and consequently f(x + y) + f(x − y) =
γ([x + y]) + γ([x − y]) = 2γ([x + y]) = 0. �
Proposition 1. Let char P = 2 and B ⊂ G,B �= ∅. Then every function
f : G → P fulfilling (8) for (x, y) ∈ G × B satisfies (8) for (x, y) ∈ G2 if and
only if the subgroup of G that is generated by 2B is equal to 2G.

Proof. Let S0 denote the subgroup generated by 2B. First assume that S0 =
2G. Let f : G → P fulfil (8) for (x, y) ∈ G × B. Then the function f has the
form described in Theorem 3. Since, for every x, y ∈ G, we have x + y − (x −
y) = 2y ∈ 2G = S0, this means that f(x + y) = f(x − y) and consequently
f(x + y) + f(x − y) = 2f(x + y) = 0.

Now, suppose that there is z ∈ 2G\S0. Then z = 2v for some v ∈ G. Take
p ∈ P with p �= 0 and define γ : G/S0 → P by γ([z]) = p and γ([x]) = 0 for
x ∈ G with [x] �= [z]. Let f(x) = γ([x]) for x ∈ G. Then, by Theorem 3, (8)
holds for (x, y) ∈ G × B, but f(v + v) + f(v − v) = f(2v) + f(0) = p �= 0. �
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