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Normed spaces equivalent to inner product spaces
and stability of functional equations

Jacek Chmieliński

Abstract. Let (X, ‖ · ‖) be a normed space. If ‖ · ‖i is an equivalent norm coming from an
inner product, then the original norm satisfies an approximate parallelogram law. Applying
methods and results from the theory of stability of functional equations we study the reverse
implication.
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1. Introduction

Let (X, ‖ · ‖) be a real or complex normed space. Suppose that the norm ‖ · ‖
is equivalent to a norm ‖ · ‖i coming from an inner product. More precisely,
assume that for some k ≥ 1 we have

1
k

‖x‖i ≤ ‖x‖ ≤ k‖x‖i, x ∈ X. (1)

Following Joichi [14] we say that a normed space (X, ‖ · ‖) is equivalent to an
inner product space (X is an e.i.p.-space) iff there exists an inner product in X
and a norm ‖·‖i generated by this inner product such that (1) holds with some
k ≥ 1. Although there are numerous characterizations of inner product spaces
(cf. e.g. [4,3]), not so many are known for normed spaces merely equivalent
to inner product ones. Joichi himself [14, Theorem and Corollary] proved that
for a real normed space X the following conditions are equivalent.

(i) X is an e.i.p.-space;
(ii) there exists a constant k ≥ 1 and a Hilbert space H such that for

each finite-dimensional subspace M of X there exists a linear mapping
TM : M → H such that
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1
k

‖x‖ ≤ ‖TMx‖ ≤ k‖x‖, x ∈ M ;

(that is X is crudely finitely representable in H – cf. [10, Theorem 6.2])
(iii) there exists a constant k ≥ 1 such that for each two finite-dimensional

subspaces M and N with dimM = dimN , there exists a linear mapping
T from M onto N such that

1
k

‖x‖ ≤ ‖Tx‖ ≤ k‖x‖, x ∈ M.

Note that condition (iii) with k = 1, i.e., when any two finite and equi-dimen-
sional subspacesM,N are isometrically equivalent, is a necessary and sufficient
condition for X to be an inner product space. In fact, it suffices to consider
only two-dimensional subspaces M,N (cf. [4, (20.1)]). Other characterizations
of e.i.p.-spaces were given e.g. by Lindenstrauss and Tzafriri [22] and Figiel and
Pisier [11]. Our aim is to provide some new characterizations of e.i.p.-spaces
in possibly simple forms.

Let us write (1) in the following form, with ε ≥ 0,
1

1 + ε
‖x‖i ≤ ‖x‖ ≤ (1 + ε)‖x‖i, x ∈ X (2)

or, equivalently,

| ‖x‖ − ‖x‖i | ≤ εmin{‖x‖, ‖x‖i}, x ∈ X. (3)

It follows from (2) that

‖x+ y‖2 + ‖x− y‖2 ≤ (1 + ε)2
(‖x+ y‖2

i + ‖x− y‖2
i

)
, x, y ∈ X

and
1

2‖x‖2 + 2‖y‖2
≤ (1 + ε)2

1
2‖x‖2

i + 2‖y‖2
i

, x, y ∈ X, (x, y) �= (0, 0).

Consequently, since the norm ‖ · ‖i satisfies the parallelogram law,

‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≤ (1 + ε)4

‖x+ y‖2
i + ‖x− y‖2

i

2‖x‖2
i + 2‖y‖2

i

= (1 + ε)4

for (x, y) �= (0, 0). Substituting x+y and x−y in place of x and y, respectively,
one obtains

‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≥ 1

(1 + ε)4

thus finally

1
(1 + ε)4

≤ ‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≤ (1 + ε)4, x, y ∈ X, (x, y) �= (0, 0). (4)

Taking δ := (1 + ε)4 − 1, we write (4) in the form

1
1 + δ

≤ ‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≤ 1 + δ, x, y ∈ X, (x, y) �= (0, 0) (5)
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or, equivalently,
∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ 2δ(‖x‖2 + ‖y‖2), x, y ∈ X. (6)

To sum up, we have.

Theorem 1.1. If a real or complex normed space X is equivalent to an inner
product space, i.e., if (2) holds, then the norm satisfies the approximate par-
allelogram law (6) with δ = (1 + ε)4 − 1.

On the other hand, condition (6) is not sufficient for X to be equivalent to
an inner product space. We will explain this in the next section by considering
an example of a space X which is not equivalent to an inner product one and
satisfies condition (6) with δ arbitrarily close to 0.

For n ≥ 2 each inner product norm satisfies a generalized parallelogram
law (cf. [18]):

∑

θj=±1

∥
∥
∥
∥
∥
∥

n∑

j=1

θjxj

∥
∥
∥
∥
∥
∥

2

= 2n
n∑

j=1

‖xj‖2, x1, . . . , xn ∈ X.

Proceeding similarly as above one can show the following result.

Theorem 1.2. If a real or complex normed space X is equivalent to an inner
product space, i.e., if (2) holds with some ε ≥ 0, then the norm satisfies the
approximate generalized parallelogram law (with δ = (1 + ε)4 − 1)

∣
∣
∣
∣
∣
∣
∣

∑

θj=±1

∥
∥
∥
∥
∥
∥

n∑

j=1

θjxj

∥
∥
∥
∥
∥
∥

2

−2n
n∑

j=1

‖xj‖2

∣
∣
∣
∣
∣
∣
∣
≤ 2nδ

n∑

j=1

‖xj‖2, x1, . . . , xn ∈ X, n≥ 2

(7)

or, equivalently,

1
1 + δ

≤
∑

θj=±1

∥
∥
∥
∑n

j=1 θjxj

∥
∥
∥

2

2n
∑n

j=1 ‖xj‖2
≤ 1 + δ,

x1, . . . , xn ∈ X, n ≥ 2
(x1, . . . , xn) �= (0, . . . , 0). (8)

2. The von Neumann–Jordan constant

Suppose that the norm in X satisfies, with some ε ∈ [0, 1], the inequality
∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ 2ε

(‖x‖2 + ‖y‖2
)
, x, y ∈ X (9)

or equivalently, with c := 1 + ε,

1
c

≤ ‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≤ c, (0, 0) �= (x, y) ∈ X2. (10)
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The smallest constant c for which the above inequalities hold is called the von
Neumann–Jordan constant and is denoted by CNJ (X) (this notion has been
introduced by Clarkson [7], however, implicitly, it appeared already in [15]).
More precisely:

CNJ (X) := inf

⎧
⎨

⎩
c ≥ 1 :

1
c

≤ ‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
≤ c,

x, y ∈ X,
(x, y) �= (0, 0)

⎫
⎬

⎭

= sup
{‖x+ y‖2 + ‖x− y‖2

2‖x‖2 + 2‖y‖2
: x, y ∈ X, (x, y) �= (0, 0)

}
.

It is visible that 1 ≤ CNJ(X) ≤ 2 and CNJ(X) = 1 if and only if, X is an inner
product space (Jordan–von Neumann theorem). For lp spaces (p ≥ 1) we have
CNJ (lp) = 2

2
min{p,p∗} −1, where 1

p + 1
p∗ = 1 (see [7]). Moreover, CNJ(l∞) = 2

and CNJ (X) = CNJ (X∗). There are many papers devoted to the CNJ (X) con-
stant and geometrical properties of X which can be derived from the value of
this constant (cf. for example [9,19,20,25]). Generally, one could say that the
smaller the CNJ(X) constant is, the better properties the space X possesses.
There are also interesting connections between CNJ(X) and other geometrical
constants (see e.g. [2]).

It is convenient to consider an auxiliary constant (defined and discussed in
[20]):

C̃NJ(X) := inf{CNJ (X, | · |) : | · | norm equivalent with ‖ · ‖}.
Note that 1 ≤ C̃NJ (X) ≤ 2 and C̃NJ(X) ≤ CNJ (X). As a generalization of
CNJ (X), the n-th von Neumann–Jordan constant C(n)

NJ(X) was defined in [21].

C
(n)
NJ(X) := sup

⎧
⎪⎨

⎪⎩

∑
θj=±1

∥
∥
∥
∑n

j=1 θjxj

∥
∥
∥

2

2n
∑n

j=1 ‖xj‖2
: xj ∈ X,

n∑

j=1

‖xj‖2 �= 0

⎫
⎪⎬

⎪⎭
.

Obviously, C(2)
NJ (X) = CNJ(X). X is a Hilbert space if, and only if C(n)

NJ (X) =
1 for some n (and, equivalently, for all n).

We have shown that inequality (9) is a necessary condition for a normed
space to be equivalent to an inner product one. We ask if it is also a sufficient
condition. Does there exist ε0 > 0 such that if the norm in a given space
X satisfies (9) with some ε < ε0, then it is equivalent to an inner product
one? Equivalently: is it true that for some α ∈ (1, 2] inequality CNJ (X) < α
yields that X is equivalent to an inner product space? The answer to this
question is negative. There exist normed spaces with von Neumann–Jordan
constants arbitrarily close to 1 which are not equivalent to any inner product
space. Hashimoto and Nakamura [13] constructed a Banach space X such that
C̃NJ (X) = 1 and X is not equivalent to any Hilbert space. The construction
is as follows. Let Xn denote the an-dimensional space lan

pn
with pn = 2− 1

n and
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an being a suitably chosen increasing sequence of positive integers such that
C

(an)
NJ (lan

pn
) > n. Thus CNJ (Xn) = 2

1
2n−1 . The desired space X is defined as an

l2-direct sum
⊕∞

n=1Xn. It follows from the construction that C̃NJ(X) = 1.
On the other hand supm∈N C

(m)
NJ (X) = ∞, which would be impossible if X

were equivalent to an inner product space, as it follows from (8). This example
explains that condition (9), although necessary, is not sufficient for X to be
equivalent to an inner product space. The sufficiency of the stronger (7) is an
open problem.

3. An application of a quadratic equation and its stability

Consider the approximate parallelogram law in a more general form. Assume
that the norm in a real or complex space X satisfies

∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ Φ(x, y), x, y ∈ X (11)

with some mapping Φ: X2 → [0,∞), an ask whether (or when) this enforces
X to be equivalent (and possibly not necessarily equal) to an inner product
space. One can also consider a more general version of condition (7):

∣
∣
∣
∣
∣
∣
∣

∑

θj=±1

∥
∥
∥
∥
∥
∥

n∑

j=1

θjxj

∥
∥
∥
∥
∥
∥

2

−2n
n∑

j=1

‖xj‖2

∣
∣
∣
∣
∣
∣
∣
≤Φ(x1, . . . , xn), x1, . . . , xn ∈ X, n≥2.

(12)

Let q : X → R satisfy the quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y), x, y ∈ X.

It is known (cf. [1, §11.1, Proposition 1, p.166]) that there exists a symmetric
and bilinear form B : X2 → R such that q(x) = B(x, x) for x ∈ X. Moreover,
B is unique and given by B(x, y) = 1

4 (q(x + y) − q(x − y)) for x, y ∈ X.
There is a vast literature devoted to various kinds of stability of the quadratic
functional equation and its various modifications (cf. e.g. the book of Jung
[16, Chapter 8]). In particular there are results showing that if a mapping
f : X → R satisfies

|f(x+ y) + f(x− y) − 2f(x) − 2f(y)| ≤ Φ(x, y), x, y ∈ X,

with a suitable control mapping Φ: X2 → [0,∞), then f can be approximated
by a quadratic mapping q.

Let us mention some considered forms of Φ.

• Φ(x, y) = ε (cf. [6,24]);
• Φ(x, y) = ξ + ε(‖x‖p + ‖y‖p), p �= 2 (cf. [8]);
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• Φ–arbitrary mapping satisfying
∞∑

i=1

2−2iΦ(2i−1x, 2i−1x) < ∞ or
∞∑

i=1

22(i−1)Φ(2−ix, 2−ix) < ∞

and

2−2iΦ(2i−1x, 2i−1y) → 0 or 22(i−1)Φ(2−ix, 2−iy) → 0

(cf. [5]).
• Φ(x, y) = ϕ(x, y)(f(x) + f(y)) – with an arbitrary mapping ϕ satisfying

∞∑

i=1

ϕ(2ix, 2iy) < ∞

(cf. [12]).
• Φ – arbitrary mapping satisfying Φ(2x, 2x) ≤ 4LΦ(x, x) with some 0 < L <

1 and 4−nΦ(2nx, 2ny) → 0 as n → ∞ (cf. [17]).

In all the above cases the limit limn→∞
f(2nx)

4n (or limn→∞ 4nf
(

x
2n

)
) appears

to exist and defines the quadratic mapping q which approximates f . Apply-
ing the above mentioned results to the mapping f(x) := ‖x‖2 and assuming
that Φ satisfies one of the above listed properties, (11) yields that q(x) =
limn→∞

‖2nx‖2

4n = ‖x‖2 is a quadratic function, i.e., the norm ‖ · ‖ satisfies
the parallelogram law and thus X is an inner product space. It is easy to see
that it happens whenever Φ has the property limn→∞ Φ(nx, ny)/(n2) = 0 or
limn→∞ n2Φ(x/n, y/n) = 0. Indeed, in (11) putting nx and ny (or x/n and
y/n) in place of x and y, respectively, and passing to the limit n → ∞, we get
that the right hand side of (11) has to be equal to 0.

Since the considered above forms of Φ appear too strong for our aim,
we are looking for one which is weaker than the above ones but stronger than
(6).

Lemma 3.1. For a given norm ‖ · ‖ the following conditions are equivalent:
∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ ε‖x− y‖2, x, y ∈ X; (13)

∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ ε‖x+ y‖2, x, y ∈ X; (14)

∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ 2ε‖x‖2, x, y ∈ X; (15)

∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ 2ε‖y‖2, x, y ∈ X. (16)

In other words, each of the conditions (13)–(16) is equivalent to
∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣

≤ ε · min{‖x+ y‖2, ‖x− y‖2, 2‖x‖2, 2‖y‖2},
for all x, y ∈ X.
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Proof. The first two inequalities are obviously equivalent (put −y in place of
y). Substituting x+ y and x− y in place of x and y or y and x, respectively,
one obtains the other two inequalities. �

The next result will be used in the proof of the main theorem which follows.

Proposition 3.2. Let X be a real or complex normed space and let ψ, φ, f : X →
R be such that

2ψ(y) ≤ f(x+ y) + f(x− y) − 2f(x) ≤ 2φ(y), x, y ∈ X.

Then, there exists F : X → R such that

F (x+ y) + F (x− y) = 2F (x) + 2F (y), x, y ∈ X

and

ψ(x) ≤ F (x) ≤ φ(x), x ∈ X.

Proof. The above result can be derived from more general theorems concern-
ing the stability of functional equations. In particular, Tabor [26, Corollary
2] (motivated by Páles [23]) proved that for a semigroup S and mappings
ψ, φ, f : S → R satisfying

ψ(u) ≤ 1
n!

Δn
uf(x) ≤ φ(u), x, u ∈ S

(where Δuf = Δ1
uf is defined by Δuf(x) = f(x + u) − f(x) and Δn+1

u f =
Δu(Δn

uf)), there exists F : S → R such that

1
n!

Δn
uF (x) = F (u), x, u ∈ S

and

ψ(u) ≤ F (u) ≤ ψ(u), u ∈ S.

Taking S = X,n = 2 and substituting x − y and y in place of x and u,
respectively, one gets the above assertion. �

Theorem 3.3. Suppose that the norm ‖·‖ in a real or complex space X satisfies,
with some ε ∈ [0, 1):

∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ ε‖x− y‖2, x, y ∈ X

(as a matter of fact, any one of the conditions (13)–(16) can be assumed).
Then (X, ‖ · ‖) is equivalent to an inner product space. Precisely, there exists
a norm ‖ · ‖i in X, coming from an inner product, such that

| ‖x‖ − ‖x‖i | ≤
(

1√
1 − ε

− 1
)

min{‖x‖, ‖x‖i}, x ∈ X. (17)
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Proof. From (16) we have

2(1 − ε)‖y‖2 ≤ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 ≤ 2(1 + ε)‖y‖2, x, y ∈ X.

Let ψ(x) := (1 − ε)‖x‖2, φ(x) := (1 + ε)‖x‖2 and f(x) := ‖x‖2 for x ∈ X.
Then we have

2ψ(y) ≤ f(x+ y) + f(x− y) − 2f(x) ≤ 2φ(y), x, y ∈ X

and according to Proposition 3.2 there exists a mapping q : X → R satisfying

q(x+ y) + q(x− y) = 2q(x) + 2q(y), x, y ∈ X

and

ψ(x) ≤ q(x) ≤ φ(x), x ∈ X.

The latter inequalities mean

(1 − ε)‖x‖2 ≤ q(x) ≤ (1 + ε)‖x‖2, x ∈ X. (18)

It follows from the above that q(x) > 0 for x ∈ X\{0} and q(0) = 0. The
mapping q, as a quadratic one, has to be of the form q(x) = B(x, x) where
B(x, y) = 1

4 (q(x+y)−q(x−y)) is a biadditive and symmetric mapping. More-
over, (18) gives that B is locally bounded with respect to each variable – hence
B is bi-R-linear. Thus in the case when X is real, B is an inner product in X,
generating the norm ‖x‖i :=

√
q(x), x ∈ X. Now, we consider the case when

X is a complex space. Notice that without loss of generality we may assume
that

q(ix) = q(x), x ∈ X. (19)

Indeed, one can replace q by q̃ defined by

q̃(x) :=
q(x) + q(ix)

2
, x ∈ X.

It is easy to observe that q̃ is also a quadratic mapping, it satisfies the estima-
tion (18), i.e.,

(1 − ε)‖x‖2 ≤ q̃(x) ≤ (1 + ε)‖x‖2, x ∈ X

and q̃(ix) = q̃(x), x ∈ X (as a quadratic mapping, g is even). Notice that
condition (19) yields

B(ix, iy) = B(x, y), B(x, iy) = −B(ix, y), B(ix, x) = 0, x, y ∈ X. (20)

Indeed, for arbitrary x, y ∈ X we have B(ix, iy) = 1
4 (q(ix+ iy)− q(ix− iy)) =

1
4 (q(x + y) − q(x − y)) = B(x, y). Now, B(x, iy) = B(ix,−y) = −B(ix, y)
and, putting y = x,B(x, ix) = −B(ix, x) = −B(x, ix), hence B(ix, x) =
B(x, ix)=0.

Define A : X2 → C by

A(x, y) := B(x, y) − iB(ix, y), x, y ∈ X.
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Using (20) and the symmetry of B we see that for arbitrary x, y ∈ X

A(y, x) = B(y, x) − iB(iy, x) = B(x, y) − iB(x, iy) = B(x, y) + iB(ix, y)

= A(x, y).

Moreover,

A(ix, y) = B(ix, y) − iB(−x, y) = iB(x, y) +B(ix, y)
= i[B(x, y) − iB(ix, y)]
= iA(x, y)

which, with the bi-R-linearity of B and conjugate symmetry of A, gives the
sesquilinearity of A. Finally

A(x, x) = B(x, x) − iB(ix, x) = B(x, x) = q(x)

which proves that A is an inner product in X generating the norm ‖x‖i :=√
q(x).
Now, we can write (18) as

√
1 − ε‖x‖ ≤ ‖x‖i ≤ √

1 + ε‖x‖, x ∈ X, (21)

i.e., the norms ‖ · ‖ and ‖ · ‖i are equivalent. Since
√

1 + ε ≤ 1√
1−ε

, it follows
from (21) that

√
1 − ε‖x‖ ≤ ‖x‖i ≤ 1√

1 − ε
‖x‖, x ∈ X,

which is equivalent to (17). �

Remarks 3.4. Adding (15) and (16) we get that each of (13)–(16) implies
∣
∣ ‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2

∣
∣ ≤ ε(‖x‖2 + ‖y‖2), x, y ∈ X. (22)

The reverse, is obviously not true as it would mean that (22) is sufficient for
X to be equivalent to an inner products space. And we have shown that it is
not true. Thus (22) is essentially weaker than (13)–(16).

(13) is a sufficient condition for X to be equivalent to an inner product
space. But not necessary. The norm ‖x‖ = ‖(x1, x2)‖ = |x1| + |x2| in R

2 is
equivalent to the Euclidean one. Inserting, for arbitrary n ∈ N, x = (1, n), y =
(−1, n) in (13) one gets 8n ≤ 4ε for all n ∈ N — a contradiction.

It can be proved that inequalities (13)–(16) yield that the norm is 2-uni-
formly convex and 2-uniformly smooth. Hence, the first assertion of the theo-
rem can also be derived from the result of Figiel and Pisier [11]. However, our
method also gives estimation (17).

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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[11] Figiel, T., Pisier, G.: Séries aléatoires dans les espaces uniformément convexes ou uni-
formément lisses. C. R. Acad. Sci. Paris Sér. A 279, 611–614 (1974)

[12] Găvruţa, P.: On the Hyers-Ulam-Rassias stability of the quadratic mappings. Nonlinear
Funct. Anal. Appl. 9, 415–428 (2004)

[13] Hashimoto, K., Nakamura, G.: On von Neumann–Jordan constants. J. Aust. Math.
Soc. 87, 371–375 (2009)

[14] Joichi, J.T.: Normed linear spaces equivalent to inner product spaces. Proc. Amer.
Math. Soc. 17, 423–426 (1966)

[15] Jordan, P., von Neumann, J.: On inner products in linear, metric spaces. Ann.
Math. 36, 719–723 (1935)

[16] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Anal-
ysis. Springer Optimization and Its Applications 48, Springer, New York (2011)

[17] Jung, S.-M., Kim, T.-S., Lee, K.-S.: A fixed point approach to the stability of quadratic
functional equation. Bull. Korean Math. Soc. 43, 531–541 (2006)

[18] Kato, M.: A note on a generalized parallelogram law and the Littlewood matrices. Bull.
Kyushu Inst. Technol., Math. Nat. Sci. 33, 37–39 (1986)

[19] Kato, M., Maligranda, L., Takahashi, Y.: On James and Jordan-von Neumann constants
and the normal structure coefficient of Banach spaces. Studia Math. 144, 275–295 (2001)

[20] Kato, M., Takahashi, Y.: On the von Neumann–Jordan constant for Banach spaces.
Proc. Amer. Math. Soc. 125, 1055–1062 (1997)

[21] Kato, M., Takahashi, Y., Hashimoto, K.: On n-th von Neumann–Jordan constants for
Banach spaces. Bull. Kyushu Inst. Technol. Pure Appl. Math. 45, 25–33 (1998)

[22] Lindenstrauss, J., Tzafriri, L.: On the complemented subspaces problem. Israel J.
Math. 9, 263–269 (1971)
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