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On additive involutions and Hamel bases

Karol Baron

Abstract. We provide an example of a discontinuous involutory additive function a : R → R

such that a(H)\H �= ∅ for every Hamel basis H ⊂ R and show that, in fact, the set of all
such functions is dense in the topological vector space of all additive functions from R to R

with the Tychonoff topology induced by R
R.
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1. Introduction

By a Hamel basis of R we mean (see [2, p. 82]) a basis of the vector space R

over the field Q of rationals. Inspired by the foot-note on p. 325 of [2] we are
interested in discontinuous additive functions a : R → R which are involutory,
i.e., a ◦ a = idR, and such that

a(H)\H �= ∅ (1)

for every Hamel basis H ⊂ R.

2. Existence

The following theorem provides an example of a discontinuous involutory addi-
tive function a : R → R such that (1) holds for every set H ⊂ R which is
linearly independent over Q and has at least three elements.

Theorem 1. Assume X is a linear space over the field Q with dimX ≥ 3. If
H0 is a basis of X, h0 ∈ H0 and a : X → X is the additive function defined by

a(h0) = h0 and a(h) = −h for h ∈ H0\{h0}, (2)
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then a is involutory,

a(x) + x ∈ Qh0 for x ∈ X, (3)

and (1) holds for every linearly independent set H ⊂ X with card H ≥ 3.

Proof. To see that a(a(x)) = x for x ∈ X it is enough to observe that it holds
for x ∈ H0.

Let r : X → Q be the function such that

x − r(x)h0 ∈ Lin(H0\{h0}) for x ∈ X.

Then, according to (2),

a(x) − r(x)h0 = a(x − r(x)h0) = −(x − r(x)h0)

whence

a(x) = −x + 2r(x)h0 for x ∈ X. (4)

In particular we have (3),

if x ∈ X and a(x) = x, then x ∈ Qh0, (5)

and

if x ∈ X and r(x) = 0, then a(x) = −x. (6)

Suppose H ⊂ X is linearly independent and (1) does not hold, i.e.,

a(H) ⊂ H. (7)

It follows from (7) and (6) that r(h) �= 0 for h ∈ H and making use of (4) we
see that

h0 =
a(h) + h

2r(h)
for h ∈ H. (8)

We will show that

if h1, h2 ∈ H\Qh0 are different, then r(h1) = r(h2) and h1 + h2 = 2r(h1)h0.

(9)

To this end fix arbitrarily different elements h1, h2 of H \ Qh0. It follows
from (8) that

a(h1) + h1

r(h1)
=

a(h2) + h2

r(h2)
(10)

which jointly with (7) gives

card{h1, h2, a(h1), a(h2)} ≤ 3.

Hence, taking (5) into account and that a is involutory, we have

h2 = a(h1)

whence, by (4) and (10),

h2 = −h1 + 2r(h1)h0
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and
h2 + h1

r(h1)
=

a(a(h1)) + h2

r(h2)
=

h1 + h2

r(h2)
which ends the proof of (9).

Since H is linearly independent, (9) implies that cardH ≤ 2. �
Remark 1. Let a be defined as in Theorem 1.

(i) If h1 ∈ H0\{h0}, then h0 + h1, h0 − h1 are linearly independent and

a({h0 + h1, h0 − h1}) = {h0 + h1, h0 − h1}.

(ii) If X is a linear space over a field K such that Q is its proper subfield,
then

a(αh0) �= αa(h0) for α ∈ K\Q. (11)

In particular, if X is a linear topological space, then the function

a 
→ a(αh0), α ∈ R, (12)

is discontinuous.

Proof. Part (i) is obvious, (11) follows from (3) and (2), and the continuity of
(12) implies a(αh0) = αa(h0) for α ∈ R. �

3. Density

Fix a linear topological space X, X �= {0}, and consider the space XX of all
functions from X into X with the usual addition and multiplication by scalars
and with the Tychonoff topology. Clearly XX is a linear topological space. Put

A = {a ∈ XX : a is additive}
and consider A with the topology induced by XX .

Theorem 2. The sets

{a ∈ A : a ◦ a = idX , a is discontinuous and (1) holds for every uncountable

set H ⊂ X which is linearly independent over Q}, (13)
{a ∈ A : a ◦ a = idX , a is discontinuous and a(H) = H for a basis H of the

vector spaceX over the field Q} (14)

are dense in A.

For the proof the following lemma from [1] will be used.

Lemma 1. A subset D of A is dense in A if and only if for any M ∈ N, for
any h1, . . . , hM , h′

1, . . . , h
′
M ∈ X being linearly independent over Q, and for

any neighbourhood U ⊂ X of zero there exists a ∈ D such that

a(hm) ∈ U + h′
m for m ∈ {1, . . . , M}.
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In fact we will apply the following corollary resulting from this lemma.

Corollary 1. If D ⊂ A and for any M ∈ N and for any h1, . . . , hM , h′
1, . . . , h

′
M

∈ X being linearly independent over Q there exists a ∈ D such that

a(hm) = h′
m for m ∈ {1, . . . , M},

then D is dense in A.

Proof of the density of the set (13). Fix M ∈ N and ho
1, . . . , h

o
M , ho′

1 , . . . , ho′
M ∈

X linearly independent over Q. Let H0 be a basis of the vector space X over
the field Q such that ho

1, . . . , h
o
M , ho′

1 , . . . , ho′
M ∈ H0 and define the additive

function a : X → X by putting

a(ho
m) = ho′

m, a(ho′
m) = ho

m for m ∈ {1, . . . , M},

and

a(h) = −h for h ∈ H0\{ho
1, . . . , h

o
M , ho′

1 , . . . , ho′
M}.

Clearly, a ◦ a = idX .

Let r1, . . . , rM , r′
1, . . . , r

′
M : X → Q be the functions such that

x −
(

M∑
m=1

rm(x)ho
m +

M∑
m=1

r′
m(x)h′

0

)
∈ LinQ(H0 \ {ho

1, . . . , h
o
M , ho′

1 , . . . , ho′
M})

for x ∈ X. Then

a(x) = −x +
M∑

m=1

(rm(x) + r′
m(x))(ho

m + ho′
m) for x ∈ X.

In particular,

a(x) + x ∈ LinQ{ho
1, . . . , h

o
M , ho′

1 , . . . , ho′
M} for x ∈ X (15)

and so a is discontinuous.
Suppose H ⊂ X is uncountable, linearly independent over Q, and (1) does

not hold. Take different h1, . . . , h2M+1 ∈ H such that

hk + hl �∈ LinQ{ho
1, . . . , h

o
M , ho′

1 , . . . , ho′
M} for k, l ∈ {1, . . . , 2M + 1}. (16)

It follows from (15) that

a(h1) + h1, . . . , a(h2M+1) + h2M+1

are linearly dependent over Q and so are

h1, . . . , h2M+1, a(h1), . . . , a(h2M+1).

Hence, taking (7) into account and that a is injective, we have

a(hk) = hl

for some k, l ∈ {1, . . . , 2M + 1}. This and (15) give

hk + hl = hk + a(hk) ∈ LinQ{ho
1, . . . , h

o
M , ho′

1 , . . . , ho′
M}
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which contradicts (16). The contradiction obtained shows that a belongs to
the set (13) and applying Corollary 1 we conclude the proof.

Proof of the density of the set (14). Fix M ∈ N and h1, . . . , hM , h′
1, . . . , h

′
M ∈

X linearly independent over Q. Let H be a basis of the vector space X over
the field Q such that h1, . . . , hM , h′

1, . . . , h
′
M ∈ H and define the additive

function a : X → X by putting

a(hm) = h′
m, a(h′

m) = hm for m ∈ {1, . . . , M},

and

a(h) = h for h ∈ H\{h1, . . . , hM , h′
1, . . . , h

′
M}.

Then a ◦ a = idX ,

a(x) − x ∈ LinQ{h1, . . . , hM , h′
1, . . . , h

′
M} for x ∈ X

and a(H) = H. Hence a is in the set (14) and applying Corollary 1 we find
that this set is dense in A.
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