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Abstract. Strongly convex stochastic processes are introduced. Some well-known results
concerning convex functions, like the Hermite–Hadamard inequality, Jensen inequality,
Kuhn theorem and Bernstein–Doetsch theorem are extended to strongly convex stochastic
processes.
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1. Introduction

In 1980 Nikodem [7] considered convex stochastic processes. In 1995 Sko-
wroński [9] obtained some further results on convex stochastic processes, which
generalize some known properties of convex functions. Moreover, in a recent
paper [3], the present author showed the Hermite–Hadamard-type inequality
for convex stochastic processes.

Let I ⊂ R be an interval. Recall that a function f : I → R is called strongly
convex with modulus c > 0, if

f
(
λx + (1 − λ)y

)
� λf(x) + (1 − λ)f(y) − cλ(1 − λ)(x − y)2

for any x, y ∈ I and λ ∈ [0, 1] (cf. [2,8]). Obviously, every strongly convex
function is convex. Observe also that, for instance, affine functions are not
strongly convex.

In this paper we propose the generalization of convexity of this kind for
stochastic processes. Let (Ω,A, P ) be an arbitrary probability space. A func-
tion X : Ω → R is called a random variable, if it is A-measurable. A function
X : I × Ω → R is called a stochastic process, if for every t ∈ I the function
X(t, ·) is a random variable.
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Let C : Ω → R denote a positive random variable. We say that a stochas-
tic process X : I × Ω → R is strongly convex with modulus C(·) > 0, if the
inequality

X
(
λu+(1−λ)v, ·)�λX(u, ·)+(1−λ)X(v, ·)−C(·)λ(1−λ)(u − v)2 (a.e.)

(1)

is satisfied for all λ ∈ [0, 1] and u, v ∈ I. If the above inequality is assumed only
for λ = 1

2 , then the process X is strongly Jensen-convex with modulus C(·) or
strongly midconvex with modulus C(·). If the above inequality holds for a fixed
number λ ∈ (0, 1), then we say that the process X is strongly λ-convex with
modulus C(·).

Obviously, by omitting the term C(·)λ(1 − λ)(u − v)2 in inequality (1), we
immediately get the definition of a convex stochastic process introduced by
Nikodem in 1980 [7]. On the other hand, we derive it from (1) in a limit case,
when C(·) ≡ 0.

The main subject of this paper is to extend some well-known results con-
cerning convex functions to strongly convex stochastic processes. We obtain
the counterparts of the Hermite–Hadamard inequality, Jensen inequality, Kuhn
theorem and Bernstein–Doetsch theorem. In the deterministic case most of the
presented results reduce to the properties of strongly convex functions obtained
recently in [1] and [6]. Note also that the related results for convex stochastic
processes can be found in [3,7,9].

2. Jensen-type inequality

In this section we present a Jensen-type inequality for strongly convex sto-
chastic processes. In [3] the following proposition was shown.

Proposition 1. Let X : I×Ω → R be a convex stochastic process and t0 ∈ int I.
Then there exists a random variable A : Ω → R such that X is supported at t0
by the process A(·)(t − t0) + X(t0, ·). That is

X(t, ·) � A(·)(t − t0) + X(t0, ·) (a.e.)

for all t ∈ I.

We begin our investigations with an easy but very useful lemma. Of course,
its version for strongly convex functions is well-known (cf. e.g. [2]).

Lemma 2. A stochastic process X : I × Ω → R is strongly λ-convex (strongly
convex, respectively) with modulus C(·) if and only if the stochastic process
Y : I × Ω → R defined by Y (t, ·) := X(t, ·) − C(·)t2 is λ-convex (convex,
respectively).
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Proof. In the first part of the proof assume that X is strongly λ-convex. Fix
u, v ∈ I. By strong λ-convexity we get

Y (λu + (1 − λ)v, ·) = X(λu + (1 − λ)v, ·) − C(·)(λu + (1 − λ)v)2

� λX(u, ·) + (1 − λ)X(v, ·)
− C(·)(λ(1 − λ)(u − v)2 + (λu + (1 − λ)v)2

)

= λX(u, ·) + (1 − λ)X(v, ·) − C(·)(λu2 + (1 − λ)v2
)

= λ
(
X(u, ·) − C(·)u2

)
+ (1 − λ)

(
X(v, ·) − C(·)v2

)

= λY (u, ·) + (1 − λ)Y (v, ·) (a.e.).

The proof of the second part is similar, so we omit it.
If λ ∈ [0, 1] is arbitrarily chosen, then we obtain the lemma for strongly

convex stochastic processes. �

From Lemma 2 and Proposition 1 we immediately derive

Corollary 3. If a stochastic process X : I × Ω → R is strongly convex with
modulus C(·), then for all t0 ∈ int I, X is supported at t0 by the process H :
I × Ω → R of the form

H(t, ·) = C(·)(t − t0)2 + A(·)(t − t0) + X(t0, ·).
Now we present a Jensen-type theorem for strongly convex stochastic pro-

cesses.

Theorem 4. Let X : I × Ω → R be a strongly convex stochastic process with
modulus C(·). Then

X

(
n∑

i=1

λiti, ·
)

�
n∑

i=1

λiX(ti, ·) − C(·)
n∑

i=1

λi(ti − t̄)2 (a.e.)

for all t1, . . . , tn ∈ I, λ1, . . . , λn > 0, such that λ1 + · · · + λn = 1 and t̄ =
λ1t1 + · · · + λntn.

Proof. Let us take t1, . . . , tn ∈ I and λ1, . . . , λn > 0, such that λ1+· · ·+λn = 1.
We put t̄ = λ1t1 + · · · + λntn. According to Corollary 3, we have the support

H(t, ·) = C(·)(t − t̄)2 + A(·)(t − t̄) + X(t̄, ·)
at t̄. Then for each i ∈ {1, . . . , n} we have

X(ti, ·) � H(ti, ·) = C(·)(ti − t̄)2 + A(·)(ti − t̄) + X(t̄, ·) (a.e.).

Multiplying the above inequality by λi and summing up all the inequalities we
have

n∑

i=1

λiX(ti, ·) � C(·)
n∑

i=1

λi(ti − t̄)2 + A(·)
n∑

i=1

λi(ti − t̄) + X(t̄, ·) (a.e.).
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Because
∑n

i=1 λi(ti − t̄) = 0,

X

(
n∑

i=1

λiti, ·
)

�
n∑

i=1

λiX(ti, ·) − C(·)
n∑

i=1

λi(ti − t̄ )2 (a.e.).

�

3. Kuhn-type and Bernstein–Doetsch-type results

The classical result due to Kuhn (cf. [5]) states that if f : I → R fulfils, for
some fixed λ ∈ (0, 1) and for all x, y ∈ I, the inequality

f
(
λx + (1 − λ)y

)
� λf(x) + (1 − λ)f(y) ,

i.e. f is a λ-convex function, then f is also Jensen-convex, which means that

f

(
x + y

2

)
� f(x) + f(y)

2
, x, y ∈ I.

Skowroński proved in [9] that a λ-convex stochastic process is also Jensen-
convex. In this section we prove the counterparts of these facts for strongly
λ-convex stochastic processes.

Theorem 5. Let λ ∈ (0, 1) be a fixed number and X : I × Ω → R be a strongly
λ-convex stochastic process with modulus C(·). Then X is Jensen-convex with
modulus C(·).
Proof. Assume that X is strongly λ-convex. Lemma 2 yields that the process
Y (t, ·) = X(t, ·) − C(·)t2 is λ-convex. By Skowroński’s result Y is midconvex,
which means that

Y

(
u + v

2
, ·

)
� Y (u, ·) + Y (v, ·)

2
(a.e.).

Therefore

X

(
u + v

2
, ·

)
− C(·)

(
u + v

2

)2

� X(u, ·) − C(·)u2 + X(v, ·) − C(·)v2

2
(a.e.)

and after some rearrangement we arrive at

X
(u + v

2
, ·

)
� X(u, ·) + X(v, ·)

2
− C(·)

4
(u − v)2 (a.e.),

which finishes the proof. �

It is well-known that a midconvex function f : I → R is convex under slight
regularity assumptions, like local upper boundedness at some point (Bernstein–
Doetsch Theorem) or measurability (Sierpiński’s Theorem), also under some
other assumptions of this type (cf. [4]).

Nikodem presented in [7] the conditions guaranteeing the convexity of mid-
convex stochastic processes. Now we consider a similar problem for strongly
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convex processes. We would like to recall the following definitions. A stochastic
process X : I × Ω → R is called
(i) P-upper bounded on the interval (a, b) ⊂ I, iff

lim
n→∞ sup

t∈(a,b)

{
P

({
ω ∈ Ω : X(t, ω) � n

})}
= 0,

(ii) continuous in probability in interval I, if for all t0 ∈ I we have

P − lim
t→t0

X(t, ·) = X(t0, ·),
where P − lim denotes the limit in probability.

For more details we refer the reader to [7]. Now we shall prove the following

Theorem 6. If a stochastic process X : I × Ω → R is strongly midconvex
with modulus C(·) and P-upper bounded on the interval (a, b) ⊂ I, then it is
continuous in the interval I.

Proof. Being strongly a midconvex, X is also a midconvex stochastic process.
Since X is P-upper bounded on the interval (a, b), it is continuous in view of
[7, Theorem 4]. �

Theorem 7. Assume that I is an open interval. A strongly midconvex stochas-
tic process X : I × Ω → R with modulus C(·) is continuous if and only if it is
strongly convex with modulus C(·).
Proof. To prove necessity take the process Y (t, ·) = X(t, ·) − C(·)t2. By
Lemma 2 we get that Y is midconvex. Since X is continuous, Y is also con-
tinuous. Using Nikodem’s result [7, Theorem 5] we arrive at that Y is convex.
Using Lemma 2 once more, we infer that X is strongly convex with modulus
C(·).

To prove sufficiency we observe that if X is strongly convex, then X is also
convex. By Nikodem’s result [7, Theorem 5] we get its continuity. �

By Theorems 5 and 7 we obtain immediately

Corollary 8. If a process X : I × Ω → R is continuous and strongly λ-convex
with modulus C(·), then it is strongly convex with modulus C(·).

4. Hermite–Hadamard-type inequality

It is well-known that every convex function f : I → R satisfies the Hermite–
Hadamard inequality

f

(
x + y

2

)
� 1

y − x

y∫

x

f(s)ds � f(x) + f(y)
2

.
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for any x, y ∈ I. This celebrated result plays a very important role in convex
analysis. In [3, Theorem 3] its counterpart for convex stochastic processes was
presented. Below we quote this result. Let us recall before that a stochastic
process X : I × Ω → R is mean-square continuous in the interval I, if for all
t0 ∈ I the condition limt→t0 E(|X(t) − X(t0)|2) = 0 holds.

Theorem 9. If X : I × Ω → R is a Jensen-convex, mean-square continuous
stochastic process in the interval I, then for any u, v ∈ I we have

X
(u + v

2
, ·

)
� 1

v − u

v∫

u

X(t, ·) dt � X(u, ·) + X(v, ·)
2

(a.e.). (2)

The integral in the statement is mean-square integral. For the definition and
basic properties of mean-square integral see for example [10]. Now we would
like to prove the Hermite–Hadamard inequality for strongly convex stochastic
processes. We start with a technical lemma.

Lemma 10. Let X : I × Ω → R be the stochastic process of the form X(t, ·) =
C(·)t2, where C : Ω → R is a random variable, such that E[C2] < ∞. If
[u, v] ⊂ I, then

v∫

u

X(t, ·) dt = C(·)v3 − u3

3
.

Proof. By elementary properties of the expectation we have

E

[
n∑

i=1

X(Θi)(ti−ti−1)−C
v3 − u3

3

]2

= E

[
n∑

i=1

CΘ2
i (ti−ti−1)−C

v3 − u3

3

]2

= E

[

C

(
n∑

i=1

Θ2
i (ti−ti−1)− v3−u3

3

)]2

=

(
n∑

i=1

Θ2
i (ti−ti−1)− v3−u3

3

)2

E[C2].

If n → ∞, then the above expression tends to zero, because of the definition
of the Riemann integral. This finishes the proof. �

Theorem 11. Let X : I × Ω → R be a stochastic process, which is strongly
Jensen-convex with modulus C(·) and mean-square continuous in the interval
I. Then for any u, v ∈ I we have
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X

(
u + v

2
, ·

)
+ C(·) (v − u)2

12

� 1
v − u

v∫

u

X(t, ·) dt � X(u, ·) + X(v, ·)
2

− C(·) (u − v)2

6
(a.e.). (3)

Proof. According to the assumption the process X is strongly convex with
modulus C(·), so by Lemma 2 the process Y (t, ·) = X(t, ·) − C(·)t2 is convex.
By inequality (2) we get

Y

(
u + v

2
, ·

)
� 1

v − u

v∫

u

Y (t, ·) dt

� Y (u, ·) + Y (v, ·)
2

(a.e.).

Hence

X

(
u + v

2
, ·

)
− C(·)

(
u + v

2

)2

� 1
v − u

v∫

u

(
X(t, ·) − C(·)t2) dt

� X(u, ·) − C(·)u2 + X(v, ·) − C(·)v2

2
(a.e.).

Furthermore

X

(
u + v

2
, ·

)
− C(·)

(
u + v

2

)2

� 1
v − u

v∫

u

X(t, ·) dt − 1
v − u

v∫

u

C(·)t2 dt

� X(u, ·) + X(v, ·)
2

− C(·)
2

(u2 + v2) (a.e.).

By Lemma 10 we have

X

(
u + v

2
, ·

)
− C(·)

(
u + v

2

)2

� 1
v − u

v∫

u

X(t, ·) dt − C(·) 1
v − u

v3 − u3

3

� X(u, ·) + X(v, ·)
2

− C(·)
2

(u2 + v2) (a.e.).

Adding to all sides of the above inequality the term C(·) 1
v−u

v3−u3

3 and making
some simple computation, we get inequality (3). �

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.



98 D. Kotrys AEM

References
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[2] Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer,
Berlin (2001)

[3] Kotrys, D.: Hermite–Hadamard inequality for convex stochastic processes. Aequationes
Math. 83, 143–151 (2012)

[4] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities.
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