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On the Schröder equation and iterative sequences
of Cr diffeomorphisms in R

N space

Marek Cezary Zdun

Abstract. Let U ⊂ R
N be a neighbourhood of the origin and a function F : U → U be of

class Cr, r ≥ 2, F (0) = 0. Denote by F n the n-th iterate of F and let 0 < |s1| ≤ · · · ≤
|sN | < 1, where s1, . . . , sN are the eigenvalues of dF (0). Assume that the Schröder equation

ϕ(F (x)) = Sϕ(x), where S := dF (0) has a C2 solution ϕ such that dϕ(0) = id. If log|s1|
log|sN | < 2

then the sequence {S−nF n(x)} converges for every point x from the basin of attraction of

F to a C2 solution ϕ of (1). If 2 ≤ log|s1|
log|sN | then this sequence can be diverging. In this

case we give some sufficient conditions for the convergence and divergence of the sequence

{S−nF n(x)}. Moreover, we show that if F is of class Cr and r >
[ log|s1|

log|sN |
]

:= p ≥ 2 then

every Cr solution of the Schröder equation such that dϕ(0) = id is given by the formula

ϕ(x) = lim
n→∞(S−nF n(x) +

p∑

k=2

S−nLk(F n(x))),

where Lk : R
N → R

N are some homogeneous polynomials of degree k, which are determined
by the differentials d(j)F (0) for 1 < j ≤ p.
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1. Introduction

Let U be an open set in the N dimensional real space. The n-th iterate of
a self-map F : U → U is defined by Fn(x) = Fn−1(F (x)) and F 0 = id, the
identity map. Assume that F is a Cr- diffeomorphism, r ≥ 2, 0 ∈ U and 0
is the unique fixed point of F . Denote by d(k)F (0) the differential of F of
k-th order at 0. The aim of the present paper is to investigate the convergence
and divergence of the sequence {(dF (0))−nFn(x)}. The limit of this sequence,
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if it exists, is strictly connected with Cr solutions of the Schröder functional
equation

ϕ(F (x)) = Sϕ(x), x ∈ U, (1)

where ϕ : U → R
N and S = dF (0), which is the fundamental equation

of linearization of diffeomorphisms in the R
N space. The idea goes back to

Poincaré [16] and was further developed by Sternberg [19], Hartman [8], Chap-
eron [3], Kuczma [11] and [13]. In a one dimensional real case S ∈ R and it is
easy to show that if 0 < |S| < 1 and Eq. (1) possesses a solution ϕ differen-
tiable at 0 with ϕ′(0) �= 0 then

ϕ(x) = lim
n→∞

Fn(x)
Sn

(see for e.g., Szekeres [20], Kuczma [11] and for analytic functions Koenigs [9]).
This limit exists also with some weaker assumptions on F (see e.g., Seneta [17],
Dubic [6]). Intuitively the existence of the limit limn→∞

F n(x)
Sn ∈ (0,∞) may

be interpreted as follows: the iterative sequence {Fn(x)} tends to zero with the
speed of convergence of the geometric sequence {Sn}. We generalize this idea
on the R

N space. Another approach to the problem of the speed of convergence
of the sequence {Fn(x)} in a Banach space and its relation to the Schröder
equation, where S is a real positive number, one can find in Walorski [21].

In this note we consider the following problem: does the above given formula
but with matrix S still hold in the R

N space? That is: if the equality

ϕ(x) = lim
n→∞S−nFn(x) = lim

n→∞(dF (0))−nFn(x) (2)

is true for Cr solutions of the Schröder equation? The answer is negative. The
aim of this paper is to give some sufficient conditions for the truthfulness of
formula (2) and also to give conditions which imply the falsehood of it. We
also give a general formula expressing the diffeomorphic solution of Eq. (1).

A similar problem but in the C
N space was considered by Berteloot in [2].

He dealt with the mappings of the form F = M +
∑

p≥k Hp, where Hp are
homogeneous polynomials in C

N of degree p and M is an automorphism of
C

N . He showed that if k ≥ k0 for a specially chosen k0 then the sequence
{M−nFn} converges to a locally biholomorphic solution ϕ of (1). Recall that
the problem of holomorphic linearization in C

N was initiated by Poincaré and
Dulac in [16] and [7]. Since then numerous papers on this subject have been
published and we refer to [1] for more details, some discussions and further
references. We shall concentrate on the shape of diffeomorphic solutions of (1)
in the R

N space. Our approach to the problem is different from those which are
useful for analytic functions. To obtain a desired formula we apply the ideas
of Kuczma from [13]. Moreover, we assume for a given function F as minimal
regularity assumptions as possible, which assure our formula.
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2. Auxiliary facts

Let r ∈ N and r ≥ 1. Assume the following general hypotheses:
(i) U ⊂ R

N is a neighbourhood of the origin and F : U → U is a Cr dif-
feomorphism, F (0) = 0, |s1| ≤ · · · ≤ |sN | < 1 , where s1, s2, . . . , sN are the
characteristic roots of the matrix S := dF (0).

(Hr) sq1
1 · . . . · sqN

N �= si for i = 1, 2, . . . , N, q1, . . . , qN ∈ N0, where 2 ≤
∑N

j=1 qj ≤ r.

If F of class Cr with F (0) = 0 satisfies (Hr) we will say that F has no
resonances.

Note that S is a nonsingular matrix and if ϕ is a solution of (1) in U then
ϕ(0) = 0, since 1 is not an eigenvalue of S.

Suppose that the Schröder Eq. (1) has a Cr solution such that dϕ(0) = E,
where E is the identity matrix. Differentiating (1) k-times and setting x = 0
we get

d(k)(ϕ ◦ F − Sϕ)(0) = 0 for k = 2, . . . , r. (3)

This means that the multidimensional matrices d(k)ϕ(0), k = 2, 3, . . . , r have
to satisfy the system of Eq. (3).

Define

Fr(x) = Sx+
r∑

k=2

d(k)F (0)
k!

(x, x, . . . , x)

and

η(x) := x+
r∑

k=2

d(k)ϕ(0)
k!

(x, x, . . . , x).

Note that d(k)Fr(0) = d(k)F (0) and d(k)η(0) = d(k)ϕ(0). Hence we get the
following

Remark 1. The system (3) is equivalent to the system of equations

d(k)(η ◦ Fr)(0) = Sd(k)η(0), k = 2, . . . , r, (4)

where η is a polynomial function of degree r and the unknown quantities are
multidimensional matrices d(k)η(0).

The elements of d(k)η(0) are Nk-tuples of elements of R
N and we can write

d(k)η(0) = {vi1...ik
}, i1 . . . ik = 1 . . . N and {vi} = E. Moreover, vi1...ik

∈ R
N

satisfy the consistency conditions
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{vil1 ...ilk
} = {vi1...ik

}
for every permutation l1, . . . , lk of the sequence 1, . . . , k. We can write system
(4) in the following form

k∑

s=1

N∑

j1,...,js

βj1...js

i1...ik
vj1...js

= Svi1...ik
, k = 2, . . . , r, (5)

where βj1...js

i1...ik
are real numbers determined by the left hand side of equality (4)

(for detailed evaluation see [13] p. 77).
Systems vk = {vi1...ik

}, k = 1, . . . , r with v1 = E fulfilling equation (4)
(or in other symbols equation (5)) and the consistency condition will be called
admissible.

Obviously the admissible system of multidimensional matrices vk, k =
1, . . . , r determines uniquely the polynomial function η satisfying (4) such that
vk = d(k)η(0), k = 1, . . . , r.

This observation allows us to introduce the following

Definition. A polynomial function ηr : R
N → R

N such that ηr(x) = x+ L(x),
where 2 ≤ degL ≤ r or L ≡ 0 and ηr satisfies (4) is said to be a formal solution
of (1) of order r.

Note that, in general, a solution of system (4) may exist or not, and even
if it exists, then there is no uniqueness attached to the solution. The existence
and the uniqueness of a solution guarantees the condition for the lack of reso-
nance (see Sternberg [19], Smajdor [18], Hartman [8] and Abate [1]). We can
note this fact as follow

Lemma 1. If F fulfils (i) and the characteristic roots s1, s2, . . . , sN of matrix
S = dF (0) satisfy (Hr), then there exists a unique polynomial function ηr :
R

N → R
N of r-order satisfying system (4).

If Eq.(1) has a Cr solution ϕ such that ϕ(0) = 0 and dϕ(0) = E, then
d(k)ϕ(0) = d(k)ηr(0), k = 2, . . . , r.

Note that every Cr-solution ϕ of Eq. (1) determines uniquely a formal
solution of r-order. This solution has the following form:

ηr(x) = x+
r∑

k=2

Lk(x),

where Lk(x) = Ak(x, x, . . . , x), Ak ∈ Lk(RN ,RN ) are k-linear mappings and
Ak(h1, . . . , hk) = d(k)ϕ(0)

k! (h1, . . . , hk) as well as Lk(x) = d(k)ϕ(0)
k! (x, . . . , x).

We begin our considerations recalling the Kuczma generalization of a well-
known Sternberg and Hartman theorem on linearization (see [8,19]).

Denote by Cr
δ (U) the set of all functions F : U → R

N of class Cr such that
F (0) = 0 and

d(r)F (x) = d(r)F (0) +O(||x||δ), ||x|| → 0, 0 ≤ δ ≤ 1.
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Proposition 1 (Kuczma [12]). Suppose that F satisfies hypothesis (i) and F ∈
Cr

δ (U), r ≥ 1 and 0 ≤ δ ≤ 1. If

|sN |r+δ < |s1|,
then for every system of admissible multidimensional matrices vk = {vi1...iK

},
k = 1, . . . , r Eq. (1) has a unique solution ϕ : V → R

N in a neighbourhood V
of the origin, such that d(k)ϕ(0) = vk, k = 1, . . . , r and ϕ ∈ Cr

δ (V ).

Let us note that if furthermore F has no resonance then Eq. (1) has a unique
solution in the class Cr

δ (V ) such that dϕ(0) = E, where E is the identity
matrix.

Definition. Every Cr solution ϕ of (1) such that ϕ(0) = 0 and dϕ(0) = E is
said to be a Cr Schröder function of F.

Note that in the literature this name is used in various but similar meanings
(see e.g., Dubuc [5,6]).

3. General results

We start with a theorem which gives a shape of Cr solutions of Eq. (1). This
is a continuation and application of Kuczma’s ideas from paper [13].

Theorem 1. Let F satisfy (i), r ≥ 1, F ∈ Cr
δ (U) for a 0 ≤ δ ≤ 1 and

|sN |r+δ < |s1|.
If r = 1 then in a neighbourhood V of the origin there exists the limit

ϕ(x) := lim
n→∞S−nFn(x).

If r ≥ 2 and (1) has a Cr-solution γ �= 0 then there exists the limit

ϕ(x) := lim
n→∞(S−nFn(x) +

r∑

k=2

S−nLk(Fn(x))), (6)

in a neighbourhood V of the origin, where Lk(x) = d(k)γ(0)
k! (x . . . x) are homo-

geneous polynomial functions of k-order. The convergence is uniform in V .
Moreover, γ = ϕ ∈ Cr

δ (V ).

Proof. To prove our theorem we recall briefly the idea of M. Kuczma’s proof
of Proposition 3 from the paper [13] (see also the version for r ≥ 2 in [14]
pp. 336–338).

Let ε > 0 be such that (|sN | + ε)r+δ(|s1|−1 + ε) < 1. By the Ostrowski
lemma (see e.g. [14,15] p. 19 and [10], §4) there exists a nonsingular matrix A
such that

||A−1SA|| < |sN | + ε, ||A−1S−1A|| < |s1|−1 + ε,
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where || || denotes the Euclidean norm in the R
N space. Hence we get

||A−1SA||r+δ||A−1S−1A|| < 1.

Now, after putting F ∗(x) = A−1F (Ax) and ϕ∗(x) = A−1ϕ(Ax), Eq. (1) is
equivalent to ϕ∗(F ∗(x)) = A−1SAϕ∗(x). Thus we may assume that

‖S‖r+δ‖S−1‖ < 1.

Let θ ∈ (||S||, ||S−1||
−1
r+δ ). Obviously

θr+δ||S−1|| < 1 and ||S|| < θ < 1. (7)

Consequently we can find a neighbourhood V := {x ∈ R
N : ||x|| ≤ a}, a > 0

of the origin such that

0 < ||F (x)|| < θ||x|| in V \{0} and ||dF (x)|| < θ in V. (8)

Let γ be a Cr solution of (1) such that dγ(0) = id. Define the space (Ξ, 	)

Ξ := {σ : V → R
N : σ ∈ Cr(V ), σ(0) = 0, dσ(0) = id,

d(k)σ(0) = d(k)γ(0), k = 2, . . . , r},

for r ≥ 2 and

Ξ := {σ : V → R
N : σ ∈ Cr(V ), σ(0) = 0, dσ(0) = id}

for r = 1.
In Ξ we introduce the metric

	(σ1, σ2) := sup
‖x‖≤b

‖x‖−δ‖d(r)σ1(x) − d(r)σ2(x)‖r,

where the norm ‖v‖r is defined for multidimensional matrices in R
N v =

{vk1...kr
} by

‖v‖r =

(
N∑

k1=1

. . .

N∑

kr=1

‖vk1...kr
‖2

)1/2

.

Using (7), (8) and repeating the same arguments as in [13] and [14] p. 337 we
get that (Ξ, 	) is a complete metric space and the transformation T given by
the formula

T σ := S−1 ◦ σ ◦ F

maps space Ξ into itself and satisfies the Lipschitz condition with a constant
l < 1. Thus, by the Banach theorem, there exists a unique solution ϕ ∈ Ξ of
(1) and this solution is given by the formula

ϕ = lim
n→∞ T nσ0 = lim

n→∞S−n ◦ σ0 ◦ Fn for every σ0 ∈ Ξ.
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If r = 1 then σ0 = id ∈ Ξ and consequently formula (2) holds. For r ≥ 2 σ0 =
id+

∑r
k=2

d(k)γ(0)
n! ∈ Ξ, since d(k)σ(0) = d(k)γ(0). Hence we get formula (6).

In general, id �∈ Ξ and even, for every n ∈ N, T nid = S−nFn �∈ Ξ. �
As a consequence of Theorem 1, Proposition 1 and Lemma 1 we get the

following partial answer to our problem.

Theorem 2. Let F of class C2 satisfy hypothesis (i) and

|sN |2 < |s1| < 1.

Then in a neighbourhood of the origin equation (1) has a unique C2 solution
ϕ such that ϕ(0) = 0 and dϕ(0) = E. It is given by the formula

ϕ(x) = lim
n→∞S−nFn(x).

Proof. Note that the eigenvalues of dF (0) satisfy hypothesis (H2). In fact (H2)
reads as follows sisj �= sk for all i, j, k = 1, . . . , N . Since |s1| ≤ |si| ≤ |sN | we
have |sisj | ≤ |sN |2 < |s1| ≤ |sk|. By Lemma 1 and Proposition 1 the Schröder
Eq. (1) has a unique C2 solution ϕ such that ϕ(0) = 0 and dϕ(0) = E. Since
ϕ belongs to class C1

1 it follows by Theorem 1, where r = 1 and δ = 1, that ϕ
is given by formula (2). �

In the case of holomorphic functions the similar thesis one can also deduce
from the theorem of Berteloot mentioned in Sect.1 (see Th. 4.2 in [2]).

In the case r ≥ 3 as a consequence of Theorem 1 we obtain the following

Theorem 3. Let r ≥ 3, hypothesis (i) be satisfied, |sN |r < |s1| and (1) have a
formal solution

η(x) = x+
r∑

k=2

Lk(x),

where Lk(x) are polynomial functions of k-th order. Then there exists a unique
Cr solution ϕ of (1) such that d(k)ϕ(0) = d(k)η(0) for k = 1, . . . , r in a neigh-
bourhood V of the origin and it is given by the formula

ϕ(x) := lim
n→∞(S−nFn(x) +

r−1∑

k=2

S−nLk(Fn(x))). (9)

Proof. It follows by Proposition 1 for δ = 0 that Eq. (1) has a unique Cr-solu-
tion ϕ such that d(k)ϕ(0) = d(k)η(0) for k = 1, . . . , r. Since ϕ ∈ Cr−1

1 we get,
by Theorem 1, that ϕ is given by formula (9). �

By Theorem 3 and Lemma 1 we get the following supplement to the Stern-
berg theorem

Corollary 1. If r ≥ 3, F satisfies hypotheses (i), (Hr) [(Hr−1)] and |sN |r < |s1|
then Eq. (1) has a unique solution ϕ of class Cr [Cr−1

1 ] such that dϕ(0) = E
and ϕ is given by formula (9).
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4. Particular results

If for r ≥ 3 we assume hypothesis (Hr) then the determination of theN -dimen-
sional polynomials Lk(x1, . . . , xN ) is very strenuous. In this section we consider
the problem when the part of formula (9) with factors Lk disappears and (9)
has a simpler form (2). To this aim we shall deal with the asymptotic behavior
of the sequence {S−nFn(x)} in the case, where r ≥ 3 and |s1| < |sN |2.

Let us start with the following

Lemma 2. Let ϕ be a C1 solution of (1) such that ϕ(0) = 0, dϕ(0) = E. If
ϕ(x) = (ϕ1(x), . . . , ϕN (x)), then for every 1 ≤ i ≤ N there exists xi ∈ U such
that ϕi(xi) �= 0.

Proof. By the assumptions ϕ is invertible in a neighbourhood V of zero.
Suppose that there exists i such that ϕi(x) = 0 for x ∈ V , i.e. ϕ(x) =
(ϕ1(x), . . . , 0, . . . , ϕN (x)). This function cannot be invertible since ϕ̃ =
(ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕN ) : R

N → R
N−1 is not invertible because of reduc-

tion of the dimension. Hence there exists x1 �= x2 for which ϕ̃(x1) = ϕ̃(x2), so
ϕ(x1) = ϕ(x2), but this is a contradiction. �

Remark 2. Let J be a Jordan form of matrix S and P be a nonsingular matrix
such that PSP−1 = J. Then ϕ is a Cr Schröder function of F if and only if
ψ = P ◦ ϕ ◦ P−1 is a Cr Schröder function of G := P ◦ F ◦ P−1.

Proof. Let ϕ ◦ F = S ◦ ϕ. Then ϕ ◦ F = P−1JP ◦ ϕ and

(P ◦ ϕ ◦ P−1) ◦ (P ◦ F ◦ P−1) = J ◦ (P ◦ ϕ ◦ P−1),

so ψ ◦G = J ◦ ψ.
In particular, if ϕ satisfies the assumptions of Theorem 3, then

ϕ(x) = P−1 lim
n→∞(J−nGn(Px) +

r−1∑

k=2

J−nMk(Jn(Px))),

where ν(x) = x+
∑r−1

k=2Mk(x) is a formal solution of the equation ψ(G(x)) =
Jψ(x) of (r − 1)-order. Moreover, if ϕ is given by formula (9), then Mk =
P ◦ Lk◦ P−1. Hence we may further assume that S has a Jordan form. �

Assume that F satisfies the assumptions of Theorem 3 and the matrix
dF (0) = S is diagonalizable. Thus, in view of Remark 2, we may assume that
S has the diagonal form, i.e.,

S =

⎡

⎢
⎣

s1 · · · 0
...

. . .
...

0 · · · sN

⎤

⎥
⎦ =: [s1, . . . , sN ],

where 0 < |s1| ≤ · · · ≤ |sN | < 1.
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Let ϕ be a Cr solution of (1) such that ϕ(0) = 0 and dϕ(0) = E. By (9)
we have

ϕ(x) = lim
n→∞[S−nFn(x) +

r−1∑

k=2

S−nLk(Sn(S−nFn(x)))]

in a neighbourhood of the origin V. Put

yn(x) := S−nFn(x), yn(x) =: (y1
n(x), . . . , yN

n (x)),

and

zn(x) :=
r−1∑

k=2

S−nLk(Snyn(x)), zn(x) =: (z1
n(x), . . . , zN

n (x)).

Hence

ϕ(x) = lim
n→∞[yn(x) +

r−1∑

k=2

S−nLk(Snyn(x))]

and

ϕj(x) = lim
n→∞[yj

n(x) +
r−1∑

k=2

(S−nLk(Snyn(x)))j ], for j = 1, . . . , N. (10)

Write also

Lk(x) =: (L1
k(x), . . . , LN

k (x)).

We know that Lk(x) is a homogenous polynomial of k-order. The jth-coordi-
nate of Lk(x) we can write in the following form

Lj
k(x) =

∑

i1,...,ik∈{1,2,...,N}
aj

i1,...,ik
xi1 . . . , xik , (11)

where x = (x1, . . . , xN ). Since

Snyn(x) =

⎡

⎢
⎣

sn
1y

1
n(x)
...

sn
Ny

N
n (x)

⎤

⎥
⎦ ,

we have

Lj
k(Snyn(x)) =

∑

i1,...,ik∈{1,2,...,N}
aj

i1,...,ik
(sn

i1y
i1
n (x)) . . . , (sn

ik
yik

n (x))

=
∑

i1,...,ik∈{1,2,...,N}
aj

i1,...,ik
(si1 . . . sik

)nyi1
n (x) . . . yik

n (x).
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On the other hand

S−nLk(Snyn(x)) =

⎡

⎢
⎣

s−n
1 · · · 0
...

. . .
...

0 · · · s−n
N

⎤

⎥
⎦

⎡

⎢
⎣

L1
k(Snyn(x))

...
LN

k (Snyn(x))

⎤

⎥
⎦ =

⎡

⎢
⎣

s−n
1 L1

k(Snyn(x))
...

s−n
N LN

k (Snyn(x))

⎤

⎥
⎦ .

Hence we infer that the j-th coordinate of zn(x) is expressed by the formula

zj
n(x) =

r−1∑

k=2

∑

i1,...,ik∈{1,2,...,N}
aj

i1,...,ik
(s−1

j si1 . . . sik
)nyi1

n (x) . . . yik
n (x). (12)

By (10) we have

ϕj(x) = lim
n→∞uj

n(x), j = 1, . . . , N, (13)

where

uj
n(x) = yj

n(x) + zj
n(x). (14)

The above mentioned observations let us to prove the following

Theorem 4. Let r ≥ 3 and hypothesis (i) be satisfied, ϕ be a Cr Schröder
function of F , matrix S be diagonal, |sN |r < |s1| and |s1| ≤ |sN |2 < |sp| for
a p ≥ 2. If the sequence {S−nFn(x0)} is bounded, then for every j ≥ p the
j-th coordinate of the sequence {S−nFn(x0)} converges to the j-th coordinate
of the Cr- Schröder function ϕ at x0, i.e.

lim
n→∞(S−nFn)j(x0) = ϕj(x0), p ≤ j.

Proof. Fix j ≥ p. Note that

|s−1
j si1 . . . sik

| < 1 for i1, . . . , ik ∈ {1, . . . , N}, 2 ≤ k ≤ r − 1.

In fact,

|s−1
j si1 . . . sik

| ≤ |sj |−1|sN |k ≤ |sj |−1|sN |2 ≤ |sp|−1|sN |2 < 1,

since k ≥ 2 and |sp| ≤ |sj | ≤ |sN | < 1. Thus we get that

lim
n→∞(s−1

j si1 . . . sik
)n = 0, for every i1, . . . , ik ∈ {1, . . . , N}, k ≤ j.

By the assumption the sequences {yi1
n (x0), . . . , yik

n (x0))} are bounded, thus
(11) implies that limn→∞ zj

n(x0) = 0. Consequently, by (12) and (13),

ϕj(x0) = lim
n→∞ yj

n(x0).

�

Note that for p = N the inequality |sN |2 < |sp| always holds. Hence we get

Remark 3. If in the previous theorem we assume only the inequality |sN |r <
|s1| then the N -th coordinates of every bounded subsequence {S−nνFnν (x0)}
converges to the N -th coordinate of the Cr Schröder function ϕ at x0.
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We have the following criterion of the convergence of the sequence
{S−nFn(x)}.

Theorem 5. Let r ≥ 3 and hypotheses (i), (Hr) be satisfied, the matrix S be
diagonal, |sN |r < |s1| and |sp−1| < |sN |2 < |sp| for p ≥ 2 and the sequence
{S−nFn(x)} be uniformly bounded in a set V . If ∂kηj(0)

∂xi1 ...∂xik
= 0 for j ≤ p− 1,

2 ≤ k < r and i1, . . . , ik ∈ {1, . . . , N} such that |si1 . . . sik
| ≥ |sj |, where

η = (η1, . . . , ηN ) is the formal solution of (1), then the sequence {S−nFn(x)}
converges uniformly in V and

lim
n→∞(S−nFn)(x) = ϕ(x), x ∈ V

where ϕ is the Cr Schröder function of F .

Proof. Fix j < p and define

Aj := {(i1, . . . , ik) ∈ {1, . . . , N}k; 1 < k < r, |si1 . . . sik
| < |sj |}.

By (12) we have

zj
n(x) =

r−1∑

k=2

∑

i1,...,ik∈Aj

aj
i1,...,ik

(s−1
j si1 . . . sik

)nyi1
n (x) . . . yik

n (x).

Since |si1 . . . sik
| < |sj | for (i1, . . . , ik) ∈ Aj and the sequences {yi

n(x)} are
bounded, the sequence {zj

n(x)} converges uniformly in V to zero and, conse-
quently, by (13) and (12), the j-th coordinate of {S−nFn(x)} converges to
the j-th coordinate of the Schröder function. For the coordinates j ≥ p the
assertion follows from Theorem 4. �

In a particular case for N = 2 and r = 3 Theorem 5 has the following
simple form

Corollary 2. If F : U ⊂ R
2 → R

2 satisfies (i) with r = 3, |s2|3 < |s1| < |s2|2,
S = dF (0) is diagonal, ∂2η1(0)

∂x2∂x2
= 0 and the sequence S−nFn(x) is bounded,

then formula (2) holds.

Example 1. Define

F (x, y) :=
(
s1x(1 + y)

1 + s2y
+ g(x, y), s2y

)
,

where g is smooth, g(0, 0) = 0, dg(0, 0) = 0, d(2)g(0, 0) = 0 and g is chosen such
that the sequence {S−nFn(x, y)} is bounded. It is easy to verify that the formal
solution η of the second order is given by the formula η(x, y) = (x+xy, y) and
satisfies the assumptions of Corollary 2. In the particular case when g(x, y) = 0
it is easy to calculate that

S−nFn(x, y) =
(
x(1 + y)
1 + sn

2y
, y

)
.

In this case the above sequence converges to (x+ xy, y).
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Lemma 3. If |s1| ≤ · · · ≤ |sN | < 1, then

max{|si1 . . . sik
|, i1, . . . , ik ∈ {1, . . . , N}, k = 2, . . . , r − 1} = |sN |2.

If |sN−1| < |sN | and |si1 . . . sik
| = |sN |2, then k = 2 and i1 = i2 = N.

Proof. If k ≥ 3, then |si1 . . . sik
| ≤ |sN |k < |sN |2. Let k = 2 and sup-

pose that there exist ī1, ī2 such that |sī1sī2 | = |sN |2. Then |sN |2 ≤ |sī1 ||sN |,
hence |sN | ≤ |sī1 |, so |sī1 | = |sN |, and consequently also |sī2 | = |sN |. Since
|sN−1| < |sN | we get i1 = i2 = N. �

Lemma 4. If cn := a1
n(q1)n + · · · + ak

n(qk)n + bnq
n, |qi| < |q|, i = 1, . . . , k,

|q| > 1 and the sequences {cn} and {ai
n} are bounded, then lim

n→∞ bn = 0.

Proof. The inequality |cn| < M implies that | cn

qn | ≤ M
qn → 0, so

a1
n

(
q1
q

)n

+ · · · + ak
n

(
qk
q

)2

+ bn → 0.

By the boundedness of {ai
n} we get the thesis.

Lemma 5. Let r ≥ 3, hypotheses (i) and (Hr) be satisfied and the matrix
S be diagonal. If for every x in a neighbourhood of the origin the sequence
{S−nFn(x)} has a bounded subsequence and |sN−1| < |sN | and |sp| < |sN |2
then a1

NN = · · · = ap
N,N = 0, where aj

k,l are the coefficients defined by (11).

Proof. Let ϕ be a Cr Schröder function of F . By Lemma 2 there exists a point
xN such that ϕN (xN ) �= 0. Let {nν} be a sequence such that the subsequence
{S−nνFnν (xN )} is bounded. Let j ≤ p. By (13) and (14) we infer that the
sequence {zj

nν
(xN )} is bounded. The expression (12) may be written in the

following form

zj
nν

(xN )

=
r−1∑

k=3

∑

i1,...,ik∈{1,2,...,N}
aj

i1,...,ik
(s−1

j si1 . . . sik
)nνyi1

nν
(xN ) . . . yik

nν
(xN )

+
∑

i1,i2∈{1,2,...,N},(i1,i2) 
=(N,N)

aj
i1,i2

(s−1
j si1si2)

nνyi1
nν

(xN )yi2
nν

(xN )

+ aj
N,N (s−1

j s2N )n(yN
nν

(xN ))2. (15)

Since |si| ≤ |sN | < 1 we have

qî := |s−jsi1 . . . sik
| < |s−js2N | =: q

for k ≥ 3, however, for k = 2 the above inequality is true except for the case
i1 = i2 = N . Moreover,

q = |s−1
j s2N | > 1 for j ≤ p
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and the sequences {aj
i1,...,ik

yi1
nν

(xN ) . . . yik
nν

(xN )} are bounded. Applying
Lemma 4 to the expression (15) we get

lim
n→∞ aj

N,N (yN
nν

(xN ))2 = 0, j ≤ p.

On the other hand, by Remark 3, limn→∞ yN
nν

(xN ) = ϕN (xN ) �= 0, so
aj

N,N = 0, for j ≤ p. �

From the argumentation of the above proof and Remark 3 we get the fol-
lowing

Corollary 3. Let r ≥ 3 and (i) be satisfied, matrix S be diagonal and (1) have
a formal solution of r-order. If |sN−1| < |sN |, |sp| < |sN |2 for such a p that
ap

N,N �= 0 , then in every neighbourhood of zero there exists x0 such that

lim
n→∞ |(S−nFn)N (x0)| = ∞.

The following result shows that for r ≥ 3 formula (6) in Theorem 1 cannot
be replaced by (2).

Theorem 6. Let r ≥ 3 and hypotheses (i), (Hr) be satisfied, S be diagonal,
|sN |r < |s1|, |sN−1| < |sN | and η = (η1, . . . , ηN ) be the formal solution of
(1) of order 2. If ∂2ηp

∂xN ∂xN
(0) �= 0 for a p such that |sp| < |sN |2, then in

every neighbourhood of the origin there exists x0 �= 0 such that the sequence
{S−nFn(x0)} is unbounded. More precisely, limn→∞ |(S−nFn)N (x0)| = ∞.

Proof. The assertion is a consequence of Lemma 5, Corollary 3 and the equal-
ities d(2)ϕ(0) = d(2)η(0), ∂2ηp

∂xN ∂xN
(0) = ap

N,N , where ϕ is the Cr Schröder
function of F . �

This theorem gives the answer to the main question of the paper. More
precisely we have

Corollary 4. Let r ≥ 3 and F satisfy the assumptions of Theorem 3. Let dF (0)
be a diagonal matrix and |sN−1| < |sN |. If ϕ is a Schröder function of F and
∂2ϕp(0)
∂xN ∂xN

�= 0 for a p such that |sp| < |sN |2, then formula (2) does not hold.

We give an example of a function F satisfying the assumptions of Theorem
6 and Corollary 4.

Example 2. Let r ≥ 3 , |s1| ≤ · · · ≤ |sN−1| < |sN | < 1, |sN |r < |s1| < |sN |2
and ϕ ∈ Cr be a given function such that ϕ(0) = 0, dϕ(0) = E and
∂2ϕ1(0)
∂xN ∂xN

�= 0. The mapping ϕ is invertible in a neighbourhood of the origin
and we may define the following function

F (x) := ϕ−1(Sϕ(x)),
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where S := [s1 . . . , sN ] is a diagonal matrix. We have dF (0) = [s1 . . . , sN ],
thus F satisfies the assumptions of Corollary 4. Consequently for this function
formula (2) does not hold.

Note that every function ϕ = (ϕ1, . . . , ϕN ), where

ϕj(x1, . . . , xN ) = xj +
∑

i1,i2∈{1,...,N}
aj

i1,i2
xi1xi2

and a1
N,N �= 0 satisfies the above mentioned conditions.

Example 3. We consider the case where r = 3, N = 2 and p = 1. Let
|s2|3 < |s1| < |s2|2 < 1. Define

F (x, y) = (s1x+ a(s1 − s22)y
2, s2y), a �= 0.

We have dF (0, 0) = [s1, s2]. Solving system (4) we get that the formal solution
of order 2 of Eq. (1) is expressed by the formula

η(x, y) = (x+ ay2, y).

Obviously ∂2η(0)
∂y∂y = (a, 0). Hence, by Corollary 3, limn→∞(S−nFn)1(x) = ∞.

Remark 4. If F (x1, . . . , xN ) = (f1(x1), . . . , fN (xN )), f ∈ Cr(−a, a), fi(0) =
0, f ′

i(0) = si, 0 < |si| < 1, i = 1, . . . , N , then Eq. (1) has a unique Cr

solution ϕ which is given by (2).

Proof. We have

S−nFn(x) =

⎡

⎢
⎢
⎣

fn
1 (x1)

sN
1
...

fn
n (xN )
sn

N

⎤

⎥
⎥
⎦ .

It follows, by Proposition 1 in the one dimensional case, that there exists a
δ > 0 such that for every 1 ≤ i ≤ N there exists the limit limn→∞

F n
i (u)
sn

i
=

ϕi(u) for |u| < δ and that ϕi are of class Cr. Hence we get (2). �
Remark. Note that if the sequence {S−nFn(x)} is convergent to ϕ(x), then

Fn(x) ≈ Snϕ(x),

which means that the sequence {Fn(x)} has the same asymptotic behavior
as the sequence Snϕ(x). The matrices sequences Sn are well described in the
literature (see, for e.g., Elaydi [4]). As an application of this fact we obtain
the assertion that the solutions of the system of nonlinear difference equations
x̂n+1 = F (x̂n) in R

N space can be approximated by the solutions of a linear
system ŷn+1 = Sŷn with the initial condition ŷ0 = ϕ(x̂0).

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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