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Note on an equation occurring in a problem
of Nicole Brillouët-Belluot

Witold Jarczyk and Janusz Morawiec

Abstract. We study the functional equation f(x)f−1(x) = x2 imposing no continuity
assumptions on its bijective solutions defined on an interval. All the continuous bijections
satisfying the equation were determined by the second author in (Aequat. Math. (in print),
2011) when solving the problem (Problem posed during the forty-ninth International Sym-
posium on Functional Equations 2011) posed by Brillouët-Belluot.
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1. Introduction

In [2] the second author solved the problem posed in [1] proving that any
continuous bijection of an arbitrary real interval I, satisfying the equation

f(x)f−1(x) = x2, (1.1)

is either linear:

f(x) = cx, x ∈ I, (1.2)

or of the form

f(x) =

{
ax, if x ∈ I ∩ (−∞, 0),
bx, if x ∈ I ∩ [0,∞).

(1.3)

The following two examples show that the continuity of a solution cannot be
omitted there.

Example 1. The formula

f(x) =

{
x, if x ∈ 4n( 1

2 , 1] and n ∈ Z,

4x, if x ∈ 4n(1, 2] and n ∈ Z,
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provides a bijective solution f : (0,∞) → (0,∞) of (1.1) which is discontinuous
exactly at the powers of 2.

Example 2. Let I be an interval and let A be its symmetric subset such that
both A and I \A contain a non-zero number. The function f : I → I, given by

f(x) =

{
−x, if x ∈ A,

x, if x ∈ I \ A,
(1.4)

is a discontinuous bijection satisfying (1.1).

Note that there are bijective solutions of (1.1) that are discontinuous at
exactly one point; to see this take I = (−a, a] with a > 0 and set A = (−a, a)
in Example 2.

In what follows f stands for a bijection of an interval I, satisfying (1.1),
and fn, where n ∈ Z, denotes the n-th iterate of f . The only exception is
Theorem 2.4, where I is replaced by an arbitrary set X of reals. (Note, how-
ever, that also some of the remaining results can be easily proved for bijections
of X, with no essential changes in the proofs.)

Remark 1.1. (i) [2, Lemma 2.1] If 0 ∈ I then f(0) = 0.
(ii) [2, Lemma 2.4] The function g : − I → −I, given by g(x) = −f(−x), is

a bijective solution of (1.1).

2. Main results

We start with the following result where no continuity assumption is imposed
on a solution of (1.1).

Theorem 2.1. (i) If I ⊂ [0,∞) or I ⊂ (−∞, 0], and I is not a half-line
ending with 0, then

f(x) = x, x ∈ I.

(ii) If I is bounded then

|f(x)| = |x|, x ∈ I. (2.1)

Remark 2.2. It is an easy observation that, because of (1.1), for every x ∈ I
we have |f(x)| = |x| if and only if f2(x) = x.

In the proof of Theorem 2.1 the following lemma plays a crucial role. Its
first assertion is, in fact, Lemma 2.2 from [2] and the second one follows
immediately.

Lemma 2.3. For every x ∈ I \ {0} the sequence (fn(x))n∈Z is geometric:

fn(x) =
(

f(x)
x

)n

x, n ∈ Z.
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In particular,

if 0 < |f(x)| < |x|, then limn→+∞ fn(x) = 0 and limn→−∞ |fn(x)| = +∞
and

if |f(x)| > |x| > 0, then limn→+∞ |fn(x)| = +∞ and limn→−∞ fn(x) = 0

for any x ∈ I.

Proof of Theorem 2.1. (i) By Remark 1.1 we may assume that I ⊂ (0,∞).
Then, as I �= (0,∞) it follows from Lemma 2.3 that f(x) = x for all
x ∈ I.

(ii) Since the endpoints of I are finite, Lemma 2.3 gives the assertion imme-
diately.

�

As it follows from Theorem 2.1(i) we may expect discontinuous bijective
solutions of (1.1) defined on I only if either I is a half-line ending with 0, or
0 ∈ intI. Example 1 together with Remark 1.1(ii) as well as Example 2 show
that this is actually the case.

Example 1 also suggested the following description of the general solution
of (1.1) in the class of bijections of an arbitrary set X ⊂ R.

Theorem 2.4. Let X be a set of reals. Equation (1.1) has a solution which is
a bijection of X if and only if there is a partition of X into pairwise disjoint
sets of elements of some two-sided geometric sequences. If {At}t∈T is such a
partition of X, viz.

At = {atq
n
t : n ∈ Z}, t ∈ T,

with some at ∈ X and qt ∈ R \ {0}, then the formula

f(atq
n
t ) = atq

n+1
t

defines a bijection of X which satisfies (1.1). Conversely: any bijection of X
satisfying (1.1) can be obtained in such a manner.

Proof. To obtain the first part of the theorem it is enough to take any x ∈ X
of the form atq

n
t and observe that

f(x)f−1(x) = f(atq
n
t )f−1(atq

n
t ) = atq

n+1
t atq

n−1
t = (atq

n
t )2 = x2.

Conversely, if f is a bijection of X satisfying (1.1), then it is sufficient to
consider the partition of X into the orbits {fn(x) : n ∈ Z} of all elements x
of X; it follows immediately from (1.1) that all the sequences (fn(x))n∈Z are
geometric (in the case X = I it is explicitly indicated in Lemma 2.3). �

It turns out that if 0 ∈ intI and I is bounded, then Example 2 yields a
form of general solution of (1.1) which can be seen from the next result.
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Theorem 2.5. Assume that 0 ∈ intI and I is bounded. Then there is a non-void
symmetric set A ⊂ I such that (1.4) holds.

Proof. The assertion can be easily deduced from Theorem 2.4 and Lemma 2.3.
Nevertheless we present another argument.

By Theorem 2.1(ii) we know that f(x) ∈ {−x, x} for every x ∈ I, and thus,
as f is a bijection, f(x) = x for all x ∈ I \ (−I). Put A = {x ∈ I : f(x) = −x}.
Then 0 ∈ A ⊂ I∩(−I). Clearly (1.4) holds true. If x ∈ A\{0} then f(x) = −x,
whence, by (1.1), xf(−x) = xf2(x) = f(x)2 = (−x)2, i.e. f(−x) = −(−x) and
−x ∈ A. Consequently, A is symmetric. �

Examples 1 and 2 show that when I is a half-line ending with 0 or 0 ∈ intI,
it is difficult to find conditions which guarantee that a solution of (1.1) is of
one of the forms in (1.2) and (1.3), other than its continuity. We complete the
note with two possible trials into this direction.

Theorem 2.6. Assume that I is a half-line ending with 0 and the function
x �→ f(x)/x has a (finite or not) limit c at at least one endpoint of I. Then
c is finite and positive, and (1.2) holds.

Proof. Because of Remark 1.1 we may assume that I = (0,∞).
Define g : I → I by

g(x) =
f(x)

x
. (2.2)

It follows from Lemma 2.3 that
fn+1(x)
fn(x)

=
f(x)

x
, x ∈ I, n ∈ Z,

that is

g(fn(x)) = g(x), x ∈ I, n ∈ Z. (2.3)

Put C = {x ∈ I : f(x) �= x}. Without loss of generality we may assume
that C �= ∅. From (2.3) and the second part of Lemma 2.3 we deduce that
g(x) = c, i.e. f(x) = cx for all x ∈ C. Consequently, c ∈ (0,∞) \ {1} because
C �= ∅, and C = {x ∈ I : f(x) = cx}. Moreover, as

I = f(I) = f(C) ∪ f(I \ C) = cC ∪ (I \ C) and f(C) ∩ f(I \ C) = ∅,

it follows that cC = C.
Since c is the limit of g at an endpoint of I and g takes at most two values:

c and 1, there is a vicinity U of the endpoint such that U ⊂ C. Take any x ∈ I
and n ∈ Z such that cnx ∈ U . Then x ∈ c−nU ⊂ c−nC = C. This shows that
C = I and this completes the proof. �

A counterpart of Theorem 2.6 for intervals containing 0 in their interior
reads as follows.
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Theorem 2.7. Assume that 0 ∈ intI and the function x �→ f(x)/x has (finite
or not) left hand limit a and right hand limit b at 0. Then a, b are finite and
non-zero, and either both are positive, or a = b. Moreover, either (1.3), or
(2.1) hold.

Proof. We argue similarly as in the proof of Theorem 2.6. Defining g : I\{0} →
I \ {0} by (2.2) we come to

g(f2n−1(x)) = g(x) = g(f2n(x)), x ∈ I \ {0}, n ∈ Z. (2.4)

At first we claim that a, b ∈ R \ {0} and

either f(x) = ax, or |f(x)| = |x|, x ∈ I ∩ (−∞, 0], (2.5a)
either f(x) = bx, or |f(x)| = |x|, x ∈ I ∩ [0,∞). (2.5b)

In fact, if |f(x)| = |x| for all x ∈ I ∩ (−∞, 0), then |a| = 1. Otherwise take any
x ∈ I ∩ (−∞, 0) with |f(x)| �= |x|. Then the second part of Lemma 2.3 and
(2.4) implies g(x) = a, whence a ∈ R \ {0} and f(x) = ax, which gives (2.5a).
Similarly one can get (2.5b).

Now we prove that either a, b are positive, or a = b. Assume, for instance,
that a < 0. If a = −1 then, by (2.5a), the function g takes at most two values
in I ∩ (−∞, 0), viz. −1 and 1, and thus f(x) = −x in a left vicinity U of
0. Now (1.1) implies f(−x) = f(f(x)) = f2(x) = f(x)2/x = (−x)2/x = x
for every x ∈ U , i.e. f(x) = −x in −U, whence b = −1, that is a = b.
If a ∈ (−∞, 0) \ {−1} then we can find an x ∈ I \ {0} such that f(x)/x ∈
(−∞, 0)\{−1}, and thus, because of Lemma 2.3, we have f2n(x)/f2n−1(x) < 0
for every n ∈ Z. Consequently, (2.4) forces a = b in that case as well. Similarly
we prove that a = b whenever b < 0.

We show that

either f2(x) = a2x, or f2(x) = x, x ∈ I ∩ (−∞, 0], (2.6a)
either f2(x) = b2x, or f2(x) = x, x ∈ I ∩ [0,∞). (2.6b)

Take any x ∈ I ∩ (−∞, 0). If |f(x)| = |x| then, by Remark 2.2, we have
f2(x) = x. So, because of (2.5a), we may assume that f(x) = ax. We prove that
f2(x) = a2x. If a > 0 then ax ∈ I ∩ (−∞, 0) whence, by (2.5a), we get either
f2(x) = f(ax) = a2x, or |f2(x)| = |f(ax)| = |ax| = |a||x|, i.e. f2(x) = |a|x,
since xf2(x) ≥ 0 by (1.1). If a < 0 then b = a and ax ∈ I ∩ (0,∞), and thus,
on account of (2.5b), we have either f2(x) = f(ax) = bax = a2x, or again
f2(x) = |a|x. In both cases it remains to consider the equality f2(x) = |a|x.
Then (1.1) gives x · |a|x = (ax)2, i.e. |a| = 1 and, consequently, we again come
to f2(x) = a2x. This yields (2.6a). Similarly one can obtain (2.6b).

Now we prove that

f2(x) = a2x, x ∈ I ∩ (−∞, 0], (2.7a)
f2(x) = b2x, x ∈ I ∩ [0,∞). (2.7b)
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Due to condition (2.6a) we may assume that a2 �= 1. Let A = {x ∈ I∩(−∞, 0] :
f2(x) = a2x}. Since a and b are finite, we have f(0−) = f(0+) = 0, and thus

lim
x→0−

f2(x)
x

= lim
x→0−

f(f(x))
f(x)

f(x)
x

= a2

(remember that b = a when a is negative!). Making use of (2.6a) we see that
the function I ∩ (−∞, 0) � x �→ f2(x)/x takes at most two values: a2 and 1.
Therefore we can find a left vicinity U of 0 such that U ⊂ A. Moreover, as

I ∩ (−∞, 0] = f2(I ∩ (−∞, 0]) = f2(A) ∪ f2(I ∩ (−∞, 0] \ A),
= a2A ∪ (I ∩ (−∞, 0] \ A)

and

f2(A) ∩ f2(I ∩ (−∞, 0] \ A) = ∅,

we have a2A = A. Take any x ∈ I ∩ (−∞, 0) and n ∈ Z such that a2nx ∈ U .
Then x ∈ a−2nU ⊂ a−2nA = A. This shows that A = I ∩ (−∞, 0], which is
(2.7a). Similarly one can prove (2.7b).

We prove that

either f(x)=ax, x ∈ I ∩ (−∞, 0], or |f(x)|= |x|, x ∈ I ∩ (−∞, 0], (2.8a)
either f(x) = bx, x ∈ I ∩ [0,∞), or |f(x)| = |x|, x ∈ I ∩ [0,∞). (2.8b)

First assume that |f(x0)| = |x0| for an x0 ∈ I ∩ (−∞, 0). Then, because of
Remark 2.2, we have f2(x0) = x0 which jointly with (2.7a) gives |a| = 1.
Consequently, condition (2.5a) implies |f(x)| = |x| for all x ∈ I ∩ (−∞, 0]. On
the other hand, if |f(x)| �= |x| for each x ∈ I ∩ (−∞, 0), then (2.5a) yields
f(x) = ax, x ∈ I ∩ (−∞, 0]. Condition (2.8b) can be proved similarly.

It follows from (2.8a) and (2.8b) that to complete the proof of the theorem
it is enough to consider the following cases only:

f(x) = ax, x ∈ I ∩ (−∞, 0], and |f(x)| = |x|, x ∈ I ∩ [0,∞),

and, symmetrically,

|f(x)| = |x|, x ∈ I ∩ (−∞, 0], and f(x) = bx, x ∈ I ∩ [0,∞).

Assume, for instance, the first possibility. If f(x) = x, x ∈ I ∩ [0,∞), then
(1.3) holds with b = 1. Otherwise f(x0) = −x0 for an x0 ∈ I ∩ (0,∞), whence
f2(x0) = x0 on account of Remark 2.2, and thus x0 = f2(x0) = f(−x0) =
a(−x0). Therefore a = −1 and, consequently, (2.1) holds. �

We complete the paper with an example showing that the assertion of The-
orem 2.7 can not be improved. More precisely, we show that the existence of
one-sided limits of the function I \ {0} � x �→ f(x)/x at 0 does not imply the
continuity of f .
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Example 3. Let I = [−2, 2]. Putting A = [−1, 1] in Example 2 we come
to a discontinuous solution f : I → I of (1, 1) such that limx→0− f(x)/x =
limx→0+ f(x)/x = −1. Taking A = [−2,−1] ∪ [1, 2] there, we obtain a discon-
tinuous solution f : I → I with limx→0− f(x)/x = limx→0+ f(x)/x = 1.

Observe, however, that any function of the form in (2.1), having one-sided
limits at 0, is continuous in a neighbourhood of 0. If, in addition, such an f
satisfies (1.1), then there is a neighbourhood U of 0 such that either f(x) =
x, x ∈ U , or f(x) = −x, x ∈ U .

Acknowledgements

The second author was supported by Silesian University Mathematics Depart-
ment (Iterative Functional Equations and Real Analysis program).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution Noncommercial License which permits any noncommercial use, distribution, and
reproduction in any medium, provided the original author(s) and source are credited.

References
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