© Birkhäuser Verlag, Basel, 2008

Aequationes Mathematicae

Errata

Erratum to: "General solution of the 2-cocycle functional equation on solvable groups" [Aequationes Math. 73 (2007), 260–279]

BRUCE EBANKS

Corrections are needed for Theorem 5 and Corollary 9 in [1].

77 77

First, in Theorem 5 an additional condition is required concerning the subgroups of G. We must suppose that

$$K_i^{K_r \cdots K_{i+1}} \subseteq K_i \text{ for each } i = 1, \dots, r-1.$$
(1)

This condition is necessary to guarantee that the first argument in each ψ_i term of the solution (17) in [1] belongs to the appropriate subgroup K_i . The condition (1) also ensures that the product $K_r \cdots K_{j+1}$ is for each $j = 1, \ldots, r-1$ a subgroup of G. Thus equations (18), (19), (20) in [1] make sense. It also follows that $K_j \cdots K_1$ is a normal subgroup of G for each $j = 1, \ldots, r-1$. Therefore $G \supseteq$ $G_{r-1} \supseteq \cdots G_1 \supseteq \{1\}$ is an invariant normal series for G, where $G_j := K_j \cdots K_1$ for each $j = 1, \ldots, r-1$, showing that G is solvable. Now a correct statement of Theorem 5 is as follows.

Theorem 5. Let G be a group with abelian subgroups K_1, \ldots, K_r satisfying condition (1) and such that each element $g \in G$ can be written uniquely as

 $g = k_r \cdots k_1$ for $k_j \in K_j$ $(j = 1, \ldots, r)$.

Let V be a divisible abelian group with no 2-torsion. Then a map $F: G \times G \to V$ is a cocycle if and only if there exist a map $f: G \to V$, skew-symmetric bi-morphisms $\psi_i: K_i \times K_i \to V$ for $i = 1, \ldots, r$, and maps $\phi_j: K_j \times (K_r \cdots K_{j+1}) \to V$ for $j = 1, \ldots, r-1$ such that equations (17), (18), (19), and (20) in [1] hold.

Second, one term is missing from the general solution in Corollary 9. The correct statement of Corollary 9 requires the addition of a term C(yw + (xy - z)v), where $C: R \to V$ is additive, in the general solution of the cocycle equation on the Heisenberg group over R. (It also should have been stated that R is commutative with 1.) The error occurs in the proof after M is decomposed into the sum $M(y, z, v, w) = \Psi_1(y, v) + B_2(y, w) + B_3(z, v) + B_4(z, w)$ of four bi-additive maps.

Since ψ_1 is a skew-symmetric bi-morphism, it follows that the maps Ψ_1, B_4 must be skew-symmetric, but this is not necessarily the case for the maps B_2, B_3 . Rather they must satisfy $B_2(v, z) + B_3(z, v) = 0$. Continuing from the equation $B_2(y, tv) + B_3(ty, v) = 0$, putting y = 1 there yields $B_3(t, u) = -B_2(1, tu) =: -C(tu)$ for some additive mapping $C: R \to V$. Thus $B_4 = 0, B_2(t, u) = -B_3(u, t) = C(tu)$, and the ψ_1 term boils down to $\psi_1((0, y, z), (0, v, w)) = \Psi_1(y, v) + C(yw - zv)$. Hence $\psi_1(k_1^{l_2}, l_1) = \psi_1((0, y, z - (x + u)y), (0, v, w - uv)) = \Psi_1(y, v) + C(yw + (xy - z)v)$. The rest of the proof goes exactly as before.

Reference

 B. EBANKS, General solution of the 2-cocycle functional equation on solvable groups, Aequationes Math. 73 (2007), 260–279.

B. Ebanks Department of Mathematics & Statistics P.O. Box MA Mississippi State, MS 39762 USA e-mail: ebanks@math.msstate.edu

Manuscript received: October 30, 2007 and, in final form, April 7, 2008.