Errata

Erratum to: "General solution of the 2-cocycle functional equation on solvable groups" [Aequationes Math. 73 (2007), 260-279]

Bruce Ebanks

Corrections are needed for Theorem 5 and Corollary 9 in [1].
First, in Theorem 5 an additional condition is required concerning the subgroups of G. We must suppose that

$$
\begin{equation*}
K_{i}^{K_{r} \cdots K_{i+1}} \subseteq K_{i} \text { for each } i=1, \ldots, r-1 \tag{1}
\end{equation*}
$$

This condition is necessary to guarantee that the first argument in each ψ_{i} term of the solution (17) in [1] belongs to the appropriate subgroup K_{i}. The condition (1) also ensures that the product $K_{r} \cdots K_{j+1}$ is for each $j=1, \ldots, r-1$ a subgroup of G. Thus equations (18), (19), (20) in [1] make sense. It also follows that $K_{j} \cdots K_{1}$ is a normal subgroup of G for each $j=1, \ldots, r-1$. Therefore $G \unrhd$ $G_{r-1} \unrhd \cdots G_{1} \unrhd\{1\}$ is an invariant normal series for G, where $G_{j}:=K_{j} \cdots K_{1}$ for each $j=1, \ldots, r-1$, showing that G is solvable. Now a correct statement of Theorem 5 is as follows.

Theorem 5. Let G be a group with abelian subgroups K_{1}, \ldots, K_{r} satisfying condition (1) and such that each element $g \in G$ can be written uniquely as

$$
g=k_{r} \cdots k_{1} \text { for } k_{j} \in K_{j}(j=1, \ldots, r) .
$$

Let V be a divisible abelian group with no 2-torsion. Then a map $F: G \times G \rightarrow V$ is a cocycle if and only if there exist a map $f: G \rightarrow V$, skew-symmetric bi-morphisms $\psi_{i}: K_{i} \times K_{i} \rightarrow V$ for $i=1, \ldots, r$, and maps $\phi_{j}: K_{j} \times\left(K_{r} \cdots K_{j+1}\right) \rightarrow V$ for $j=1, \ldots, r-1$ such that equations (17), (18), (19), and (20) in [1] hold.

Second, one term is missing from the general solution in Corollary 9. The correct statement of Corollary 9 requires the addition of a term $C(y w+(x y-z) v)$, where $C: R \rightarrow V$ is additive, in the general solution of the cocycle equation on the Heisenberg group over R. (It also should have been stated that R is commutative with 1.) The error occurs in the proof after M is decomposed into the sum $M(y, z, v, w)=\Psi_{1}(y, v)+B_{2}(y, w)+B_{3}(z, v)+B_{4}(z, w)$ of four bi-additive maps.

Since ψ_{1} is a skew-symmetric bi-morphism, it follows that the maps Ψ_{1}, B_{4} must be skew-symmetric, but this is not necessarily the case for the maps B_{2}, B_{3}. Rather they must satisfy $B_{2}(v, z)+B_{3}(z, v)=0$. Continuing from the equation $B_{2}(y, t v)+$ $B_{3}(t y, v)=0$, putting $y=1$ there yields $B_{3}(t, u)=-B_{2}(1, t u)=:-C(t u)$ for some additive mapping $C: R \rightarrow V$. Thus $B_{4}=0, B_{2}(t, u)=-B_{3}(u, t)=C(t u)$, and the ψ_{1} term boils down to $\psi_{1}((0, y, z),(0, v, w))=\Psi_{1}(y, v)+C(y w-z v)$. Hence $\psi_{1}\left(k_{1}^{l_{2}}, l_{1}\right)=\psi_{1}((0, y, z-(x+u) y),(0, v, w-u v))=\Psi_{1}(y, v)+C(y w+(x y-z) v)$. The rest of the proof goes exactly as before.

Reference

[1] B. Ebanks, General solution of the 2-cocycle functional equation on solvable groups, Aequationes Math. 73 (2007), 260-279.

B. Ebanks

Department of Mathematics \& Statistics
P.O. Box MA

Mississippi State, MS 39762
USA
e-mail: ebanks@math.msstate.edu

Manuscript received: October 30, 2007 and, in final form, April 7, 2008.

