Erratum to: "Special solutions of a general class of iterative functional equations" [Aequationes Math. 72 (2006), 269-287]

Veerapazham Murugan and Papagudi Venkatachalam Subrahmanyam

The derivative of $T \phi(x)$ (with respect to x) given in equation (3.21) in our paper [1], is incorrect as it ignores the contribution of the term $\frac{\partial}{\partial x}\left[\phi_{x}^{-1}(y)\right]_{y=F(x)}$. This error has already crept in the earlier papers [2] and [3] by Si and Wang. However, our theorems are valid under additional assumptions. The following hypotheses are to be incorporated in Theorem 3.1 of [1]:

H-5: $\left|H_{i x}\left(x, y_{1}, \ldots, y_{n_{i}}\right)\right| \leq L_{i}$ and $\left|H_{i x}\left(x, y_{1}, \ldots, y_{n_{i}}\right)-H_{i y}\left(y, y_{1}, \ldots, y_{n_{i}}\right)\right| \leq$ $L_{i}^{\prime}|x-y|$, where L_{i}, L_{i}^{\prime} are nonnegative numbers for $i \in \mathbb{N}$.
H-6: $\left|H_{i x}\left(x, y_{1}, \ldots, y_{n_{i}}\right)-H_{i x}\left(x, \tilde{y_{1}}, \ldots, \tilde{y_{n}}\right)\right| \leq \sum_{j=1}^{n_{i}} L_{i j}^{\prime}\left|y_{j}-\tilde{y_{j}}\right|$, where $L_{i j}^{\prime}$ are nonnegative numbers for $i \in \mathbb{N}, j=1,2, \ldots, n_{i}$.
The corrected version of the main theorem now reads as:
Theorem 3.1*. Let $\left(\lambda_{i}\right)$ and $\left(n_{i}\right)$ be sequences of nonnegative numbers and natural numbers respectively and $a_{i j} \in \mathbb{N}$ for $i \in \mathbb{N}$ and $j=1,2, \ldots, n_{i}$ with $\sum_{i=1}^{\infty} \lambda_{i}=1$, $\lambda_{1}>0$ and $a_{11}=1$. Let H_{i} be functions satisfying conditions $\mathrm{H}-1$ to $\mathrm{H}-6$ with $\eta, \delta>0$ and nonnegative numbers $L_{i}, L_{i}^{\prime}, L_{i j}, L_{i j}^{\prime}, N_{i j s}$ and $P_{i j}$ for $i \in \mathbb{N}$, $j=1,2, \ldots, n_{i}$ and $s=1,2, \ldots, n_{i}$. Assume further that
(i) $M>1$,
(ii) $L_{0}=\sum_{i=1}^{\infty} \lambda_{i} L_{i}<\infty$,
(iii) $S_{1}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \sum_{s=1}^{n_{i}} \lambda_{i} N_{i j s} M^{a_{i j}+a_{i s}-2}<\infty$,
(iv) $S_{2}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \sum_{k=a_{i j-2}}^{2\left(a_{i j}-2\right)} \lambda_{i} L_{i j} M^{k}<\infty$,
(v) $S_{3}=\sum_{i=1}^{\infty} \lambda_{i} L_{i}^{\prime}<\infty$,
(vi) $K_{3}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \lambda_{i} P_{i j} M^{a_{i j}-1}<\infty$,
(vii) $K_{7}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \sum_{s=1}^{a_{i j}-1} \lambda_{i} L_{i j}^{\prime} M^{s-1}<\infty$
and
(viii) $K_{0}>M^{2} S_{2}$ and $\delta \geq \frac{K_{1} L_{0}}{K_{0}}$ where $K_{0}=\lambda_{1} \eta$ and $K_{1}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \lambda_{i} L_{i j} M^{a_{i j}-1}$.

Then for any given $F \in \mathcal{F}_{\delta}^{1}\left(I, K_{0} M-L_{0}, M^{*}\right)$, the functional equation

$$
\sum_{i=1}^{\infty} \lambda_{i} H_{i}\left(x, f^{a_{i 1}}(x), \ldots, f^{a_{i n_{i}}}(x)\right)=F(x)
$$

has a solution f in $\mathcal{R}^{1}\left(I, M, M^{\prime}\right)$, where $M^{\prime} \geq \frac{M^{*} K_{0}+M^{2} K_{0} S_{1}+K_{1} S_{3}+M\left(K_{1} S_{4}+K_{0} K_{3}\right)}{K_{0}\left(K_{0}-M^{2} S_{2}\right)}$ and $S_{4}=\sum_{i=1}^{\infty} \sum_{j=1}^{n_{i}} \lambda_{i} L_{i j}^{\prime} M^{a_{i j}-1}$.

Theorem 3.1* is proved using Lemma 3.2 together with the following corrected versions of Lemmas 3.3 and 3.4, viz. Lemma 3.3^{*} and Lemma 3.4^{*} respectively. It may be pointed out that Lemma 3.2 is valid under the hypotheses of Theorem 3.1*.

Lemma 3.3*. Under the assumptions of Theorem 3.1*, for each ϕ in $\mathcal{R}^{1}\left(I, M, M^{\prime}\right)$ and x, t in I the map $\phi_{x}(t)$ from I^{2} into \mathbb{R} given by

$$
\phi_{x}(t)=\sum_{i=1}^{\infty} \lambda_{i} H_{i}\left(x, \phi^{a_{i_{1}}-1}(t), \ldots, \phi^{a_{i_{n_{i}}}-1}(t)\right)
$$

is well-defined and satisfies the following:
(i) $\left|\frac{\partial}{\partial s}\left[\phi_{x}{ }^{-1}(s)\right]-\frac{\partial}{\partial t}\left[\phi_{y}{ }^{-1}(t)\right]\right| \leq\left(\frac{K_{2} L_{0}}{K_{0}{ }^{3}}+\frac{K_{3}}{K_{0}{ }^{2}}\right)|x-y|+\frac{K_{2}}{K_{0}^{3}}|s-t|$,
(ii) $\left|\frac{\partial}{\partial x}\left[\phi_{x}{ }^{-1}(s)\right]-\frac{\partial}{\partial y}\left[\phi_{y}{ }^{-1}(t)\right]\right| \leq\left(\frac{K_{1} S_{3}}{K_{0}{ }^{2}}+\frac{K_{1} S_{4} L_{0}}{K_{0}{ }^{3}}+\frac{L_{0} K_{3}}{K_{0}{ }^{2}}+\frac{L_{0}{ }^{2} K_{2}}{K_{0}{ }^{3}}\right)|x-y|$

$$
+\left(\frac{K_{1} S_{4}+L_{0} K_{2}}{K_{0}^{3}}\right)|s-t|,
$$

where $L_{0}, K_{0}, K_{1}, K_{3}, S_{1}, S_{2}, S_{3}$ and S_{4} are as given in Theorem 3.1* and $K_{2}=$ $S_{1}+M^{\prime} S_{2}$.

Lemma 3.4*. Let $g, h \in \mathcal{R}^{1}\left(I, M, M^{\prime}\right)$. Under the assumptions of Theorem 3.1*, for $x, y, s, t \in I$, we have
(i) $\left\|g_{x}-h_{x}\right\| \leq K_{4}\|g-h\|$,
(ii) $\left|\frac{\partial}{\partial s}\left[g_{x}(s)\right]-\frac{\partial}{\partial t}\left[h_{x}(t)\right]\right| \leq K_{5}\|g-h\|+K_{6}\left\|g^{\prime}-h^{\prime}\right\|+K_{2}|s-t|$,
(iii) $\left|\frac{\partial}{\partial x}\left[g_{x}(s)\right]-\frac{\partial}{\partial x}\left[h_{x}(t)\right]\right| \leq K_{7}\|g-h\|+S_{4}|s-t|$,
(iv) $\left\|g_{x}^{-1}-h_{x}^{-1}\right\| \leq \frac{K_{4}}{K_{0}}\|g-h\|$,
(v) $\left|\frac{\partial}{\partial s}\left[g_{x}^{-1}(s)\right]-\frac{\partial}{\partial t}\left[h_{x}^{-1}(t)\right]\right| \leq\left(\frac{K_{5}}{K_{0}^{2}}+\frac{K_{2} K_{4}}{K_{0}^{3}}\right)\|g-h\|+\frac{K_{6}}{K_{0}^{2}}\left\|g^{\prime}-h^{\prime}\right\|+\frac{K_{2}}{K_{0}^{3}}|s-t|$,
(vi) $\left|\frac{\partial}{\partial x}\left[g_{x}^{-1}(s)\right]-\frac{\partial}{\partial x}\left[h_{x}^{-1}(t)\right]\right| \leq\left(\frac{K_{1} K_{7}}{K_{0}^{2}}+\frac{S_{4} K_{4}}{K_{0}^{3}}+\frac{K_{5} L_{0}}{K_{0}^{2}}+\frac{K_{2} K_{4} L_{0}}{K_{0}^{3}}\right)\|g-h\|$

$$
+\frac{L_{0} K_{6}}{K_{0}^{2}}\left\|g^{\prime}-h^{\prime}\right\|+\frac{1}{K_{0}^{3}}\left\{K_{1} S_{4}+L_{0} K_{2}\right\}|s-t|,
$$

where $L_{0}, K_{0}, K_{1}, K_{4}, K_{5}, K_{6}, K_{7}, S_{1}, S_{2}, S_{3}$ and S_{4} are as in Theorem 3.1* and Lemma 3.2 and $K_{2}=S_{1}+M^{\prime} S_{2}$.

Theorem 3.5, Corollary 3.6 and Theorem 3.8 also require correction and their corrected versions are Theorem 3.5^{*}, Corollary 3.6^{*} and Theorem 3.8^{*} respectively
and are stated below. However, Corollary 3.7 requires no correction.
Theorem 3.5*. In addition to the hypotheses of Theorem 3.1*, we suppose that the number $\rho=\max \left\{\frac{K_{4}}{K_{0}}+\frac{K_{1} K_{7}}{K_{0}^{2}}+\frac{S_{4} K_{4}}{K_{0}^{3}}+\frac{M K_{2} K_{4}}{K_{0}^{2}}+\frac{M K_{5}}{K_{0}}, \frac{M K_{6}}{K_{0}}\right\}$ is less than 1, where $K_{2}=S_{1}+M^{\prime} S_{2}$ and $K_{0}, K_{1}, K_{4}, K_{5}, K_{6}, K_{7}, S_{1}, S_{2}$ and S_{4} are as defined in Theorem 3.1* and Lemma 3.2.

Then for any $F \in \mathcal{F}_{\delta}^{1}\left(I, K_{0} M-L_{0}, M^{*}\right)$, there is a unique function f satisfying the functional equation

$$
\sum_{i=1}^{\infty} \lambda_{i} H_{i}\left(x, f^{a_{i 1}}(x), \ldots, f^{a_{i n_{i}}}(x)\right)=F(x)
$$

in $\mathcal{R}^{1}\left(I, M, M^{\prime}\right)$. Further the solution f of the equation in $\mathcal{R}^{1}\left(I, M, M^{\prime}\right)$ continuously depends on the given function F in $\mathcal{R}^{1}\left(I, K_{0} M-L_{0}, M^{*}\right)$.

Corollary 3.6* (the valid version of Corollary 3.6) corrects the main theorem due to Si and Wang [2]. For the statement of this corollary, we need the following hypotheses on the function H.
$\mathrm{H}-1^{\prime}: H \equiv H\left(x, y_{1}, \ldots, y_{k}\right)$ is a continuously differentiable function on I^{k+1} such that $H(a, \ldots, a)=a, H(b, \ldots, b)=b$.
H-2': $0<l \leq H_{y_{1}}\left(x, y_{1}, \ldots, y_{k}\right)$ and $0 \leq H_{y_{j}}\left(x, y_{1}, \ldots, y_{k}\right) \leq L_{j}$, where l, L_{j} are nonnegative numbers for $j=1,2, \ldots, k$, and $H_{y_{j}}$ is the partial derivative of H with respect to the variable y_{j} for each $j=1,2, \ldots, k$.
$\mathrm{H}-3^{\prime}:\left|H_{y_{j}}\left(x, y_{1}, \ldots, y_{k}\right)-H_{y_{j}}\left(x, \tilde{y_{1}}, \ldots, \tilde{y_{k}}\right)\right| \leq \sum_{s=1}^{k} N_{j s}\left|y_{s}-\tilde{y_{s}}\right|$, where $N_{j s}$ are nonnegative numbers for $j=1,2, \ldots, k$ and $s=1,2, \ldots, k$.
$\mathrm{H}-4^{\prime}:\left|H_{x}\left(x, y_{1}, \ldots, y_{k}\right)\right| \leq L$ and $\left|H_{x}\left(x, y_{1}, \ldots, y_{k}\right)-H_{y}\left(y, y_{1}, \ldots, y_{k}\right)\right| \leq L^{\prime}|x-y|$ where L, L^{\prime} are nonnegative numbers.
H-5': $\left|H_{x}\left(x, y_{1}, \ldots, y_{k}\right)-H_{x}\left(x, \tilde{y_{1}}, \ldots, \tilde{y_{k}}\right)\right| \leq \sum_{i=1}^{n_{i}} L_{j}^{\prime}\left|y_{j}-\tilde{y_{j}}\right|$ where L_{j}^{\prime} are nonnegative numbers for $j=1,2, \ldots, k$.
H-6': $\left|H_{y_{j}}\left(x, y_{1}, \ldots, y_{k}\right)-H_{y_{j}}\left(y, y_{1}, \ldots, y_{k}\right)\right| \leq P_{j}|x-y|$ where P_{j} are nonnegative numbers for $j=1,2, \ldots, k$.

Corollary 3.6*. Let $n_{1}, n_{2}, \ldots, n_{k}$ be natural numbers with $n_{1}=1$, and let $H\left(x, y_{1}, y_{2}, \ldots, y_{k}\right)$ be a real function defined on I^{k+1} satisfying hypotheses $\mathrm{H}-1^{\prime}$ to H-6' with $l>0$ and nonnegative numbers $L, L^{\prime}, L_{j}, L_{j}^{\prime}, P_{j}$ and $N_{j s}$ for $j=$ $1,2, \ldots, k$ and $s=1,2, \ldots, k$. Suppose that $M>1$ and $l>M^{2} S_{2}$ and $\delta \geq L K_{1} / l$ where $S_{2}=\sum_{j=1}^{k} \sum_{s=n_{j}-2}^{2\left(n_{j}-2\right)} L_{j} M^{s}$ and $K_{1}=\sum_{j=1}^{k} L_{j} M^{n_{j}-1}$.

Then for any given $F \in \mathcal{F}_{\delta}^{1}\left(I, l M-L, M^{*}\right)$, the functional equation

$$
H\left(x, \phi^{n_{1}}(x), \ldots, \phi^{n_{k}}(x)\right)=F(x)
$$

has a solution ϕ in $\mathcal{R}^{1}\left(I, M, M^{\prime}\right)$ where $M^{\prime} \geq \frac{K_{1} L^{\prime}+l\left(M^{*}+M^{2} S_{1}\right)+M\left(K_{1} S_{3}+l K_{3}\right)}{l\left(l-M^{2} S_{2}\right)}$, $S_{1}=\sum_{j=1}^{k} \sum_{s=1}^{k} N_{j s} M^{n_{j}+n_{s}-2}, S_{3}=\sum_{j=1}^{k} L_{j}^{\prime} M^{n_{j}-1}$ and $K_{3}=\sum_{j=1}^{k} P_{j} M^{n_{j}-1}$.

Theorem 3.8*. In addition to the hypotheses of Theorem 3.1*, we suppose that $F \in \mathcal{F}_{\delta}^{1}\left(I, K_{0} M-L_{0}, M^{*}\right)$ where $\delta \geq\left(\mu+\frac{L_{0}}{K_{0}}\right) K_{1}$ for some $0<\delta<1$. Then there is a solution for equation (1.2) in $\mathcal{F}_{\mu}^{1}\left(I, M, M^{\prime}\right)$.

Since all the hypotheses of Theorem 3.1^{*} are satisfied in both Examples 3.1 and 3.2 , they do not need any alteration.

References

[1] V. Murugan and P. V. Subrahmanaym, Special solutions of a general class of iterative functional equations, Aequationes Math. 72 (2006), 269-287.
[2] J. Si and X. WANG, Differentiable solutions of an iterative functional equation, Aequationes Math. 61 (2001), 79-96.
[3] J. Si and X. WANG, Differentiable solutions of a polynomial-like iterative equation with variable coefficients, Publ. Math. Debrecen 58 (2001), 57-72.
V. Murugan

Department of Mathematics
National Institute of Technology
Surathkal PIN:575 025
India
P. V. Subrahmanyam

Department of Mathematics
Indian Institute of Technology Madras
Chennai, PIN: 600036
India
e-mail: pvs@iitm.ac.in

