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Existence of Solution for a Katugampola
Fractional Differential Equation Using
Coincidence Degree Theory
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Alexander Domoshnitsky and Seshadev Padhi

Abstract. In this paper, the authors study the existence of positive so-
lutions to the fractional boundary value problem at resonance

−(Dα,ρ
a+ x)(t) = f(t, x(t), Dα−1,ρ

a+ x(t)), t ∈ (a, b),

x(a) = 0, x(b) =

∫ b

a

x(t)dA(t),

where 1 < α ≤ 2, and Dα,ρ
a+ is a Katugampola fractional derivative,

which generalizes the Riemann–Liouville and Hadamard fractional deriva-

tives, and
∫ b

a
x(t)dA(t) denotes a Riemann–Stieltjes integral of x with

respect to A, where A is a function of bounded variation. Coincidence
degree theory is applied to obtain existence results. This appears to be
the first work in the literature to deal with a resonant fractional differ-
ential equation with a Katugampola fractional derivative. Examples are
given to illustrate the application of their results.
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1. Introduction

In this article, we consider the fractional boundary value problem consisting
of the equation

− (Dα,ρ
a+ x)(t) = f(t, x(t),Dα−1,ρ

a+ x(t)), t ∈ (a, b) (1)

together with the boundary conditions

x(a) = 0, x(b) =
∫ b

a

x(t)dA(t), (2)
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where 1 < α ≤ 2 and Dα,ρ
a+ is a Katugampola fractional derivative. This type

of fractional derivative generalizes the Riemann–Liouville and Hadamard
fractional derivatives (see [19,20]). Here,

∫ b

a
x(t)dA(t) denotes the Riemann–

Stieltjes integral of x with respect to A, where A is a function of bounded
variation. We note that the problem (1)–(2) is at resonance in the sense that
the corresponding linear homogeneous equation −(Dα,ρ

a+ x)(t) = 0, t ∈ [a, b],
has nontrivial solutions with the boundary condition (2).

During the last few years, many researchers have investigated fractional
differential equations with various definitions of fractional derivatives and
integrals using different techniques; for example, we can see some recent work
with Riemann–Liouville derivatives [15,16,29], Caputo derivatives [2,12,13,
31], Hadamard derivatives [5,18], Caputo–Hadamard derivatives [3,10], and
ψ-fractional operators [4,22]. However, fractional differential equations with
Katugampola derivatives are less studied in the literature, and only recently
has attracted researchers to study such problems.

Some recent works on Katugampola fractional differential equations
that has motivated us to study the boundary value problem (1)–(2) include
the following. In [25], �Lupinska and Odzijewicz obtained a Lyapunov-type
inequality for the Katugampola fractional problem

{
Dα,ρ

a+ x(t) + g(t)x(t) = 0,
x(a) = x(b) = 0.

In [8], Basti et al. used the Guo-Krasnosel’skii and Banach fixed point the-
orems to study the existence and uniqueness of solutions to the nonlinear
Katugampola fractional boundary value problem

{
Dα,ρ

a+ x(t) + βf(t, u(t)) = 0, 1 < α ≤ 2,

x(0) = x(T ) = 0,

where β ∈ R and f : [0, T ] × [0,∞) → [h,∞) is a continuous function and h
and T are finite positive constants. In another work, �Lupiska and Schmeidel
[26], obtained a Lyapunov-type inequality and conditions for existence and
non-existence of solutions to{

Dα,ρ
a+ x(t) + g(t)x(t) = 0,

x(a) = Dα,ρ
a+ x(b) = 0.

In [6,9,23,24], the authors studied various nonlinear Katugampola fractional
differential equations. Moreover, using coincidence degree theory, the exis-
tence of solutions to fractional differential equations at resonance with various
kinds of fractional derivatives have been studied by a number of authors, for
example, see [7,16,17,27,32]. As far as we can determine, there has been no
work on Katugampola fractional equations at resonance and this explains our
motivation to investigate the problem (1)–(2). We believe that the present
work will be an important contribution to the literature on fractional equa-
tions and resonance problems.
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2. Preliminaries

We begin with some concepts needed to analyze our problem.

Definition 2.1. ([19,25]) Let α > 0, ρ > 0, −∞ < a < b ≤ ∞, p ≥ 1, and
f ∈ Lp(a, b). The operators

Iα,ρ
a+ f(t) =

ρ1−α

Γ(α)

∫ t

a

τρ−1

(tρ − τρ)1−α
f(τ)dτ

and

Iα,ρ
b− f(t) =

ρ1−α

Γ(α)

∫ b

t

τρ−1

(tρ − τρ)1−α
f(τ)dτ,

for t ∈ (a, b), are called the left and right Katugampola integrals of fractional
order α, respectively.

Definition 2.2. ([20,25]) Let α > 0, ρ > 0, n = [α] + 1, 0 < a < t < b ≤ ∞,
p ≥ 1, and f ∈ Lp(a, b). The operators

Dα,ρ
a+ f(t) =

(
t1−ρ d

dt

)n

In−α,ρ
a+ f(t)

and

Dα,ρ
b− f(t) =

(
−t1−ρ d

dt

)n

In−α,ρ
b− f(t),

for t ∈ (a, b), are called the left and right Katugampola derivatives of frac-
tional order α, respectively.

The Katugampola derivative can be viewed as generalizing two other
fractional operators by introducing a new parameter ρ > 0 into the definition.
In fact, if we take ρ = 1, we have the Riemann–Liouville fractional derivative

Dα,1
a+ f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

a

f(τ)
(t − τ)α−n+1

dτ.

On the other hand, while the Katugampola derivative is only defined for ρ >
0, if we formally let ρ = 0 in the expression for the Katugampola derivative,
it agrees with the Hadamard fractional derivative

Dα,0
a+ f(t) =

1
Γ(n − α)

(
t

d

dt

)n ∫ t

a

(
log

t

τ

)n−α−1

f(τ)
dτ

τ
.

Next, we give some basic lemmas needed in our study.

Lemma 2.3. ([26]) Let n − 1 < α < n, n ∈ N, ρ > 0, and f ∈ L[a, b]. Then

Iα,ρ
a+ Dα,ρ

a+ f(t) = f(t) +
n−1∑
i=0

ci

(
tρ − aρ

ρ

)i−n+α

,

where ci, i = 0, 1, . . . , n − 1, are real constants.
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Lemma 2.4. ([25, Proposition 1]) Let α > 0, ρ > 0, a > 0, and λ > α − 1.
Then

Dα,ρ
a+

(
tρ − aρ

ρ

)λ

=
Γ(λ + 1)

Γ(λ + 1 − α)

(
tρ − aρ

ρ

)λ−α

.

Lemma 2.5. ([25, Theorem 1]) Let 0 < a < b < ∞, 1 < α ≤ 2, and
h : [a, b] → R be a continuous function. Then the unique solution of the
problem {

(Dα,ρ
a+ x)(t) + h(t) = 0,

x(a) = 0, x(b) = 0,
(3)

is

x(t) =
∫ b

a

G(t, s)h(s)ds, (4)

where G(t, s) is the Green’s function given by

G(t, s) =
ρ1−α

Γ(α)

⎧⎪⎨
⎪⎩

sρ−1

(bρ−sρ)1−α

(
tρ−aρ

bρ−aρ

)α−1

− sρ−1

(tρ−sρ)1−α , a ≤ s ≤ t ≤ b,

sρ−1

(bρ−sρ)1−α

(
tρ−aρ

bρ−aρ

)α−1

, a ≤ t ≤ s ≤ b.
(5)

Lemma 2.6. ([25, Theorem 4]) The Green’s function given in (5) has the
following properties:

1) G(t, s) ≥ 0 for t ∈ [a, b], s ∈ [a, b],

2) maxt∈[a,b] G(t, s) ≤ max{aρ−1,bρ−1}
Γ(α)

(
bρ−aρ

4ρ

)α−1

.

To apply coincidence degree theory (See Theorem 2.7, below), we pro-
vide some basic definitions and related properties. Let X and Y be real Ba-
nach spaces and L : dom(L) ⊂ X → Y be a Fredholm operator of index zero
(i.e., dim (Ker(L)) − codim (Im(L)) = 0). Let P : X → X and Q : Y → Y
be two continuous projectors such that Im(P ) = Ker(L), Ker(Q) = Im(L),
X = Ker(L)⊕Ker(P ), and Y = Im(L)⊕ Im(Q). Then the inverse operator
of L|dom(L)∩Ker(P ) : dom(L) ∩ Ker(P ) → Im(L) is known to exist and we
denote it by Kp. If we take Ω to be a bounded open subset of X such that
dom(L) ∩ Ω 
= 0, then the mapping N : X → Y is said to be L-compact if
QN(Ω) is bounded and the mapping Kp(I −Q)N : Ω → X is compact. That
the equation Lx = Nx is solvable can be seen from [28, Theorem IV.13].

Theorem 2.7. ([28, Theorem 2.4]) Let L be a Fredholm operator of index zero
and let N be L-compact on Ω. Assume the following conditions are satisfied:

1) Lx 
= λNx for every (x, λ) ∈ [(dom(L)\Ker(L)) ∩ ∂Ω] × (0, 1);
2) Nx /∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω;
3) deg(QN |KerL,KerL ∩ Ω, 0) 
= 0, where Q : Y → Y is a projector as

above with Im(L) = Ker(Q).

Then the equation Lx = Nx has at least one solution in dom(L) ∩ Ω.
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In this article, we use the classical Banach space Y = C[a, b] with the
norm ‖u‖∞ = max

t∈[a,b]
|u(t)| and the Banach space

X = {u : [a, b] → R | u, Dα−1,ρ
a+ u ∈ C[a, b]},

with the norm ||u||X = max{||u||∞, ||Dα,ρ
a+ u||∞}.

Let us define L : dom(L) ⊂ X → Y and N : X → Y by

(Lx)(t) = −(Dα,ρ
a+ x)(t)

and

(Nx)(t) = f(t, x(t),Dα−1,ρ
a+ x(t))

for t ∈ [a, b], where

dom(L) =

{
x ∈ X | −Dα,ρ

a+ x ∈ Y, x(a) = 0, x(b) =
∫ b

a

x(t)dA(t)

}
.

Then the boundary value problem (1)–(2) becomes

(Lx)(t) = (Nx)(t), x ∈ dom(L).

To apply Theorem 2.7 in the proofs of the main results in the present
paper, we define linear continuous projectors P : X → X and Q : Y → Y by

(Px)(t) = x(b)
(

tρ − aρ

bρ − aρ

)ρ−1

, (6)

and

(Qy)(t) =
α

(bρ−aρ)α

ρ − ∫ b

a
(tρ−aρ)α

ρ dA(t)

×
[∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds −

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)dsdA(t)

]
,

(7)

and a generalized inverse operator Kp : Im(L) → dom(L) ∩ Ker(P ) of L by

(Kpy)(t) =
∫ b

a

G(t, s)y(s)ds

=
sρ−1

(bρ − sρ)1−α

∫ b

a

(
tρ − aρ

bρ − aρ

)α−1

y(s)ds −
∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds,

(8)

where G(t, s) is given in (5).
We assume that the following conditions hold throughout the remainder

of this paper:

(A1)
∫ b

a

(
tρ − aρ

ρ

)α−1

dA(t) =
(

bρ − aρ

ρ

)α−1

and
∫ b

a

(tρ − aρ)α

ρ
dA(t) 
= (bρ − aρ)α

ρ
;
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(A2) f : [a, b]×R×R → R satisfies Caratheodry conditions, that is, f(·, u, v)
is measurable for each fixed (u, v) ∈ R × R, f(t, ·, ·) is continuous for
a.e. t ∈ [a, b], and for each r > 0 there exists φr ∈ L∞[a, b] such that
|f(t, u, v)| ≤ φr(t) for all |u|, |v| ≤ r and t ∈ [a, b].

3. Main Results

We set

Δ = max

{
max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

,
(bρ − aρ)α

αρ

}
(9)

and will make use of the following conditions to prove our results.

(A3) There exists μ, σ, ω ∈ C[a, b] such that for all u, v ∈ R and t ∈ [a, b],

|f(t, u, v)| ≤ μ(t) + σ(t)|u| + ω(t)|v|,
with

‖σ‖ + ‖ω‖ <
1
Ψ

,

where ‖σ‖ = ‖σ‖∞ = maxa≤t≤b |σ(t)|, ‖ω‖ = ‖ω‖∞ = maxa≤t≤b |ω(t)|,
and Ψ = Γ(α)Δ + 1 + (bρ−aρ)α

αρ .
(A4) There exists a constant M > 0 such that, if |Dα−1

a+ x(t)| > M for all
t ∈ [a, b], then QNx 
= 0.

(A5) There exists a constant B > 0 such that either

cQN

(
c

(
tρ − aρ

ρ

)α−1
)

< 0

or

cQN

(
c

(
tρ − aρ

ρ

)α−1
)

> 0

for c ∈ R with |c| > B.

We next prove some lemmas that will facilitate the proof of our main
result.

Lemma 3.1. L : dom(L) ⊂ X → Y is a Fredholm operator of index zero.

Proof. By Lemma 2.3, since Lx = 0, we have

x(t) = c1

(
tρ − aρ

ρ

)α−1

+ c2

(
tρ − aρ

ρ

)α−2

,

and using the first condition in (2) gives c2 = 0. Hence,

Ker(L) =

{
c

(
tρ − aρ

ρ

)α−1

: c ∈ R

}
.
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Also,

Im(L) =

{
y ∈ Y :

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds −

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds

}
.

Let x ∈ dom(L) and Lx = y. Then by Lemma 2.3,

x(t) = c1

(
tρ − aρ

ρ

)α−1

− ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds.

Moreover,

x(b) = c1

(
bρ − aρ

ρ

)α−1

− ρ1−α

Γ(α)

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds,

and ∫ b

a

x(t)dA(t) = c1

∫ b

a

(
tρ − aρ

ρ

)α−1

dA(t) − ρ1−α

Γ(α)∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)dsdA(t).

Since x(b) =
∫ b

a
x(t)dA(t), we have

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds =

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)dsdA(t).

On the other hand, if y ∈ Y , then
∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds =

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)dsdA(t).

If

x(t) =
ρ1−α

Γ(α)

(
tρ − aρ

ρ

)α−1 ∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds

−ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds,

then Lx = y,

x(b) =
ρ1−α

Γ(α)

(
bρ − aρ

ρ

)α−1 ∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds

−ρ1−α

Γ(α)

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds

and∫ b

a

x(t)dA(t) =
ρ1−α

Γ(α)

∫ b

a

(
tρ − aρ

ρ

)α−1

dA(t)
∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds

− ρ1−α

Γ(α)

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)dsdA(t).
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Thus, x ∈ dom(L) implies that y ∈ Im(L) and Lx = y. Hence,

Im(L) =

{
y ∈ Y :

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds −

∫ b

a

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds = 0

}
.

Consequently, dim Ker(L) = 1 and Im(L) is closed.
From (6), we see that P is linear and (P 2x)(t) = (Px)(t), which means

that P is a projection operator. Also, Ker(P ) = {x ∈ X | x(b) = 0} and
Im(P ) = Ker(L). For any x ∈ X, with x = (x − Px) + Px, we have X =
Ker(P )⊕Ker(L). It is easy show that Ker(L)∩Ker(P ) = {0}, which implies
X = Ker(P ) ⊕ Ker(L). It is not difficult to see that (Q2y)(t) = (Qy)(t) (see
page 12025 in [16] for a similar argument), so Q is a projection operator.
Moreover, Ker(Q) = Im(L).

Next, for any y ∈ Y , setting y1 = y − Qy, we have (Qy1)(t) = Q(y −
Q(y))(t) = Qy(t)−Q2y(t) = 0. Hence, y1 ∈ Im(L) and Y = Im(L)+Im(Q).
Moreover, it is easy to verify that Im(Q)∩ Im(L) = {0}. Consequently, Y =
Im(L)⊕ Im(Q). Since Im(L) is a closed subspace of Y and dim (Ker(L)) =
codim (Im(L)) = 1, L is a Fredholm operator of index zero. This proves the
lemma. �
Lemma 3.2. Kp is the inverse of L|dom(L)∩Ker(P ).

Proof. If y ∈ Im(L), then

LKpy = −Dα,ρ
a+

(
ρ1−α

Γ(α)

(
tρ − aρ

bρ − aρ

)α−1 ∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds

− ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
y(s)ds

)

= y.

For x ∈ dom(L) ∩ Ker(P ) and Lx = y, we have

−Dα,ρ
a+ x(t) = y(t), t ∈ (a, b),

x(a) = 0, x(b) = 0.

Furthermore, for x ∈ dom(L) ∩ Ker(P ), we have

(KpLx)(t) =
∫ b

a

G(t, s)(−Dα,ρ
a+ x(s))ds =

∫ b

a

G(t, s)y(s)ds = x(t),

that is, Kp = (L|dom(L)∩Ker(P ))−1. This completes the proof of the lemma. �
Lemma 3.3. For y ∈ Y , we have

‖Kpy(x)‖∞ ≤ ‖y‖∞
max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

,

and

‖Dα−1
0+ Kpy‖∞ ≤ ‖y‖∞

(bρ − aρ)α

αρ
.

Moreover,

‖Kpy‖X ≤ Δ‖y‖X .
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Proof. Consider Kpy(t) given in (8). Applying Lemma 2.4 gives

Dα−1,ρ
0+ (Kpy)(t) =

1
(bρ − aρ)α−1

∫ b

a

sρ−1

(bρ − sρ)1−α
y(s)ds −

∫ b

a

y(s)ds.

By Lemma 2.6, we have G(t, s) > 0 for s, t ∈ (a, b),

‖Kpy(x)‖∞ = ‖
∫ b

a

G(t, s)y(s)ds‖∞ ≤ ‖y‖∞
max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

,

and

‖Dα−1,ρ
a+ (Kpy)(t)‖∞ ≤ ‖y‖∞

[
1

(bρ − aρ)α−1

∫ b

a

sρ−1

(bρ − sρ)1−α
ds

]

≤ ‖y‖∞
(bρ − aρ)α

αρ
.

Thus,

‖Kpy‖X ≤ ‖y‖X max

{
max{aρ−1, bρ−1}

Γ(α)

(
bρ − aρ

4ρ

)α−1

,
(bρ − aρ)α

αρ

}

≤ Δ‖y‖X

where Δ is defined in (9). The proof of the lemma is now complete. �

Lemma 3.4. QN : X → Y is continuous and bounded, and Kp(I − Q)N :
Ω → X is compact, where Ω ⊂ X is a bounded set.

Proof. Since f is continuous, QN(Ω) and (I − Q)N(Ω) are bounded. Hence,
there exists a constant H > 0, such that |(I − Q)Nx(t)| ≤ H for x ∈ Ω
and t ∈ [a, b]. Applying the Lebesgue Dominated Convergence Theorem, it
is clear that Kp(I − Q)Ny : Y → Y is completely continuous, so by the
Arzelà-Ascoli theorem, Kp(I − Q)N(Ω) is compact. This proves the lemma.

�

Lemma 3.5. If conditions (A1)–(A5) are satisfied, then the set

Ω1 = {x ∈ dom(L)\Ker(L) : Lx = λNx for some λ ∈ [0, 1]},

is bounded.

Proof. Let x(t) ∈ Ω1; then Nx ∈ Im(L) = Ker(Q). Therefore, QNx = 0. In
view of (A4), there exists t0 ∈ [a, b] such that |Dα−1,ρ

a+ x(t0)| < M . Since

Dα−1,ρ
a+ x(t) = Dα−1,ρ

a+ x(t0) +
∫ t

t0

Dα,ρ
a+ x(s)ds,

we have

|Dα−1
a+ x(t)| ≤ M +

∫ t

t0

|Nx(s)|ds < M + ‖Nx‖∞. (10)

Since (I − P )x ∈ dom(L) ∩ Ker(P ) for all x ∈ Ω1, by Lemma 3.3, we have

‖(I − P )x‖X = ‖KpL(I − P )x‖X = ‖KpLx‖X ≤ Δ‖Lx‖X ≤ Δ‖Nx‖∞,
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and

‖Dα−1,ρ
a+ (I − P )x‖∞ ≤ ‖Dα−1,ρ

a+ KpLx‖∞ ≤
(

(bρ − aρ)α

αρ

)
‖Lx‖∞

≤
(

(bρ − aρ)α

αρ

)
‖Nx‖∞. (11)

Using (10), (11), and Lemma 3.3,

Γ(α)x(b) =

∣∣∣∣∣D
α−1,ρ
a+

(
x(b)

(
tρ − aρ

bρ − aρ

)α−1
)∣∣∣∣∣

= |Dα−1,ρ
a+ Px(t)|

= |Dα−1,ρ
a+ (x(t) − ((I − P )x)(t))|

≤ |Dα−1,ρ
a+ x(t)| + |Dα−1,ρ

a+ ((I − P )x)(t)|

≤ M + ‖Nx‖∞ +
(

(bρ − aρ)α

αρ

)
‖Nx‖∞

≤ M +
(

1 +
(bρ − aρ)α

αρ

)
‖Nx‖∞.

Thus,

‖x‖X ≤ ‖(I − P )x‖X + ‖Px‖X

≤ Δ‖Nx‖∞ + |x(b)|
∥∥∥∥∥
(

tρ − aρ

bρ − aρ

)α−1
∥∥∥∥∥

≤ Δ‖Nx‖∞ +
1

Γ(α)

(
M +

(
1 +

(bρ − aρ)α

αρ

)
‖Nx‖∞

)
.

Hence, for all x ∈ Ω1, we have

‖x‖X ≤ M + Γ(α)Δ‖Nx‖∞ +
(

1 +
(bρ − aρ)α

αρ

)
‖Nx‖∞

≤ M +
(

Γ(α)Δ + 1 +
(bρ − aρ)α

αρ

)
‖Nx‖∞

≤ M + Ψ‖Nx‖∞

Applying (A3), we have

‖x‖X ≤ M + Ψ(‖μ‖ + ‖σ‖‖x‖∞ + ‖ω‖‖Dα−1,ρ
a+ x||∞)

≤ M + Ψ‖μ‖ + Ψ‖σ‖‖x‖∞ + Ψ‖ω‖‖Dα−1,ρ
a+ x‖∞

≤ M + Ψ‖μ‖ + Ψ‖σ‖‖x‖X + Ψ‖ω‖‖x‖X

≤ M + Ψ‖μ‖ + Ψ(‖σ‖ + ‖ω‖)‖x‖X .

Therefore,

‖x‖X ≤ M + Ψ‖μ‖
1 − Ψ(‖σ‖ + ‖ω‖)

and so Ω1 is bounded, which is what we wanted to prove. �
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Lemma 3.6. If conditions (A1), (A2), and (A5) are satisfied, then the set

Ω2 = {x : x ∈ Ker(L), Nx ∈ Im(L)},

is bounded.

Proof. Let x ∈ Ω2 with x(t) = c
(

tρ−aρ

ρ

)α−1

for c ∈ R; we have Im(L) =
Ker(Q), and therefore QNx(t) = 0. By (A5), we have |c| ≤ B. Hence, Ω2 is
bounded. �

Now, we define an isomorphism J : Ker(L) → Im(Q) by

J

(
c

(
tρ − aρ

ρ

)α−1
)

= c.

Lemma 3.7. If conditions (A1), (A2), and (A5) hold, then the set

Ω3 = {x : x ∈ Ker(L), λJx + β(1 − λ)QNx = 0, λ ∈ [0, 1]},

with

β =

⎧⎪⎪⎨
⎪⎪⎩

−1, if cQN

(
c
(

tρ−aρ

ρ

)α−1
)

< 0,

1, if cQN

(
c
(

tρ−aρ

ρ

)α−1
)

> 0,

is bounded.

Proof. Let x ∈ Ω3; we have x(t) = c
(

tρ−aρ

ρ

)α−1

for c ∈ R, and

λc + β(1 − λ)QN

(
c

(
tρ − aρ

ρ

)α−1
)

= 0.

If λ = 1, then c = 0. If λ = 0, by condition (A5), we have |c| ≤ B. Finally,
suppose that λ ∈ (0, 1). We claim that |c| ≤ B. If |c| ≥ B, then λc2 =

−β(1 − λ)cQN

(
c
(

tρ−aρ

ρ

)α−1
)

< 0, which contradicts λc2 > 0. Thus, our

claim holds, that is, |c| ≤ B. Thus, Ω3 is bounded. �

We are now ready to prove the main result in this paper.

Theorem 3.8. If conditions (A1)–(A5) hold, then problem (1) has at least one
solution in X.

Proof. Let Ω be any bounded open subset of X such that Ω1 ∪ Ω2 ∪ Ω3 ⊂ Ω.
From Lemma 3.4, N is L-Compact. From Lemmas 3.5, 3.6, and 3.7, it is clear
that the assumptions 1) and 2) of Theorem 2.7 are satisfied. To complete the
proof of the theorem, it remains to show that condition 3) of Theorem 2.7
holds.

Set

H(x, λ) = λx + β(1 − λ)QNx;
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then it follows from Lemma 3.7 that H(x, λ) 
= 0, x ∈ Ker(L) ∩ ∂Ω. Thus,
by the homotopy property of degree,

deg(QN |Ker(L),Ω ∩ Ker(L), 0) = deg(H(·, 0),Ω ∩ Ker(L), 0)

= deg(H(·, 1),Ω ∩ Ker(L), 0)

= deg(H(βJ,Ω ∩ Ker(L), 0) 
= 0.

Hence, by Theorem 2.7, the problem (1)–(2) has at least one solution in
dom(L) ∩ Ω. �

4. Applications

For ρ → 1, a = 0, and b = 1, problem (1)–(2) becomes a fractional boundary
value problem that coincides with the problem studied in [16] for k = 0,
namely, {

−(Dα,1
0+ x)(t) = f(t, x(t),Dα−1,1

0+ x(t)), t ∈ [0, 1],
x(0) = 0, x(1) =

∫ 1

0
x(t)dA(t).

(12)

Example 4.1. Assume that α = 3
2 , A(t) = 3

2 t, and f(t, u, v) = t + 1
16 sin(u) +

1
8v in the problem (12). Then we obtain Γ(3

2 ) = 0.886226, Δ = 0.666666667,
Ψ = 2.257484, ‖σ‖ + ‖ω‖ = 3

16 = 0.1875 < 1
Ψ = 0.442971024. Take M = 9

and B = 1. A straight forward calculation shows that (A1)–(A5) are satisfied.
Hence, by Theorem 3.8, problem (12) has at least one nontrivial solution.

Remark 4.1. In example 4.1, we deliberately took values of α, A(t), and
f(t, u, v) similar to the those used in [16, Example 1] for the sake of a compar-
ison. It is interesting to note that we obtain a sharper bound of 0.442971024
for ‖σ‖ + ‖ω‖ as compared to the estimate 0.501005816 obtained in [16, Ex-
ample 1].

Next, we give an example of a Katugampola fractional differential equa-
tion with ρ = 2 in (1)–(2).

Example 4.2. Consider the problem
{−D

3
2 ,2x(t) = f(t, u(t),D

1
2 ,2x(t)),

x(1) = 0, x(2) =
∫ 2

1
x(t)d

(
1√
6
(t)

) (13)

where f(t, u, v) = t + 1
15 sin u + 1

12v. Here we have α = 3
2 , ρ = 2, a = 1,

b = 2, A(t) = 1√
6
t. It is easy to check that (A1) is satisfied. Also, we see

that Γ(3
2 ) = 0.886226, Δ = 1.732050808, Ψ = 4.267039267, ‖σ‖ + ‖ω‖ =

1
15 + 1

12 = 0.15 < Γ(α)
Ψ = 1

4.267039267 = 0.2343545342, which implies that
conditions (A2) and (A3) are satisfied. If we take M = 25 and B = 1, simple
calculations show that (A4) and (A5) are satisfied. Hence, by Theorem 3.8,
(13) has at least one nontrivial solution.
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As a concluding remark, we point out that by adding additional as-
sumptions on the function f , it would be possible to obtain the uniqueness
of solutions.
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