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Brill–Noether Theory of Stable Vector
Bundles on Ruled Surfaces

L. Costa and Irene Maćıas Tarŕıo

Abstract. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0. Let MH := MX,H(2; c1, c2) be the moduli space of H-stable rank
2 vector bundles E on X with fixed Chern classes ci := ci(E) for i = 1, 2.
The main goal of this paper is to contribute to a better understanding of
the geometry of the moduli space MH in terms of its Brill–Noether locus
W k

H(2; c1, c2), whose points correspond to stable vector bundles in MH

having at least k independent sections. We deal with the non-emptiness
of this Brill–Noether locus, getting in most of the cases sharp bounds
for the values of k such that W k

H(2; c1, c2) is non-empty.
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1. Introduction

Let X be a smooth projective variety of dimension n over an algebraically
closed field K of characteristic 0 and let MH = MX,H(r; c1, . . . , cs) be the
moduli space of stable rank r vector bundles E with respect to an ample
divisor H on X and with fixed Chern classes ci := ci(E) for i = 1, . . . , s :=
min{r, n}.

Moduli spaces of stable vector bundles were defined in 1970 by Mu-
rayama. Since then, many authors have done a systematic study of these
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moduli spaces but in general, in spite of great contributions, a lot of ques-
tions remain open.

One way of studying the geometry of these moduli spaces is by study-
ing their subvarieties. A Brill–Noether locus W k

H = W k
H(r; c1, . . . , cs) is a

subvariety of MX,H(r; c1, . . . , cs) whose points correspond to stable vector
bundles having at least k independent sections and, roughly speaking, the
Brill–Noether Theory describes the geometry of these subvarieties.

Classical Brill–Noether Theory deals with line bundles on smooth curves
(see Ref. [1]). In the case of line bundles on projective curves C of genus g,

Brill–Noether theory is concerned with the subvarieties of Picd(C) whose line
bundles have at least k independent global sections. Basic questions related
to non-emptiness, connectedness, irreducibility, dimension, singularities, co-
homological classes, etc. have been answered when the curve C is generic on
the moduli space of curves of genus g.

There are several natural ways to generalize the classical theory of Brill–
Noether. The first natural generalization concerns higher rank vector bun-
dles on algebraic curves. During the last 2 decades, a great amount of job
has been made around the Brill–Noether stratification of the moduli space
of stable rank r vector bundles of degree d on algebraic curves, giving rise
to nice and interesting descriptions of these subvarieties (see for instance
Refs. [2,3]). Nevertheless, it should be mentioned that in spite of big ef-
forts, many questions concerning their geometry still remain open. The other
way of generalizing this theory is considering line bundles on varieties of
arbitrary dimension. Finally, we can go in both directions simultaneously.
The Brill–Noether theory for rank r bundles on a variety of arbitrary di-
mension was stablished in Ref. [4]. If fact, if X is a smooth projective vari-
ety of dimension n and H an ample divisor on X, the Brill–Noether locus
W k

H(r; c1, . . . , cs) in MX,H(r; c1, . . . , cs) is defined as the set of stable vec-
tor bundles in MX,H(r; c1, . . . , cs) having at least k independent sections.
It is proved in Ref. [4] that W k

H(r; c1, . . . , cs) has a natural structure of k-
determinantal variety, that each of its irreducible components has dimension
greater than the expected dimension ρk

H(r; c1, . . . , cs) (see Definition 2.9) and
that these subvarieties give a filtration of the moduli space. The general case
was studied in Refs. [5,6] for K3 surfaces, but also for other varieties in
Refs. [7,8], for example.

In the context of the Brill–Noether Theory, one can immediately raise
the following natural problems:

Problem 1.1. (a) Determine when the Brill–Noether locus W k
H is non-empty.

(b) Study the smoothness of the Brill–Noether locus.
(c) See if it is true that ρk

H > 0 implies that W k
H �= ∅ and ρk

H < 0 implies
that W k

H = ∅.
(d) Determine the irreducibility of W k

H .

In this paper, we will focus the attention on moduli spaces of rank
2 stable vector bundles on ruled surfaces. This case was also studied for
Hirzebruch surfaces in Ref. [9] and for ruled surfaces in general in Ref. [10].
In Ref. [11], Qin developed a theory of walls and chambers and proved that
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moduli spaces MX,H(2; c1, c2) only depend on the chamber of H. In this
paper, we will analyze how this theory has implications on the Brill–Noether
loci, and in addition, using this structure, we will obtain our first contribution
to Problem 1.1(a) (see Theorem 3.6).

Concerning Problem 1.1(a), we will also prove in Theorem 4.1:

Theorem 1.2. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1}, c2 � 0 an integer and H ≡ αC0 +βf an ample divisor on
X with

α(e + m) < β.

Then, for any k in the range

max{1, g} ≤ k <
1
2α

[β − α(e − m + 2g − 2)],

the Brill–Noether locus W k
H(2;C0 + mf, c2) �= ∅ with m = deg(m).

The fact that W k
H(2;C0 + mf, c2) �= ∅ for all max{1, g} ≤ k < 1

2α [β −
α(e − m + 2g − 2)] implies that W k

H(2;C0 + mf, c2) �= ∅ for all 1 ≤ k <
1
2α [β − α(e − m + 2 g − 2)]. Moreover, we will see that this bound is sharp
(see Theorem 4.5).

On the other hand, we will prove

Theorem 1.3. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on X. Then,
W 1

H(2; f, c2) �= ∅ and W k
H(2; f, c2) = ∅ for all k ≥ 3.

Finally, we will study in detail the locus W 1
H(2; f, c2)\W 2

H(2; f, c2) and
we will contribute to Problem 1.1(b) showing that

Proposition 1.4. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on X. Then,
W 1

H(2; f, c2)\W 2
H(2; f, c2) is smooth and has the expected dimension, namely

ρ1H = 3c2 + g − 1.

Now, we will outline the structure of the paper. In Sect. 2, we will fix
some notation and we will prove some basic facts on cohomology of line bun-
dles on ruled surfaces and we will recall the notion of stability of a vector
bundle. We will also give the general definition of the Brill–Noether locus
W k

H(r, c1, . . . , cs) and we will recall a result about its existence and its struc-
ture as a k-determinantal variety. Finally, we will introduce some technical
lemmas that we will use in the next sections. In Sect. 3, we will apply the
theory of walls and chambers due to Qin to describe how Brill–Noether loci
change when the ample divisor crosses a wall between two chambers and we
will obtain results concerning non-emptiness of W k

H(2; c1, c2). In Sect. 4, we
will push forward the study of the non-emptiness of the Brill–Noether locus
W k

H(2; c1, c2) (see Theorems 4.1, 4.5, 4.8 and 4.10). Finally, we will prove
the smoothness and irreducibility of W 1

H(2; f, c2)\W 2
H(2; f, c2) in Proposi-

tion 4.12.
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2. Preliminaries

The goal of this section is to fix some notation and prove some results con-
cerning the cohomology of line bundles on ruled surfaces. In addition, we will
recall some definitions needed in the sequel.

A ruled surface is a surface X, together with a surjective map π : X → C
to a nonsingular curve C of genus g such that, for every point y ∈ C, the fiber
Xy is isomorphic to P

1, and such that π admits a section. It is also defined
as the projectivization X = P(E) of a normalized rank 2 bundle E on C. Let
e be the divisor on C corresponding to the invertible sheaf ∧2E and let us
define e := −deg(e).

Let C0 ⊆ X be a section and f be a fiber. We have that Pic(X) ∼=
Z

⊕
π∗ Pic(C), where Z is generated by C0. In addition, Num(X) ∼= Z

⊕
Z,

generated by C0 and f satisfying C2
0 = −e, C0 · f = 1 and f2 = 0. If b is a

divisor on C, we will write bf instead of π∗b. Thus, a divisor D on X can
be written uniquely as D = aC0 + bf, being b ∈ Pic(C), and any element of
Num(X) can be written as D ≡ aC0 + bf. The canonical divisor KX on X is
in the class −2C0 + (k + e)f, where k is the canonical divisor on C of degree
2g − 2.

If the genus of the curve C is zero then, for any integer e ≥ 0, the ruled
surface is known as a Hirzebruch surface Xe. In this case, we have Xe

∼=
P(E) = P(OP1

⊕OP1(−e)). Since Pic(Xe) ∼= Z
2, dealing with divisors on

Hirzebruch surfaces we will not make any distinction between D = aC0 + bf
and its numerical class D ≡ aC0 + bf.

Going back to the general case, for any divisor D = aC0+bf on X with
a ≥ 0, it follows from Lemma V.2.4, Exercises III.8.3 and III.8.4 of [12], that

hi(X,OX(D)) = hi(C, (SaE)(b)) (1)

where SaE stands for the a-th symmetric power of E . Moreover,

h0(C,OC(b)) ≤ h0(C, (SaE)(b)) ≤
a∑

i=0

h0(C,OC(b + ie)), (2)

for each divisor b on C (see for instance [13, Section 2]).

Notation 2.1. Usually, we will write h0 OX(D) to refer to h0(X,OX(D)).

From now on, we will assume that e ≥ 0. In this case, a divisor D =
aC0 + bf is ample if and only if a > 0 and deg(b) > ae (see [12, Chapter V,
Corollary 2.8]).

For effective divisors on X, we have the following:

Lemma 2.2. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0 and D = aC0 + bf be a divisor on X with b := deg(b). If D is effective
then a, b ≥ 0.

Proof. Let us first assume that D is effective. If D = 0 there is nothing to
prove. Therefore, let us assume that D = aC0 + bf �= 0.
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First, we will see that a ≥ 0. Since D is an effective divisor, D · H > 0
for any ample divisor H on X. In particular, taking the ample divisor on X,
H ≡ C0 + βf with β � 0, we have

0 < D · H = −ae + aβ + b = a(β − e) + b

what implies that a ≥ 0.

Now, we will see that b ≥ 0. Since D is effective and a ≥ 0, it follows
from (1) and (2) that

0 < h0 OX(D) = h0 SaE(b) ≤
a∑

i=0

h0 OC(b + ie).

In particular, since deg(e) = −e ≤ 0, h0 OC(b) �= 0 and hence b ≥ 0. �

Lemma 2.3. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0 and D = aC0 + bf on X such that a ≥ 0. Then, if b := deg(b), we
have

h0 OX(aC0 + bf) ≤

⎧
⎪⎪⎨

⎪⎪⎩

0 for b < 0
(a + 1)(b + 1) for 0 ≤ b ≤ g − 1, g ≥ 1
(a + 1)g for g ≤ b ≤ 2g − 1, g ≥ 1
(a + 1)(b + 1 − g) for b ≥ 2g.

Proof. Let D = aC0 + bf be a divisor on X with a ≥ 0.

If b < 0, it follows from Lemma 2.2 that h0 OX(aC0 + bf) = 0. Let us
now consider the case 0 ≤ b ≤ g − 1. Since a ≥ 0, by (1) and (2) we have

h0 OX(aC0 + bf) = h0 SaE(b) ≤
a∑

i=0

h0 OC(b + ie).

By [12, Chapter II, Exercise 1.15], for any divisor d on C

h0 OC(d) ≤ deg(d) + 1. (3)

In particular, we have

h0 OC(b + ie) ≤ b − ie + 1 ≤ b + 1,

and thus

h0 OX(aC0 + bf) ≤ (a + 1)(b + 1).

Let us now assume that g ≤ b ≤ 2g − 1. Since a ≥ 0, again by (1) and
(2),

h0 OX(aC0 + bf) = h0 SaE(b) ≤
a∑

i=0

h0 OC(b + ie) ≤ (a + 1) h0 OC(b) ≤ (a + 1)g,

where the last inequality follows from the fact that, since b ≤ 2 g − 1, if d is
a divisor of degree 2 g − 1, we get

h0 OC(b) ≤ h0 OC(d) = g.
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Finally, let us prove the case b ≥ 2g. Since a ≥ 0, by (1) and (2),

h0 OX(aC0 + bf) = h0 SaE(b) ≤
a∑

i=0

h0 OC(b + ie)

≤ (a + 1) h0 OC(b) = (a + 1)(b + 1 − g),

where the last equality follows from the fact that, since b ≥ 2g > 2g − 1, we
have h0 OC(b) = b + 1 − g. �

The following is a well-known result.

Proposition 2.4. Let X be a smooth projective surface, D a divisor on X
and Z ⊂ X a general 0-dimensional subscheme. If |Z| ≥ h0 OX(D) then
h0 IZ(D) = 0.

Let E be a rank 2 vector bundle on a smooth projective surface X. We
denote by ci the Chern Classes of E, ci = ci(E) ∈ H2i(X,E), for i = 1, 2.

Our aim is to study the moduli space of stable vector bundles on X by
means of its Brill–Noether locus. To do so, we end the section by recalling
basic facts concerning stable vector bundles and Brill–Noether loci.

Definition 2.5. Let X be a smooth projective surface, H an ample divisor on
X and E a vector bundle on X with fixed Chern classes ci for i = 1, 2. Then,
E is stable with respect to H (or H-stable) if, for any subbundle F of E, we
have

μH(F ) :=
c1(F ) · H

rank(F )
<

c1(E) · H

rank(E)
:= μH(E).

Notice that the notion of stability depends on the ample divisor. Nev-
ertheless, when there is no confusion, we will simply say that E is stable.

Given H an ample divisor on X, c1 ∈ Num(X) and c2 ∈ H4(X,Z) ∼= Z,
we denote by MX,H(r; c1, c2) the moduli space of H-stable rank r vector
bundles E on X with fixed Chern classes ci. When there is no confusion, we
will denote it by MH(r; c1, c2) or by MH .

For big values of c2, we have a general result concerning irreducibility,
smoothness and dimension of these moduli spaces. In the particular case of
smooth ruled surfaces, it can be stated as follows (see for instance [14]):

Theorem 2.6. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, H an ample divisor on X and c1, c2 ∈ H2i(X,Z) Chern classes. For all
c2 � 0, the moduli space MX,H(r; c1, c2) is a smooth, irreducible, quasipro-
jective variety of dimension 2rc2 − (r − 1)c21 − (r2 − 1)(1 − g).

One possible way to study the moduli space of stable vector bundles
is by describing the Brill–Noether locus W k

H := W k
H(r; c1, c2) in MH which

parametrizes stable rank r vector bundles having at least k independent sec-
tions, that is

Supp(W k
H(r; c1, c2)) = {E ∈ MX,H(r; c1, c2)| h0 E ≥ k}.

The Brill–Noether locus has the structure of a k-determinantal variety
W k

H(r; c1, c2), and so we can talk about its expected dimension and singular
locus. This is given by the following result (see [4, Theorem 2.3]).
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Theorem 2.7. Let X be a smooth projective surface and consider the moduli
space MX,H(r; c1, c2) of rank r, H-stable vector bundles E on X with fixed
Chern classes ci. Assume that for any E ∈ MH , h2 E = 0. Then, for any
k ≥ 0, there exists a determinantal variety W k

H(r; c1, c2) such that

Supp(W k
H(r; c1, c2)) = {E ∈ MH | h0 E ≥ k}.

Moreover, each non-empty irreducible component of W k
H(r; c1, c2) has dimen-

sion at least

dim(MH) − k(k − χ(r; c1, c2)),

and

W k+1
H (r; c1, c2) ⊂ Sing(W k

H(r; c1, c2))

whenever W k+1
H (r; c1, c2) �= MH .

Remark 2.8. By definition, the different Brill–Noether loci form a filtration
of the moduli space MX,H(r; c1, c2),

MH ⊇ W 1
H(r; c1, c2) ⊇ W 2

H(r; c1, c2) ⊇ · · · ⊇ W k
H(r; c1, c2) ⊇ W k+1

H (r; c1, c2) ⊇ · · ·
Definition 2.9. The expected dimension of the Brill–Noether locus is defined
as

ρk
H := ρk

H(r; c1, c2) = dim MX,H(r; c1, c2) − k(k − χ(r; c1, c2)).

By the Riemann–Roch theorem, χ(r; c1, c2) can be expressed as

χ(r; c1, c2) = r(1 + pa(X)) − c1KX

2
+

c21
2

− c2.

In particular, if X is a ruled surface over a smooth curve C of genus g,
then

χ(r; c1, c2) = r(1 − g) − c1 · [−2C0 + (k + e)f ]
2

+
c21
2

− c2.

Remark 2.10. Under the assumption c2 � 0, the moduli space has the di-
mension given by Theorem 2.6 and hence, if X is a smooth ruled surface over
a nonsingular curve of genus g,

ρk
H := ρk

H(r; c1, c2) = 2rc2 − (r − 1)c21 − (r2 − 1)(1 − g) − k(k − χ(r; c1, c2)).

Lemma 2.11. Let E be a rank r, H-stable vector bundle on a smooth projective
surface X with (c1(E) − rKX) · H ≥ 0. Then, h2 E = 0.

Proof. Let us assume h2 E > 0. This means, by Serre duality, that h0 E∗(KX)
> 0, what implies OX(−KX) ↪→ E∗. Since E is H-stable, the same is true
for E∗, and thus we have

μH(OX(−KX)) < μH(E∗),

which is equivalent to

(−rKX − c1(E∗)) · H = (−rKX + c1(E)) · H < 0,

what is a contradiction. Hence, h2 E = 0. �
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From now on, we will assume that (c1(E) − rKX) · H ≥ 0 for all E ∈
MX,H(r; c1, c2), and therefore, by Theorem 2.7 and applying Lemma 2.11,
the existence of the Brill–Noether locus W k

H(r; c1, c2) is guaranteed.
While dealing with the non-emptiness of the Brill–Noether locus W k

H

(r; c1, c2), notice that if c1 · H ≤ 0, then W k
H(r; c1, c2) = ∅ for all k ≥ 1. In

fact, if we have E ∈ W k
H(r; c1, c2), then h0E �= 0 and thus, OX ↪→ E. By

stability of E and because c1 · H ≤ 0, we have 0 = μH(OX) < μH(E) ≤ 0,
what is a contradiction. Hence, W 1

H(r; c1, c2) = ∅ whenever c1 · H ≤ 0
In particular, W 1

H(r; 0, c2) = ∅. Therefore, we will assume that c1 is
effective and non-zero, and thus c1 · H > 0 for any ample divisor H. Further-
more, in the case of a rank 2 vector bundle E, we have that E is H-stable if
and only if E ⊗ L is H-stable, for any line bundle L on X, so it is natural to
focus the attention on the cases c1 ∈ {C0, C0 + f, f}.

3. Walls and Chambers Structure in Brill–Noether Loci

We start the section recalling the theory of walls and chambers introduced by
Qin, in the context of smooth surfaces (see for instance [11]). The main idea
is that if X is a smooth surface, the ample cone of X, CX , has a structure of
walls and chambers such that the moduli space MH(2; c1, c2) only depends
on the chamber of H.

To introduce the main results of this theory, let us remember some basic
definitions.

Definition 3.1. (i) Let ζ ∈ Num(X) ⊗ R. We define

W ζ = CX ∩ {x ∈ Num(X)|x · ζ = 0}.

(ii) Define W(c1, c2) as the set whose elements consist of W ζ , where ζ is
the numerical equivalence class of a divisor D on X such that D + c1 is
divisible by 2 in Pic(X), −(4c2 − c21) ≤ D2 < 0 and |Z| = c2 + D2−c21

4
for some locally complete intersection codimension-two cycle Z in X.

(iii) A wall of type (c1, c2) is an element in W(c1, c2). A chamber of type
(c1, c2) is a connected component of CX\W (c1, c2). A Z-chamber of
type (c1, c2) is the intersection of Num(X) with some chamber of type
(c1, c2).

(iv) A face of type (c1, c2) is F = W ζ ∩C, where W ζ is a wall of type (c1, c2)
and C is a chamber of type (c1, c2).

Definition 3.2. Let ζ be a numerical equivalence class defining a wall of type
(c1, c2). We define Eζ(c1, c2) as the set of rank 2 vector bundles E on X given
by a non-trivial extension of type

0 → OX(D) → E → IZ(c1 − D) → 0

where D is a divisor with 2D−c1 ≡ ζ and Z is a locally complete intersection
0-cycle of length c2 + ζ2−c21

4 .
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Qin proved in Refs. [11, Proposition 2.2.5] and [11, Remark 2.2.6] that
the moduli space MH(2; c1, c2) only depends on the chamber of H, so he set
MC(c1, c2) to be MH(2; c1, c2) for some H ∈ C.

Once we know that MH(2; c1, c2) only depends on the chamber of H,
the natural question that arises is how the moduli space changes when the
polarization H crosses a wall W ζ between two chambers. The phenomena
that occurs is summarized in the following result.

Theorem 3.3. [11, Proposition 1.3.1] Let C be a chamber and F be one of its
faces. Then, as sets,

MC(c1, c2) = MF (c1, c2) � (�ζE
k
ζ (c1, c2))

where ζ satisfies ζ · H < 0 for some H ∈ C, and runs over all numerical
equivalence classes which define the wall containing F .

As a consequence

Theorem 3.4. [11, Theorem 1.3.3] Let C1 and C2 be two adjacent chambers of
type (c1, c2) sharing a common wall W ζ such that C1 lies above C2. Then, as
sets,

MC2(c1, c2) = (MC1(c1, c2)\ �ζ E−ζ(c1, c2)) � (�ζEζ(c1, c2))

where ζ runs over all normalized numerical equivalence classes (that is ζ ·f >
0) which represents the wall W ζ .

It is natural to ask ourselves what happens at the level of Brill–Noether
loci. To this end, let us define

W k
C (c1, c2) := {E ∈ MC(c1, c2)|h0E ≥ k}

and

Ek
ζ (c1, c2) := {E ∈ Eζ |h0E ≥ k}.

As a consequence of Theorems 3.3 and 3.4, we can deduce

Proposition 3.5. (a) Let C be a chamber and F one of its faces. Then, as
sets,

W k
C (c1, c2) = W k

F (c1, c2) � (�ζE
k
ζ (c1, c2))

where ζ satisfies ζ ·H < 0 for some H ∈ C, and runs over all numerical
equivalence classes which define the wall containing F .

(b) Let C1 and C2 be two adjacent chambers of type (c1, c2) sharing a com-
mon wall W ζ such that C1 lies above C2. Then, as sets,

W k
C2

(c1, c2) = (W k
C1

(c1, c2)\ �ζ Ek
−ζ(c1, c2)) � (�ζE

k
ζ (c1, c2)).

We will use this wall crossing to prove the following result.

Theorem 3.6. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1} and c2 � 0 an integer. Let us consider the family of
numerical equivalence classes

ζb ≡ (2b − m)f − C0
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with 0 < b = k − 1 + g < c2 and let Cb be the chamber such that W ζb ∩
Closure(Cb) �= ∅ and ζb · H < 0 for all H ∈ Cb. Then, for any ample divisor
H ∈ Cb, W k

H(2;C0 + mf, c2) �= ∅ whenever MH �= ∅.

Proof. First, since we have the filtration W l+1
H ⊆ W l

H ⊆ · · · ⊆ W 1
H ⊆ MH ,

we can assume k ≥ max{2, g} and thus b ≥ max{g + 1, 2g − 1}.
Notice that ζb ≡ (2b − m)f − C0 defines a non-empty wall of type

(C0 + mf, c2). In fact,

(ζb)2 = ((2b − m)f − C0)2 = −4b − e + 2m.

Since m ∈ {0, 1} and by the lower and upper bounds of b, we have

−4c2 − e ≤ −4b − e + 2m < 0.

On the other hand, ζb + C0 + mf = 2bf is divisible by 2 in Pic(X) and
H ≡ C0 +(2b+e−m)f is an ample divisor on X such that ζb ·H = 0. Hence,
ζb defines a non-empty wall of type (C0 + mf, c2).

Let us consider Eζb(C0 + mf, c2), which is by definition the family of
rank 2 vector bundles E given by non-trivial extensions of type

0 → OX(bf) → E → IZ(C0 + (m − b)f) → 0, (4)

where bf is a divisor such that ζb ≡ (2b − m)f − C0 with b = deg(b) and Z
a 0-dimensional subscheme of length |Z| = c2 − b.
Claim: Eζb(C0 + mf, c2) is non-empty.
Proof of the Claim: It is enough to see that Ext1(IZ(C0+(m−b)f),OX(bf)) �=
0. We have that ext1(IZ(C0 + (m− b)f),OX(bf)) = h1IZ(C0 + (m− 2b)f +
KX). If we consider the short exact sequence

0 → IZ → OX → OZ → 0, (5)

we tensor it by OX(C0 + (m− 2b)f + KX) and we take cohomology, we get

h0 IZ(C0 + (m − 2b)f + KX) ≤ h0 OX(C0 + (m − 2b)f + KX)) = 0,

where the last equality follows from Lemma 2.2.
On the other hand, if we consider again the exact sequence (5) and we

take cohomology, we get

h2 IZ(C0 + (m − 2b)f + KX) = h2 OX(C0 + (m − 2b)f + KX)

and, by duality and Lemma 2.2,

h2 OX(C0 + (m − 2b)f + KX) = h0 OX(−C0 − (m − 2b)f) = 0.

Therefore,

h1 IZ(C0 + (m − 2b)f + KX) = −χIZ(C0 + (m − 2b)f + KX).

Considering the exact sequence (5) and the Riemann–Roch Theorem,

−χIZ(C0 + (m − 2b)f + KX) = |Z| − χOX(C0 + (m − 2b)f + KX) = |Z|.
Putting altogether, we have

ext1(IZ(C0 + (m − b)f),OX(bf)) = |Z| = c2 − b > 0,

where the last inequality follows from the upper bound of b.
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Therefore, we can take a rank 2 vector bundle E ∈ Eζb(C0 + mf, c2). It
follows from Theorem 3.3 that Eζb(C0 + mf) ⊆ MCb

(C0 + mf, c2) and thus
E is H-stable for any H ∈ Cb.

Finally, since E is given by the exact sequence (4), taking cohomology,
we get

h0 E ≥ h0 OX(bf) = h0 OC(b) = χOC(b) = b + 1 − g = k,

where the second equality follows from the fact that, since k ≥ max{1, g},
h1 OC(b) = 0.

Thus, we have seen that ∅ �= Ek
ζb

(C0 + mf, c2) ⊆ W k
Cb

(2;C0 + mf, c2)
and thus W k

H(2;C0 + mf, c2) �= ∅ for all H ∈ Cb. �
Notice that with the above notations, if H ≡ αC0 + βf the condition

ζb · H < 0 is equivalent to

k <
1
2α

[β − α(e − m + 2g − 2)].

Hence,

Corollary 3.7. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1} and c2 � 0 an integer. Let us consider the family of
numerical equivalence classes

ζb ≡ (2b − m)f − C0

with 0 < b = k − 1 + g < c2. Assume MH �= ∅. Then, W k
H(2;C0 +mf, c2) �= ∅

for

1 ≤ k <
1
2α

[β + α(e − m + 2g − 2)]

and H ∈ C being C the chamber such that W ζb ∩ Closure(C) �= ∅.

4. Emptiness and Non-emptiness of Brill–Noether Loci

The goal of this section is to determine bounds of k, depending on an ample
divisor H, that guarantees that the Brill–Noether locus W k

H(2; c1, c2) is non-
empty. Moreover, we will see that these bounds are sharp. In contrast with the
above section, we will obtain non-emptiness results by explicitly constructing
families of H-stable rank 2 vector bundles for, in many cases, almost all ample
divisors H and with values of the first Chern class c1 in {C0, C0 + f, f}.

We will start with the case c1 = C0 + mf with deg(m) = m ∈ {0, 1}.

Theorem 4.1. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1}, c2 � 0 an integer and H ≡ αC0 +βf an ample divisor on
X with

α(e + m) < β.

Then, for any k in the range

max{1, g} ≤ k <
1
2α

[β − α(e − m + 2g − 2)],

the Brill–Noether locus W k
H(2;C0 + mf, c2) �= ∅ whenever MH �= ∅.
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Proof. First, notice that one can extend [15, Lemma 1.10] to any ample
divisor H ≡ αC0 + βf and prove that if MH(2;C0 + mf, c2) �= ∅ then
β < α(2c2 + e − m). Hence, we can assume β < α(2c2 + e − m). Let us
consider the family G of rank two vector bundles E on X given by a non-
trivial extension

0 → OX(bf) → E → IZ(C0 + (m − b)f) → 0, (6)

where Z is a generic 0-dimensional subscheme of length |Z| = c2 − b with

b = deg(b) = k − 1 + g

and

max{1, g} ≤ k <
1
2α

[β − α(e − m + 2g − 2)].

Claim: G is non-empty.
Proof of the Claim: Notice that since h0 IZ(C0 + (m − 2b)f + KX) = 0 =
h2 IZ(C0 + (m − 2b)f + KX), using Riemann–Roch Theorem and the upper
bound of b we deduce that

ext1(IZ(C0 + (m − b)f),OX(bf)) = |Z| = c2 − b > 0,

what implies Ext1(IZ(C0 + (m − b)f),OX(bf)) �= 0.

Hence, any non-zero element in Ext1(IZ(C0 + (m − b)f),OX(bf)) de-
fines a non-trivial extension of type (6). Notice that by the Cayley–Bacharach
property [16, Theorem 12], E is indeed a rank two vector bundle, with
c1(E) = C0 + mf and c2(E) = c2 � 0. Hence, G is non-empty.

On the other hand, if we consider the exact sequence (6), we get

h0 E ≥ h0 OX(bf) = h0 OC(b)

and, since k ≥ max{1, g}, we get h1 OC(b) = 0 and thus h0 OC(b) =
χOC(b) = b + 1 − g = k.

Now, let us prove that any rank two vector bundle E in G is stable with
respect to the polarization H ≡ αC0+βf with α(e+m) < β < α(2c2+e−m).

To this end, since E is a rank two vector bundle on X, we have to check
that for any line subbundle OX(G) ↪→ E, we have

μH(OX(G)) = G · H < μH(E) =
c1(E) · H

2
.

By construction, E is given by a non-trivial extension of type (6). There-
fore, we have two possibilities: OX(G) ↪→ OX(bf) or OX(G) ↪→ IZ(C0+(m−
b)f).

Case 1 Assume that OX(G) ↪→ OX(bf). In this case, since

k <
1
2α

[β − α(e − m + 2g − 2)],

we get

μH(OX(G)) ≤ (bf) · H = αb = αk + α(−1 + g)

<
α

2α
[β − α(e − m + 2g − 2)] + α(−1 + g) =

1

2
(β − αe + αm) = μH(E).
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Case 2 Assume that OX(G) ↪→ IZ(C0 + (m− b)f), where G = sC0 + tf
with t = deg(t). In this case,

C0 + (m − b)f − G = (1 − s)C0 + (m − b − t)f

is an effective divisor, which by Lemma 2.2 implies that s ≤ 1 and t ≤ m− b.
Assume that s ≤ 0. Since t ≤ m − b, we have

μH(OX(G)) = s(β − αe) + tα ≤ α(m − b) <
1
2
(β − αe + αm) = μH(E),

where the last inequality follows from the fact that b ≥ 0 and β > α(e + m).
Finally assume that s = 1. In this case G = C0 + tf and since

OX(G) ↪→ IZ(C0 + (m − b)f),

we have h0 IZ(C0 + (m − b)f − G) = h0 IZ((m − b − t)f) �= 0. Since Z is a
generic 0-dimensional subscheme, we must have

|Z| < h0 OX((m − b − t)f) = h0 OC(m − b − t) ≤ m − b − t + 1,

where the last inequality is given by (3).
Thus, since |Z| = c2 − b,

t ≤ m − c2. (7)

Now, let us check that μH(OX(C0 + tf)) < μH(E). Notice that μH(OX

(C0 + tf)) < μH(E) if and only if

−αe + β + tα <
1
2
(β − αe + αm)

what is equivalent to

−αe + β − αm < −2tα.

This inequality holds since, by the upper bound of β, and according to (7),

−2tα ≥ −2α(m − c2) > −αe + β − αm.

Therefore, μH(OX(C0 + tf)) < μH(E) and putting altogether, we get that
E is H-stable.

We have proved that any E in G is a rank two H-stable vector bun-
dle with h0 E ≥ k, which implies that G ↪→ W k

H(2;C0 + mf, c2) and hence
W k

H(2;C0 + mf, c2) �= ∅. �

Remark 4.2. Notice that the condition β > α(e + m) in Theorem 4.1 is not
restrictive. In fact, it is verified for almost all ample divisors, since m ∈ {0, 1}
and β > αe for any ample divisor H ≡ αC0 + βf.

Corollary 4.3. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1}, c2 � 0 an integer and H ≡ αC0 +βf an ample divisor on
X with

α(e + m) < β.

Then, for any

1 ≤ k <
1
2α

[β − α(e − m + 2g − 2)],

W k
H(2;C0 + mf, c2) �= ∅ whenever MH �= ∅.
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Proof. If max{1, g} ≤ k < 1
2α[β − α(e + m + 2g − 2)], the result follows from

Theorem 4.1. Finally, since we have the filtration W 1
H ⊇ W 2

H ⊇ · · · ⊇ W q
H

with q = max{1, g}, the fact that W q
H �= ∅ implies that W l

H �= ∅ for all
1 ≤ l ≤ q. �

Remark 4.4. Notice that the expected dimension of the Brill–Noether locus
W k

H(2;C0 + mf, c2) is

ρk
H(2; C0 + mf, c2) = (4 − k)c2 + 3k − 3 + 3(1 − k)g + (1 − k)e + 2(k − 1)m − k2.

Hence, for k ≥ 4, we have ρk
H < 0, but for

1 ≤ g ≤ k <
1
2α

[β − α(e − m + 2g − 2)]

we have seen that W k
H �= ∅. Therefore, we have an example of a non-empty

Brill–Noether locus with negative expected dimension, and therefore, it is
clear that, in general, ρk

H < 0 does not imply that W k
H = ∅.

Our next goal is to see that the above bound is sharp, in the sense that
if

k ≥ 1
2α

[β − α(e − m + 2g − 2)],

then W k
H(2;C0 + mf, c2) = ∅.

Theorem 4.5. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1}, c2 � 0 an integer and H ≡ αC0 + βf be an ample divisor
on X such that

max{α(8 + e − m + 2g), α(6g − 4 + e − m)} < β.

Then, W k
H(2;C0 + mf, c2) = ∅ for all k ≥ 1

2α [β − α(e − m + 2 g − 2)].

Proof. Let us assume that W k
H(2;C0 + mf, c2) �= ∅. Since h0 E �= 0, we can

take a non-zero section s of E. We denote by Y its scheme of zeros and by
D = aC0 + bf the maximal effective divisor contained in Y. Then, s can
be regarded as a section of E(−D) and its scheme of zeros has codimension
greater or equal than two. Thus, we have a short exact sequence

0 → OX(D) → E → IZ(C0 + mf − D) → 0 (8)

where Z is a locally complete intersection 0-cycle of length |Z| = c2−D(C0+
mf − D).

Since D is effective, by Lemma 2.2, a ≥ 0 and b := deg(b) ≥ 0.
If D = 0, considering the exact sequence (8) and taking cohomology, we

have that

k ≤ h0 E ≤ h0 OX + h0 IZ(C0 + mf) = 1 + h0 IZ(C0 + mf).

By the short exact sequence

0 → IZ → OX → OZ → 0 (9)

and by Lemma 2.3, we have

h0 IZ(C0 + mf) ≤ h0 OX(C0 + mf) ≤ 2(m + 1) − e ≤ 4.
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This implies k ≤ 5, but this contradicts the fact that k ≥ 1
2α [β − α(e − m +

2 g − 2)] > 5 since β > α(8 + e − m + 2g). Hence, D �= 0.
Now, let us see that if D �= 0, then D = bf with b > 0.
Since E is a rank two H-stable vector bundle, μH(OX(D)) < μH(E)

and this is equivalent to

α(2b − m) < (1 − 2a)(β − αe). (10)

Let us see that a = 0.
If a > 0, since β −αe > α(8+2g −m) and considering the inequality in

(10), we get α(2b+m) < −α(8+2g−m) which implies b < 0, a contradiction.
Thus, a = 0 and hence D = bf. In addition, since D is a non-zero

effective divisor, we get b > 0. Therefore, by (8), E sits in the exact sequence

0 → OX(bf) → E → IZ(C0 + (m − b)f) → 0. (11)

with b ≥ 1 and |Z| = c2 − b.
If we consider the exact sequence (11) and we take cohomology, we get

k ≤ h0 E ≤ h0 OX(bf) + h0 IZ(C0 + (m − b)f).

Notice that since m ∈ {0, 1} and b ≥ 1, we get m − b ≤ 0.
Let us first assume m− b = 0. Then, since b ≥ 1, m = b = 1 and we get

k ≤ h0 OX(f) + h0 IZ(C0).

In this case, since

h0 IZ(C0) ≤ h0 OX(C0) ≤ h0 OC + h0 OC(−e) ≤ 2 − e ≤ 2,

and

h0 OX(f) = h0 OC(1) ≤ 2,

we get that k ≤ 4, which is a contradiction.
Let us now study the case m−b < 0. This implies h0 IZ(C0+(m−b)f) =

0 and then k ≤ h0 E = h0 OX(bf).
First, let us assume b ≥ 2g−1. In this case, we get k ≤ h0 OC(b) = b+1−

g. On the other hand, since OX(bf) ↪→ E, by stability b < 1
2α [β − α(e − m)].

Putting altogether, we get k ≤ b + 1 − g < 1
2α [β − α(e − m + 2 g − 2)],

which is a contradiction.
Finally, let us assume b < 2g − 1. This implies that k ≤ h0 OC(b) ≤ b +

1 < 2 g, which again is a contradiction since k ≥ 1
2α [β−α(e−m+2g−2)] > 2g

by the fact that β > α(6g − 4 + e − m).
Hence, W k

H(2;C0 + mf, c2) = ∅ for all k ≥ 1
2α [β − α(e − m + 2 g − 2)].

�

Remark 4.6. Notice that for g ≥ 3 we have that

max{α(8 + e − m + 2g), α(6g − 4 + e − m)} = α(6g − 4 + e − m).

Thus, for these values of g, in Theorem 4.5, we only need to assume that
β > α(6g − 4 + e − m). Analogously, for g ≤ 2, it is sufficient to assume
β > α(8 + e − m + 2g).
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Furthermore, if we consider the particular case g = 1, the result is
also true if we expand the family of ample line bundles on X to the one of
H ≡ αC0 + βf with

α(6 + e − m) < β.

As a consequence of the above results, we have the following equivalence.

Corollary 4.7. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, m ∈ {0, 1}, c2 � 0 an integer and H ≡ αC0 +βf an ample divisor on
X such that

max{α(8 + e − m + 2g), α(6g − 4 + e − m)} < β.

Assume that MH �= ∅. Then, W k
H(2;C0 + mf, c2) �= ∅ if and only if

1 ≤ k <
1
2α

[β − α(e − m + 2g − 2)].

Proof. It follows from Corollary 4.3 and Theorem 4.5. �

Let us now turn our attention to the case c1 = f and see under which
conditions W k

H(2; f, c2) is non-empty. The first result is about non-emptiness.

Theorem 4.8. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on X. Then,
W 1

H(2; f, c2) �= ∅ whenever MH �= ∅.

Proof. Let us consider the family G of rank two vector bundles E on X given
by a non-trivial extension

0 → OX → E → IZ(f) → 0, (12)

where Z is a 0-dimensional subscheme of length |Z| = c2.
Claim: G is non-empty.
Proof of the Claim: first, let us see that Ext1(IZ(f),OX) �= 0. By Serre’s
duality, ext1(IZ(f),OX) = h1 IZ(f + KX).

From the short exact sequence (9), by Lemma 2.2 and Serre’s duality,
we have

h0 IZ(f + KX) ≤ h0 OX(f + KX) = 0

and also

h2 IZ(f + KX) = h2 OX(f + KX) = h0 OX(−f) = 0.

Therefore,

h1 IZ(f + KX) = −χIZ(C0 + (m − 2b)f + KX) = |Z| − χOX(f + KX)
= |Z| − 1 + g.

Hence, ext1(IZ(f),OX) = |Z| − 1 + g = c2 − 1 + g �= 0.

Any non-zero element in Ext1(IZ(f),OX) defines a non-trivial extension
of type (12). Notice that by the Cayley–Bacharach property [16, Theorem 12],
E is indeed a rank two vector bundle, with c1(E) = f and c2(E) = c2 � 0.
Hence, G is non-empty and by construction, for any E ∈ G, h0 E ≥ 1.



MJOM Brill–Noether on Ruled Surfaces Page 17 of 22   118 

Now, let us prove that any rank two vector bundle E in G is stable with
respect to H ≡ C0 + βf. To this end, since E is a rank two vector bundle
on X, we have to check that for any line subbundle OX(G) ↪→ E we have
μH(OX(G)) = G · H < μH(E) = c1(E)·H

2 .
By construction, E is given by a non-trivial extension of type (12).

Therefore, we have two possibilities: OX(G) ↪→ OX or OX(G) ↪→ IZ(f).
Case 1 Assume that OX(G) ↪→ OX . Then,

μH(OX(G)) ≤ 0 <
1
2

=
c1(E) · H

2
= μH(E).

Case 2 Assume that OX(G) ↪→ IZ(f), where G = sC0 + tf with t =
deg(t). In this case,

f − G = f − sC0 − tf

is an effective divisor, which by Lemma 2.2 implies that s ≤ 0 and t ≤ 1.
Notice that since h0 IZ = 0, f �= G. Since f − G is effective, we have

(f − G) · H > 0, which is equivalent to t ≤ s(e − β), and hence

μH(OX(G)) = s(β − e) + t ≤ 0 < μH(E).

Thus, putting altogether, we have already seen that E is H-stable.
We have proved that any E in G is a rank two H-stable vector bundle

with h0 E ≥ 1, what implies that G ↪→ W 1
H(2; f, c2). Thus, W 1

H(2; f, c2) �= ∅.
�

Let us see now what happens for values of k ≥ 2. It follows from [8,
Proposition 7.7] that W 2

H(2; f, c2) �= ∅. We will prove the case k ≥ 3. To this
end, we will use the following technical Lemma.

Lemma 4.9. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0 and E a rank 2 vector bundle with c1(E) = f. If E is stable respect to
the ample divisor H ≡ C0 + βf, then h0 E ≤ h0 E|f .

Proof. First, let us see that h0 E(−f) = 0. If h0 E(−f) �= 0, then OX(f) ↪→
E. Since E is H-stable, we get

μH(OX(f)) = 1 <
1
2

= μH(E),

which is a contradiction. Hence, h0 E(−f) = 0.
If we twist the short exact sequence

0 → OX(−f) → OX → Of → 0

by E and we take cohomology, using the fact that h0 E(−f) = 0, we get
h0 E ≤ h0 E|f . �

Now, we are ready to study the Brill–Noether locus W k
H(2; f, c2) for

values of k ≥ 3.

Theorem 4.10. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on X. Then,
W k

H(2; f, c2) = ∅ for all k ≥ 3.
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Proof. Let us assume that W k
H(2; f, c2) �= ∅ and consider a vector bundle

E ∈ W k
H(2; f, c2). Since h0 E ≥ k > 0, we can take a non-zero section s of

E. We denote by Y its scheme of zeros and by D = aC0 + bf the maximal
effective divisor contained in Y. Then, s can be regarded as a section of
E(−D) and its scheme of zeros has codimension greater or equal than two.
Thus, we have a short exact sequence

0 → OX(D) → E → IZ(f − D) → 0 (13)

where Z is a locally complete intersection 0-cycle of length |Z| = c2 − D(f −
D).

Since D is effective, by Lemma 2.2, a ≥ 0 and b := deg(b) ≥ 0.
Let us see that D = 0. Assume that D �= 0. Since D is effective, D·L > 0

for any ample divisor L on X. On the other hand, since E is stable respect
to H ≡ C0 + βf, we have that μH(OX(D)) < μH(E).

Putting altogether, we get

0 < μH(OX(D)) = D · H <
1
2

= μH(E),

which is a contradiction. Hence, D = 0.
Therefore, by (13), any vector bundle E ∈ W k

H(2; f, c2) sits in a short
exact sequence

0 → OX → E → IZ(f) → 0. (14)

If h0 IZ(f) = 0, then h0 E = h0 OX = 1. On the other hand, if h0 IZ(f) �=
0 this would mean that the points of Z are contained in a line.

Let l be a line such that Z ∩ l = ∅. Restricting the exact sequence (14)
to l, we get the short exact sequence

0 → Ol → E|l → Ol → 0,

and taking cohomology, we obtain h0 E|l ≤ 2.
By Lemma 4.9, this implies that h0 E ≤ 2 and thus W k

H(2; f, c2) = ∅ for
all k ≥ 3. �

Putting altogether,

Corollary 4.11. Let X be a ruled surface over a nonsingular curve C of genus
g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on X. Then,
W k

H(2; f, c2) �= ∅ if and only if 1 ≤ k ≤ 2.

Proof. It follows from Theorem 4.8, [8, Proposition 7.7] and Theorem 4.10.
�

See [8, Proposition 7.7] for an alternative proof of Theorems 4.8 and 4.10.
Now, we will analyze in more detail the locus W 1

H(2; f, c2)\W 2
H(2; f, c2).

Proposition 4.12. Let X be a ruled surface over a nonsingular curve C of
genus g ≥ 0, c2 � 0 an integer and H ≡ C0 + βf an ample divisor on
X. Then, W 1

H(2; f, c2)\W 2
H(2; f, c2) is smooth and irreducible of the expected

dimension, namely

ρ1H = 3c2 + g − 1.
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Proof. Let us take a vector bundle E ∈ W 1
H(2; f, c2)\W 2

H(2; f, c2). Since
h0 E = 1, we can take a non-zero section s of E. We denote by Y its scheme
of zeros and by D = aC0 + bf the maximal effective divisor contained in Y.
Then, s can be regarded as a section of E(−D) and its scheme of zeros has
codimension greater or equal than two. Thus, we have a short exact sequence

0 → OX(D) → E → IZ(f − D) → 0 (15)

where Z is a locally complete intersection 0-cycle of length |Z| = c2 − D(f −
D).

Following the same arguments as in proof of Theorem 4.10, we see that
D = 0. Hence, any vector bundle E in W 1

H(2; f, c2)\W 2
H(2; f, c2) sits in a

short exact sequence of the following type:

0 → OX → E → IZ(f) → 0. (16)

Let us now check that any vector bundle E in W 1
H(2; f, c2)\W 2

H(2; f, c2)
is a smooth point of MH(2; f, c2). To this end, it is enough to see that h2(E∗⊗
E) = 0.

First, let us see that h2(E∗) = 0. If we tensor the short exact sequence
(16) by OX(KX) and we take cohomology, we get the long exact sequence

0 → H0 OX(KX) → H0 E(KX) → H0 IZ(f + KX) → · · ·
From the fact that H0 OX(KX) = H0 IZ(f + KX) = 0, we deduce that

0 = h0 E(KX) = h2 E∗,

where the last equality follows from Serre duality. Now, we will see that

h2(E∗ ⊗ OX(f) ⊗ IZ) = 0.

Tensoring the short exact sequence (16) by OX(KX − f) and taking coho-
mology, we get the long exact sequence

0 → H0 OX(KX − f) → H0 E(KX − f) → H0 IZ(KX) → · · ·
Since H0 OX(KX −f) = H0 IZ(KX) = 0, we get H0 E(KX −f) = 0 and

by Serre’s duality H2 E∗(f) = 0. Hence, h2(E∗ ⊗ OX(f) ⊗ IZ) = h2(E∗ ⊗
OX(f)) = 0.

Finally, if we tensor the short exact sequence (16) by E∗ and we take
cohomology, we get

· · · → H2(E∗) → H2(E∗ ⊗ E) → H2(E∗ ⊗ OX(f) ⊗ IZ) → 0

and since H2(E∗) = H2(E∗⊗OX(f)⊗IZ) = 0 we deduce that H2(E∗⊗E) = 0.
Hence, E is a smooth point of MH(2; f, c2).

To end the proof, let us see that the map

μE : H0(E) ⊗ H1(E∗ ⊗ OX(KX)) → H1(E ⊗ E∗ ⊗ OX(KX))

is injective. Since E ∈ W 1
H(2; f, c2)\W 2

H(2; f, c2), H0(E) ∼= K and hence this
is equivalent to prove that the map

μ̃E : H1(E∗ ⊗ OX(KX)) → H1(E ⊗ E∗ ⊗ OX(KX))

is injective.
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If we tensor the exact sequence (16) by OX(−f) and we take cohomol-
ogy, we get the long exact sequence

· · · → H2 OX(−f) → H2 E(−f) → H2 IZ → 0.

Since by duality h2 OX(−f) = h0 OX(f + KX) = 0 and h2 IZ = h2 OX = 0,
we deduce that h2 E(−f) = 0 and this implies, again by Serre’s duality, that
h0 E∗(KX +f) = 0. Moreover, if h0 E∗(KX +f) = 0, we get h0(E∗⊗IZ(KX +
f)) = 0.

Therefore, since h0(E∗ ⊗ IZ(KX + f)) = 0, if we tensor the exact se-
quence (16) by E∗ ⊗ OX(KX) and we take cohomology, we get

0 → H1(E∗ ⊗ OX(KX))
μ̃E−−→ H1(E ⊗ E∗ ⊗ OX(KX)) → · · ·

which implies that μ̃E is injective. Hence, μE is injective.
We have proved that, for any vector bundle E ∈ W 1

H(2; f, c2)\W 2
H(2; f, c2),

E is a smooth point of MX,H(2; f, c2) and μE is injective.
Therefore, by [17, Corollary 2.6], W 1

H(2;
f, c2)\W 2

H(2; f, c2) is smooth and of the expected dimension at E, for all
E ∈ W 1

H(2; f, c2)\W 2
H(2; f, c2). Hence, W 1

H(2; f, c2)\W 2
H(2; f, c2) is smooth

and of the expected dimension.
It only remains to prove the irreducibility of W 1

H(2; f, c2)\W 2
H(2; f, c2).

We have already seen that any E ∈ W 1
H(2; f, c2)\W 2

H(2; f, c2) sits in an exten-
sion of type (16). Denote by S the family of rank two vector bundles E on X
given by an extension of type (16). Notice that, since ext1(IZ(f),OX) = c2 +
g, S is a (c2+g−1)-projective bundle over de Hilbert scheme Hi lbc2(X), which
parametrizes 0-dimensional subschemes Z of length |Z| = c2. Thus, S is an ir-
reducible family of bundles of dimension 3c2+g−1 = ρ1H(2; f, c2) and there is
a modular map π from an open dense subset of S to W 1

H(2; f, c2)\W 2
H(2; f, c2).

Denote by W the irreducible component of W 1
H(2; f, c2)\W 2

H(2; f, c2) con-
taining im(π). By the above arguments, the general point of im(π) is a
smooth point of W. Hence, W has the expected dimension 3c2 + g − 1. Since
dim W = dimS, π must be generically finite onto an open subset of W,
and thus S finitely dominates W. Finally, since we have seen that any iso-
morphism class [E] in W 1

H(2; f, c2)\W 2
H(2; f, c2) must arise as a non-trivial

extension of type (16) for some Z ∈ Hi lbc2(X), S finitely dominates the
whole W 1

H(2; f, c2)\W 2
H(2; f, c2), and then W = W 1

H(2; f, c2)\W 2
H(2; f, c2).

Therefore, W 1
H(2; f, c2)\W 2

H(2; f, c2) is irreducible. �
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I. M. Tarŕıo thanks professor Marian Aprodu for his advice and comments
and for his hospitality during her stay in Bucharest. Both authors want to
thank the anonymous referee that in particular improved the statement and
proof of Proposition 4.12.

Author contributions All authors wrote the main parts of the manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement
with Springer Nature.



MJOM Brill–Noether on Ruled Surfaces Page 21 of 22   118 

Data Availability No datasets were generated or analysed during the current
study.

Declarations
Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic
Curves, vol. I. In: Grundlehren der Mathematischen Wissenschaften (Funda-
mental Principles of Mathematical Sciences), vol. 267. Springer, New York
(1985)

[2] Brambila-Paz, L., Grzegorczyk, I., Newstead, P.E.: Geography of Brill–Noether
loci for small slopes. J. Algebr. Geom. 6(4), 645–669 (1997)

[3] Grzegorczyk, I., Teixidor i Bigas, M.: Brill-Noether theory for stable vector
bundles. Lond. Math. Soc. Lect. Note Ser. 359, 29-50 (2009)
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