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Abstract. Let X be a Stein manifold of complex dimension n > 1 en-
dowed with a Riemannian metric g. We show that for every integer k
with

[
n
2

] ≤ k ≤ n − 1 there is a nonsingular holomorphic foliation of
dimension k on X all of whose leaves are closed and g-complete. The
same is true if 1 ≤ k <

[
n
2

]
provided that there is a complex vector

bundle epimorphism TX → X × C
n−k. We also show that if F is a

proper holomorphic foliation on C
n (n > 1) then for any Riemannian

metric g on C
n there is a holomorphic automorphism Φ of Cn such that

the image foliation Φ∗F is g-complete. The analogous result is obtained
on every Stein manifold with Varolin’s density property.
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1. Introduction

Let X be a complex manifold endowed with a Riemannian metric g. A locally
closed subvariety Y of X is said to be g-complete if every smooth divergent
path γ : [0, 1) → Y (i.e., one leaving every compact subset of Y ) has infinite
g-length:

∫ 1

0
g(γ(t), γ̇(t)) dt = +∞. If g is a complete metric on X then clearly

every closed connected complex subvariety of X of positive dimension is g-
complete. A holomorphic foliation on X is said to be g-complete if every leaf
is g-complete. For the theory of holomorphic foliations, see Scárdua [26].

The results of this paper concern the problem, posed by Yang in 1977
[30,31], whether there exist bounded complex submanifolds of a Euclidean
space C

n for n > 1 which are complete in the Euclidean metric. We begin
with a brief overview of the main developments on this subject, referring the
interested reader to the more complete recent survey by Alarcón [3]. We also
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point out that Yang’s problem is related to the Calabi–Yau problem in the
theory of minimal surfaces; see [7, Chapter 7] for a recent survey of the latter
subject.

The first affirmative result on Yang’s problem was obtained by Jones
[23], who constructed a holomorphic immersion of the unit disc into C

2 and
an embedding into C

3 with bounded image and complete induced metric. His
method is based on the BMO duality theorem. Much later, Mart́ın, Umehara,
and Yamada [25] used a geometric method to construct complete bounded
complex curves in C

2 with arbitrary finite genus and finitely many ends. This
was followed by Alarcón and López [10] who showed that any topological
type is possible. The methods used in these constructions do not provide any
control of the complex structure on the curve, except in the simply connected
case when any such curve is biholomorphic to the disc. In [4], the authors used
the Riemann–Hilbert boundary value problem and gluing methods to prove
that every bordered Riemann surface admits a complete proper holomorphic
immersion into the ball of C

2 and a complete proper holomorphic embedding
into the ball of C

3. A related result for Riemann surfaces with finite genus
and countably many ends was obtained by the authors in [6, Theorem 1.8].
These are still the only results on Yang’s problem with a complete control of
the conformal structure on the underlying Riemann surface.

All results mentioned so far pertain to complex curves. This is how
things stood until the seminal work of Globevnik [21] in 2015. In his landmark
construction, Globevnik showed that for every pair of integers 1 ≤ k < n
there exists a holomorphic foliation of the unit ball B

n in C
n by closed com-

plete complex subvarieties of complex dimension k, most of which are smooth
(without singularities). The leaves of foliations in his construction are con-
nected components of the level sets of holomorphic maps f : B

n → C
n−k.

Completeness of the leaves is ensured by choosing the map f to grow suffi-
ciently fast on components of a suitable labyrinth Γ ⊂ B

n having the property
that any divergent path in B

n avoiding all but finitely many components of
Γ has infinite Euclidean length (see Lemma 2.1). The construction of such
labyrinths was one of the main new results of Globevnik’s paper. In the se-
quel [22], Globevnik extended his construction to any pseudoconvex domain
in C

n. Further improvements and generalizations of his results were made by
Alarcón [1,2].

This is a suitable point to state our first main result. It generalizes
Globevnik’s theorem to an arbitrary Riemannian Stein manifold, and the
foliations that we find are nonsingular.

Theorem 1.1. Let X be a Stein manifold of complex dimension n > 1 en-
dowed with a Riemannian metric g. For every integer k with

[
n
2

] ≤ k ≤ n−1
there exists a nonsingular holomorphic foliation of dimension k on X all of
whose leaves are closed and g-complete. The same holds if 1 ≤ k <

[
n
2

]
pro-

vided that there is a complex vector bundle epimorphism TX → X × C
n−k.

In particular, if X is parallelizable then it admits a nonsingular holomorphic
foliation of any dimension k ∈ {1, . . . , n − 1} with closed g-complete leaves.
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Foliations in Theorem 1.1 are given by holomorphic submersions X →
C

n−k. The proof (see Sect. 2) combines the methods of Globevnik [21,22] with
those of Forstnerič [16]; the latter provide the h-principle for holomorphic
submersions from any Stein manifold X to Euclidean spaces of dimension
< dim X.

The construction methods used in the proof of Theorem 1.1 (like those
in [1,2,21,22]) do not provide any control of the topology or the complex
structure of the leaves. Soon after Globevnik’s work, Alarcón, Globevnik, and
López [8,9] combined the use of labyrinths with the approximation theory
for holomorphic automorphisms of complex Euclidean spaces to construct
complete properly embedded complex hypersurfaces in the ball B

n of C
n

(n > 1) with partial control on their topology, and with prescribed topology
if n = 2. The main idea is to inductively deform a given closed complex
submanifold Y ⊂ C

n by holomorphic automorphisms of C
n such that the

images avoid more and more pieces of a given labyrinth Γ ⊂ B
n, and they

converge to a properly embedded complete complex submanifold of B
n which

is biholomorphic to a Runge domain in Y . This construction is possible if Γ is
polynomially convex and the connected components of Γ are holomorphically
contractible. The labyrinths used in the aforementioned papers consist of
balls in suitably placed affine real hyperplanes in C

n. A bit later, the authors
proved in [5] that the ball B

n for n > 1 admits a nonsingular holomorphic
foliation by complete holomorphic discs. Using labyrinths in pseudoconvex
shells in C

n, constructed by Charpentier and Kosiński in [13], one obtains the
analogous result with the ball replaced by an arbitrary Kobayashi hyperbolic
pseudoconvex Runge domain in C

n with n > 1 (see [5, Remark 1]). If the
domain fails to be hyperbolic then some leaves of the foliation may be complex
lines. See the survey [3] for more information.

To extend this technique to more general Stein manifolds, we must as-
sume that the manifold has many holomorphic automorphisms. The suitable
class are Stein manifolds with the density property; see Definition 1.6. An-
other technical issue is to find suitable labyrinths in X with holomorphically
contractible components. We do this in Sect. 3 in the course of proof of The-
orem 1.7 (see Lemma 3.2, which is an important new tool).

We shall consider foliations satisfying the following condition.

Definition 1.2. Let X be a connected Stein manifold of dimension > 1. A
(possibly singular) holomorphic foliation F on X is proper if every leaf Fx

(x ∈ X) is closed and satisfies dim Fx ≥ 1, and for every compact subset
K ⊂ X the set

F(K) :=
⋃

x∈K

Fx (1.1)

is such that X \ F(K) is nonempty and not relatively compact in X.

A biholomorphic map clearly takes a proper foliation to another such
foliation.
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Proposition 1.3. Every holomorphic foliation F on a connected Stein mani-
fold X given by a nonconstant holomorphic map f = (f1, . . . , fq) : X → C

q

with 1 ≤ q < dim X is proper.

Proof. Every irreducible component of a nonempty fibre f−1(z) (z ∈ C
q) is

a closed complex subvariety of X of some dimension d ∈ {1, . . . ,dim X − 1}.
In particular, the foliation does not have any zero dimensional leaves. Given
a compact set K ⊂ X we clearly have that

F(K) ⊂ f−1(f(K)) ⊂ f−1
j (fj(K)) for every j = 1, . . . , q. (1.2)

Since f is nonconstant, the function fj : X → C is nonconstant for some
j, hence an open map. Thus, fj(X) is an open subset of C containing the
compact subset fj(K). Choose a nonempty open subset U ⊂ fj(X) \ fj(K).
The set X\f−1

j (fj(K)) then contains f−1
j (U), hence is nonempty and not

relatively compact. By (1.2) the same is true for X \ F(K). �
The proof of Proposition 1.3 also gives the following criterium for proper-

ness.

Corollary 1.4. Assume that X is a connected Stein manifold of dimension
> 1 and F is a holomorphic foliation on X with all leaves closed and of
positive dimension. If there is a nonconstant holomorphic function on X
which is constant on every leaf of F , then F is a proper foliation.

An example of a nonproper (singular) holomorphic foliation is given
by punctured complex lines through the origin in C

2, with the origin a leaf
of dimension zero. Taking a Cartesian product with C gives a nonproper
holomorphic foliation of C

3 with a closed leaf of dimension 1 and nonclosed
leaves of dimension 2. Proposition 1.3 and Corollary 1.4 show that there are
no simple examples of nonproper holomorphic foliations having closed leaves.

Our second main result is the following. It is proved in Sect. 3.

Theorem 1.5. Let g be a Riemannian metric on C
n, n > 1. For every proper

holomorphic foliation F on C
n (see Definition 1.2) there is a holomorphic

automorphism Φ ∈ Aut(Cn) such that the image foliation Φ∗F with leaves
Φ(Fz) (z ∈ C

n) is g-complete.

This theorem is nontrivial if the metric g is not complete on C
n, and its

main interest is when g decays fast at infinity. Note that the foliation Φ∗F
has exactly the same leaves as the original foliation F up to biholomorphisms,
but they are now sufficiently twisted in C

n to become g-complete.
Using labyrinths provided by Lemma 3.2, we shall also prove the ana-

logue of Theorem 1.5 for every Stein manifold with the density property, a
notion introduced by Varolin [29].

Recall that a holomorphic vector field on a complex manifold X is called
complete if its flow exists for all complex values of time, so it forms a complex
one-parameter group of holomorphic automorphisms of X.

Definition 1.6. (See Varolin [29] or Definition 4.10.1 in [18]) A complex man-
ifold X has the density property if every holomorphic vector field on X can be
approximated uniformly on compacts by sums and commutators of complete
holomorphic vector fields on X.
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The fact that the Euclidean space C
n for n > 1 has the density prop-

erty was discovered by Andersén and Lempert [11], thereby giving birth to
this theory. It is known that most complex Lie groups and complex homo-
geneous manifolds have the density property. Surveys of this subject can be
found in [18, Chapter 4], [19], and [24]. An important point is that, on any
Stein manifold X with the density property, one can approximate isotopies
of biholomorphic maps between Stein Runge domains in X by isotopies of
holomorphic automorphisms of X; see Forstnerič and Rosay [20] for the case
X = C

n and [18, Theorem 4.10.5] for the general case. This result plays an
essential role in the proofs of Theorems 1.5, 1.7, and 1.8 .

The following result generalizes Theorem 1.5; it is proved in Sect. 3. As
above, it is nontrivial only if the given metric g on X is not complete.

Theorem 1.7. Let X be a Stein manifold with the density property, endowed
with a Riemannian metric g. For every proper holomorphic foliation F on
X there is a holomorphic automorphism Φ ∈ Aut(X) such that the image
foliation Φ∗F is g-complete.

The analogous construction applies on any pseudoconvex Runge domain
in a Stein manifold with the density property. This gives the following result,
generalizing the aforementioned results in [5,8,9] for domains in C

n with
n > 1. See also Theorem 3.3.

Theorem 1.8. Let X be a Stein manifold of dimension > 1 with the density
property, and let Ω be a pseudoconvex Runge domain in X endowed with a
Riemannian metric g. For every proper holomorphic foliation F0 on X there
is a g-complete holomorphic foliation F on Ω such that every leaf of F is
biholomorphic to a pseudoconvex Runge domain in a leaf of F0.

Theorems 1.5, 1.7, and 1.8 suggest that the main obstruction to finding
complete holomorphic foliations with specific types of leaves on a given Stein
Riemannian manifold with the density property lies in the topological and the
complex structure of the manifold, and not in the choice of the Riemannian
metric.

2. Proof of Theorem 1.1

We begin by sketching the proof of Globevnik’s main theorem in [21]. The
essential ingredient are labyrinths Γ as in the following lemma from [21]. A
simpler construction can be found in [9], where the connected components of
Γ are balls in affine real hyperplanes.

Lemma 2.1. Given numbers 0 < r < s and M > 0, there is a compact
set Γ ⊂ sB

n \ rB
n
with connected complement satisfying the following two

conditions:
(a) the compact set rB

n ∪ Γ is polynomially convex, and
(b) every piecewise smooth path γ : [0, 1] → C

n \ Γ with γ(0) ∈ rB
n
and

γ(1) ∈ C
n\sB

n has Euclidean length ≥ M .
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Remark 2.2. Given a Riemannian metric g on C
n and a constant M > 0,

there is a labyrinth Γ as in the lemma such that any path crossing the shell
sB

n \ rB
n

and avoiding Γ has g-length ≥ M . The reason is that any two
Riemannian metrics are comparable on a compact set. When condition (b)
holds for a metric g, we say that Γ enlarges the g-distance by M .

Granted the lemma, the proof in [21] proceeds as follows. The main
case is to find a complete foliation by hypersurfaces given as level sets of a
holomorphic function f : B

n → C. (By Sard’s theorem, most level sets of f
are nonsingular.) Pick a sequence 0 < r1 < r2 < · · · < 1 with limi→∞ ri = 1.
In each spherical shell Si = {z ∈ C

n : ri < |z| < ri+1} we choose a labyrinth
Γi satisfying Lemma 2.1 with a constant Mi > 0, chosen such that

∞∑

i=1

Mi = +∞. (2.1)

Since the compact set Ki = riB
n ∪Γi is polynomially convex for every i ∈ N,

a standard construction using the Oka–Weil theorem gives a holomorphic
function f on B

n satisfying

lim
i→∞

min
z∈Γi

|f(z)| = +∞. (2.2)

It follows that any divergent path γ : [0, 1) → B
n on which f is bounded

avoids Γi for all sufficiently big i ∈ N, and hence γ has infinite Euclidean
length by Lemma 2.1 (b) and (2.1). Thus, every nonempty level set {f = c} is
a complete closed (possibly singular) complex hypersurface in B

n. Foliations
of lower dimensions are obtained by adding generically chosen additional
component functions, noting that the leaves are automatically complete.

The construction in the proof of Theorem 1.1 is similar to the one of
Globevnik, except that we also use the results of Forstnerič [16] on the exis-
tence of holomorphic submersions from Stein manifolds to Euclidean spaces.
His main result (see [16, Theorem 2.5]) is that a holomorphic submersion
f : X → C

q always exists if 1 ≤ q ≤ [
n+1

2

]
where n = dim X, so we obtain

a nonsingular holomorphic foliation of X of any dimension k = n − q with[
n
2

] ≤ k ≤ n− 1. If on the other hand
[
n+1

2

]
< q ≤ n− 1 then a holomorphic

submersion Xn → C
q exists if and only if the holomorphic tangent bundle

of X admits a surjective complex vector bundle map θ : TX → X × C
q onto

the trivial bundle of rank q. In fact, the h-principle holds: every surjective
complex vector bundle map θ as above is homotopic through maps of the
same kind to the tangent map of a holomorphic submersion f : X → C

q.
In [16, Theorem 2.5] it is also shown that the analogous results hold with
interpolation on closed complex subvarieties and approximation on compact
O(X)-convex subsets of X, in analogy to the constructions of holomorphic
functions in the Oka–Cartan theory and of holomorphic maps in Oka theory.
Noncritical holomorphic functions also exist on reduced Stein spaces with
singularities, see [17].

Proof of Theorem 1.1. We embed the Stein manifold X as a closed complex
submanifold in a Euclidean space C

N ; see [18, Theorems 2.4.1 and 9.3.1]
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for a survey of the classical embedding theorems. For every i ∈ N the set
Xi = X ∩ iB

N
is compact and O(X)-convex, i.e., holomorphically convex in

X. Pick a number ci > 0 such that

g(x, v) ≥ ci|v| holds for every x ∈ Xi+1 and v ∈ TxX. (2.3)

Here, |v| denotes the Euclidean length of a tangent vector v ∈ TxX ⊂ TxC
N ∼=

C
N . In every spherical shell Si = {z ∈ C

N : i < |z| < i+1} (i ∈ N) we choose
a labyrinth Γi satisfying Lemma 2.1 with a constant Mi > 0, chosen such
that

∞∑

i=1

ciMi = +∞. (2.4)

We explain the basic case with k = n − 1. Using the Oka–Weil type
approximation theorem for noncritical holomorphic functions (see [16, The-
orem 2.1]) inductively, we find a holomorphic function f : X → C without
critical points such that condition (2.2) holds for all i ∈ N with Γi replaced
by Γ′

i := Γi ∩ X. To be precise, choose constants Ci > 0 (i ∈ N) with
limi→∞ Ci = +∞. In the induction step, we are given a noncritical holomor-
phic function fi on a neighbourhood of Xi in X. Next, we define fi on a
neighbourhood of Γ′

i in X to be an arbitrary noncritical holomorphic func-
tion satisfying minΓ′

i
|fi| > Ci. Since Xi ∪ Γ′

i is a compact O(X)-convex set,
we can apply [16, Theorem 2.1] to find a noncritical holomorphic function
fi+1 on a neighbourhood of Xi+1 in X which approximates fi on Xi ∪ Γ′

i.
Assuming that the approximation is close enough at every step, the sequence
fi converges uniformly on compacts in X to a noncritical holomorphic func-
tion f : X → C satisfying minΓ′

i
|f | > Ci for every i ∈ N. Pick a divergent

path γ : [0, 1) → X contained in a level set of f and choose i0 ∈ N such that
γ(0) ∈ i0B

N . Note that γ also diverges in C
N since X is a closed noncompact

submanifold. We see as before that there is an integer i1 ≥ i0 such that γ
avoids the labyrinth Γ′

i, and hence also the labyrinth Γi ⊂ C
N for all i ≥ i1.

From (2.3) and (2.4) it follows that
∫ 1

0

g(γ(t), γ̇(t))dt ≥
∞∑

i=i1

ciMi = +∞.

Hence, every nonempty level set f−1(c) is a closed complete complex hyper-
surface in X, which is smooth since f has no critical points.

The same argument gives nonsingular g-complete holomorphic foliations
of X of any dimension k ≥ [

n
2

]
. In this case, one inductively uses the Oka-Weil

type approximation theorem for holomorphic submersions (see [16, Theorem
2.5]) in the above proof; we leave out the obvious details. The same holds for
1 ≤ k <

[
n
2

]
if we assume the existence of a surjective complex vector bundle

map TX → X × C
q with q = n − k >

[
n+1

2

]
. �

Using the full power of [16, Theorem 2.5] we obtain the following stronger
statement.

Theorem 2.3. Let X be a closed complex submanifold of dimension n >
1 in C

N endowed with a Riemannian metric g. For every integer k with
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N − [
n+1

2

] ≤ k ≤ N − 1 there is a nonsingular holomorphic foliation F of
dimension k on C

N , given by a holomorphic submersion f : C
N → C

N−k,
such that every leaf Fz is transverse to X and the induced foliation on X is
g-complete.

Proof. Theorem 1.1 furnishes a holomorphic submersion f0 : X → C
q with

g-complete leaves, where q = N − k ≤ [
n+1

2

]
. Clearly, f0 extends to a holo-

morphic submersion U → C
q from an open neighbourhood U of X in C

N .
By [16, Theorem 2.5] there is a holomorphic submersion f : C

N → C
q which

agrees with f0 to the second order along X. The foliation on C
N determined

by f then clearly satisfies Theorem 2.3. Furthermore, given a Riemannian
metric h on C

N , one can choose F to be h-complete, transverse to X, and
such that its trace on X is g-complete. We leave further details to the reader.

�

Remark 2.4. The proof of Theorem 1.1 actually gives for any 1 ≤ q ≤ [
n+1

2

]

(where n = dimX) a holomorphic submersion f : X → C
q which is un-

bounded on every divergent path of finite g-length in X. The same holds also
for q ∈ {[n+1

2

]
+ 1, . . . , n − 1} if there is a surjective complex vector bundle

map TX → X ×C
q. This is in the spirit of Globevnik’s main theorem in [21]

when X is the ball in C
n and f is a single holomorphic function, possibly with

critical points. Furthermore, one can strengthen the statement in the spirit
of those obtained by Charpentier and Kosiński [14] for holomorphic functions
on pseudoconvex domains in C

n. In particular, under the above conditions,
a holomorphic submersion f : X → C

q can be chosen such that the image
of any divergent path of finite g-length in X is everywhere dense in C

q. It
follows that the foliation of X defined by f is nonsingular and g-complete.

3. Proofs of Theorems 1.5, 1.7, and 1.8

We shall need the following result generalizing [5, Lemma 2].

Lemma 3.1. Let B be a compact polynomially convex set in C
n (n > 1),

and let Γ =
⋃m

j=1 Γj ⊂ C
n \ B be a union of finitely many pairwise disjoint

compact convex sets Γj such that the set B ∪ Γ is polynomially convex. If E
is a closed subset of C

n with unbounded complement, then for any ε > 0 there
exists an automorphism Θ ∈ Aut(Cn) such that
(a) Θ(E) ∩ Γ = ∅, and
(b) |Θ(z) − z| < ε for all z ∈ B.

Proof. Pick a compact neighbourhood K0 of B and compact convex neigh-
bourhoods Kj of Γj for j = 1, . . . ,m such that the sets K0, . . . ,Km are
pairwise disjoint and K =

⋃m
j=0 Kj is polynomially convex. (The existence

of such sets follows from standard results on polynomial convexity; see Stout
[28].) Let Ψ0 = Id ∈ Aut(Cn) be the identity and set K ′

0 = K0. For ev-
ery j = 1, . . . ,m we choose an automorphism Ψj ∈ Aut(Cn) such that the
compact sets K ′

j := Ψj(Kj) are pairwise disjoint, we have that

K ′
j ∩ (E ∪ K ′

0) = ∅ for j = 1, . . . ,m, (3.1)
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and the union
⋃m

j=0 K ′
j is polynomially convex. Such Ψj are obtained by

squeezing Kj (j = 1, . . . ,m) by a dilation into a small neighbourhood of an
interior point, then translating the images into small pairwise disjoint balls
around some points in C

n \ (E ∪ K ′
0) (this set is open and nonempty by the

assumption on E), and applying [20, Theorem 1.1] to approximate the final
map by an automorphism of C

n. By [20, Theorem 2.3] (see also [18, Corollary
4.12.4]), given δ > 0 there is an automorphism Ψ ∈ Aut(Cn) satisfying

|Ψ(z) − Ψj(z)| < δ for all z ∈ Kj , j = 0, 1, . . . ,m. (3.2)

Let Θ = Ψ−1. If δ > 0 is small enough then condition (b) holds, and we have
that Ψ(Γj) ⊂ K̊ ′

j and hence Γj ⊂ Θ(K̊ ′
j) for every j = 1, . . . , m, which by

(3.1) also yields (a). �

Proof of Theorem 1.5. Let B denote the open unit ball of C
n. Set r1 = 1,

B1 = r1B = B, F1 = F , and E1 = F1(B1); see (1.1). Choose a sequence
Mj > 0 such that

∞∑

j=1

Mj = +∞. (3.3)

Pick a closed ball B′
1 ⊂ C

n centred at 0 and containing B1 in its interior. By
Lemma 2.1 and Remark 2.2 there is a labyrinth Γ1 ⊂ B̊′

1\B1 which enlarges
the g-distance by M1 > 0 such that B1 ∪ Γ1 is polynomially convex. Fix a
number 0 < ε1 < 1. Lemma 3.1 furnishes an automorphism φ1 ∈ Aut(Cn)
such that
(a1) φ1(E1) ∩ Γ1 = ∅, and
(b1) |φ1(z) − z| < ε1 for all z ∈ B1.
In the second step, we choose a number r2 > 2 such that φ1(B) ⊂ (r2 − 1)B
and set

B2 = r2B, F2 = (φ1)∗F1, E2 = F2(B2).

Pick a slightly bigger ball B′
2 ⊃ B2 containing B2 in its interior. By Lemma 2.1

there is a labyrinth Γ2 ⊂ B̊′
2 \ B2 which enlarges the g-distance by M2 > 0.

Given ε2 > 0, Lemma 3.1 furnishes an automorphism φ2 ∈ Aut(Cn) such
that
(a2) φ2(E2) ∩ Γ2 = ∅, and
(b2) |φ2(z) − z| < ε2 for all z ∈ B2.
Continuing inductively, we obtain an increasing sequence of numbers rj > 0,
balls

Bj = rjB ⊂ B′
j ⊂ Bj+1 = rj+1B, (3.4)

labyrinths Γj ⊂ B̊′
j \ Bj , constants εj > 0, automorphisms φj ∈ Aut(Cn),

and foliations Fj of C
n such that, setting

Ej = Fj(Bj),Φj = φj ◦ · · · ◦ φ1 ∈ Aut(Cn), and Fj+1 = (Φj)∗F , (3.5)

the following conditions hold for every for j = 1, 2, . . .:
(ij) φj(Ej) ∩ Γj = ∅.
(iij) |φj(z) − z| < εj for z ∈ Bj .
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(iiij) 0 < εj+1 < 1
2 min{εj ,dist(φj(Ej),Γj)}. (Note that the set φj(Ej) is

closed and Γj is compact, so these sets are at positive distance by (iij).)
(ivj) Φj(jB) ∪ B′

j ⊂ (rj+1 − 1)B.
(vj) The labyrinth Γj enlarges the g-distance by Mj and Bj ∪ Γj is polyno-

mially convex.
Assuming that we have obtained these quantities for indices ≤ j, the in-
duction step goes as follows. Let Fj+1 and Ej+1 be given by (3.5). Pick a
number εj+1 satisfying (iiij) and a number rj+1 > rj satisfying (ivj), and
set Bj+1 = rj+1B. Choose a ball B′

j+1 � Bj+1. Lemma 2.1 gives a labyrinth
Γj+1 ⊂ B̊′

j+1 \ Bj+1 satisfying (vj+1). Then, Lemma 3.1 gives an automor-
phism φj+1 ∈ Aut(Cn) satisfying (ij+1) and (iij+1), closing the induction.

We claim that the sequence Φj ∈ Aut(Cn) converges uniformly on com-
pacts in C

n to an automorphism Φ ∈ Aut(Cn). Indeed, since

|φj(z) − z| < εj < 1 < dist(Bj , C
n \ Bj+1) for every j = 1, 2, . . .

and
∑∞

j=1 εj < ∞ (see (iij)–(ivj)), the sequence Φj converges uniformly on
compacts in the domain Ω =

⋃∞
j=1 Φ−1

j (Bj) ⊂ C
n to a biholomorphic map

Φ : Ω → C
n onto C

n (see [18, Corollary 4.4.2]). Furthermore, condition (ivj)
ensures that jB ⊂ Ω for every j, so Ω = C

n and hence Φ ∈ Aut(Cn). Hence,
the sequence of foliations Fj+1 = (Φj)∗F converges uniformly on compacts
in C

n to a limit foliation G = Φ∗(F).
It remains to show that the foliation G is g-complete. We must show

that for any divergent path γ : [0, 1) → C
n contained in a leaf of F , the path

γ̃ = Φ◦γ : [0, 1) → C
n has infinite g-length. (Since the foliation F is assumed

to have closed leaves of positive dimension, every divergent path in a leaf of
F is also divergent in C

n. Note that γ̃ is a divergent path in C
n contained in

a leaf of G.) For every k ∈ N let γk = Φk ◦ γ : [0, 1) → C
n; this is a divergent

path contained in a leaf of the foliation Fk+1 = (Φk)∗F . Pick j ∈ N such that
γ(0) ∈ jB. By (ivj) we have that γj(0) = Φj(γ(0)) ∈ (rj+1 − 1)B ⊂ Bj+1,
and hence γj([0, 1)) ⊂ Ej+1 (see (3.5)). Conditions (ij)–(iiij) imply that for
every k > j we have that γk(0) ∈ Bj+1 = rj+1B and the trace of γk avoids
the labyrinths Γi for i = j + 1, . . . , k. Since γk is a divergent path in C

n, its
g-length is at least

∑k
i=j+1 Mi by (ii). As k → ∞, it follows that γk converges

to a divergent path γ̃ = Φ ◦ γ : [0, 1) → C
n which has infinite g-length in

view of (3.3). �
Proof of Theorem 1.7. The proof will follow that of Theorem 1.5 if we find
labyrinths Γ in the given Stein manifold X which increase the length of
divergent paths avoiding Γ by a given amount and whose pieces are holo-
morphically contractible in X. (Note that the labyrinths used in the proof
of Theorem 1.1, which are obtained by intersecting labyrinths in C

N whose
pieces are balls in affine real hyperplanes with the embedded submanifold
X ⊂ C

N , need not satisfy this property.) To this end, we shall prove the fol-
lowing lemma whose first part generalizes Lemma 2.1, as well as [13, Lemma
2.4] by Charpentier and Kosiński, while the second part is an analogue of
Lemma 3.1 adjusted to this situation. As before, B denotes the unit ball of
C

N .
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Lemma 3.2. Let X be a closed complex submanifold of C
N , and let g be a

Riemannian metric on X. Given numbers 0 < r < s and M > 0, there is a
compact set Γ ⊂ X ∩ (sB\rB) satisfying the following conditions.

(a) The compact set Γ ∪ (X ∩ (rB)) is O(X)-convex.
(b) Γ =

⋃m
i=1 Γi is the union of finitely many pairwise disjoint compact sets

Γi such that every Γi is convex in a certain local holomorphic chart on
X.

(c) Every piecewise smooth path γ : [0, 1] → X \ Γ with γ(0) ∈ X ∩ rB and
γ(1) ∈ X\sB has g-length at least M .

Given such Γ and assuming in addition that X has the density property, then
for every closed subset E � X whose complement X \ E is not relatively
compact in X and for any ε > 0 there exists an automorphism Θ ∈ Aut(X)
such that

(A) Θ(E) ∩ Γ = ∅, and
(B) |Θ(z) − z| < ε for all z ∈ X ∩ rB.

Proof. We construct the labyrinth Γ in two stages.
In the first stage, we apply Lemma 2.1 to find a labyrinth Γ0 =

⋃k
j=1 Γ0

j

in the spherical shell Sr,s = sB \ rB ⊂ C
N which increases the g-length

in X by the given amount M > 0 and the set Γ0 ∪ rB is polynomially
convex. Set B0 = X ∩ rB. It follows that each of the compact sets ΓX

j =
Γ0
j ∩ X (j = 1, . . . , k), ΓX =

⋃k
j=1 ΓX

j , and ΓX ∪ B0 are O(X)-convex. The
construction of such labyrinths in [9] shown that the connected components
Γ0
j of Γ0 (which are closed balls in affine real hyperplanes in C

N ) may be
chosen with arbitrarily small diameter (this is an immediate consequence of
Pythagoras theorem, see [1, Lemma 2.3]); in particular we can choose them
small enough such that ΓX

j = Γ0
j∩X is contained in a holomorphic coordinate

chart Uj ⊂ X which is Runge in X for every j = 1, . . . , k. (Most of the sets
ΓX
j are empty, and we discard them from the above collection and adjust

the indexes accordingly.) More precisely, for any ΓX
j = ∅ we pick a point

pj ∈ ΓX
j and let Σj = Tpj

X ∼= C
n with n = dim X be the tangent plane of

X at pj , with the orthogonal C-linear projection πj : C
N → Σj . Then, we

may assume that there is a Runge neighbourhood Uj ⊂ X of ΓX
j such that

the restricted projection

πj |Uj
: Uj → πj(Uj) = Vj ⊂ Σj

∼= C
n

is a biholomorphic map onto a ball Vj ⊂ Σj around the point pj . It follows
that a compact set K ⊂ Uj is O(X)-convex if and only if πj(K) is polyno-
mially convex in Σj

∼= C
n.

In the second stage, we choose for every j = 1, . . . , k a compact O(X)-
convex neighbourhood Bj ⊂Uj of ΓX

j such that the sets B0=X∩ rB, B1, . . ., Bk

are pairwise disjoint and
⋃k

j=0 Bj is O(X)-convex. (Note that every compact
O(X)-set has a basis of compact O(X)-convex neighbourhoods.) We now ap-
ply the construction of labyrinths with holomorphically contractible pieces
in pseudoconvex domains in [13, Theorem 1.1] by Charpentier and Kosiński,
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to find for each j = 1, . . . , k a labyrinth Γj ⊂ B̊j\ΓX
j which is O(Bj)-convex

(and hence O(X)-convex), its connected components are holomorphically
contractible sets in X (in fact, under the projection πj : Uj → Vj ⊂ Σj

they correspond to closed balls in affine real hyperplanes of Σj
∼= C

n), and
the g-distance in X \ Γj from ΓX

j to bBj is at least M . In other words, any
path in Uj from ΓX

j to bBj which avoids Γj has g-length at least M .
We claim that the labyrinth Γ =

⋃k
j=1 Γj ⊂ X ∩Sr,s satisfies conditions

(a)–(c) in the lemma. The set Γj is O(Bj) convex for every j = 1, . . . , k.
Since

⋃k
j=0 Bj is O(X)-convex, it follows that Γ ∪ B0 = Γ ∪ (X ∩ rB) is

O(X)-convex, so (a) holds. Condition (b) holds by the construction. Let γ be
a path as in part (c) avoiding Γ. If γ avoids the initial labyrinth ΓX = Γ0 ∩X
then its g-length is at least M by the choice of Γ0. If on the other hand γ
intersects ΓX

j for some j ∈ {1, . . . , k}, then γ connects a point in bBj to ΓX
j

avoiding the labyrinth Γj , hence its g-length is at least M by the choice of
Γj . This proves (c).

The second part of the lemma is obtained by following the proof of
Lemma 3.1. The only point deserving an explanation is the construction of
the automorphisms Ψj (j = 1, . . . , k) and Ψ in the proof of Lemma 3.1. Re-
call that the labyrinth Γj =

⋃kj

i=1 Γj,i has holomorpically contractible O(X)-
convex connected components Γj,i. More precisely, there is a 1-parameter
family of biholomorphic contractions on a pseudoconvex Runge neighbour-
hood of Γj,i in X which shrinks this set within itself almost to a point. We
can then move the images of these small sets to X \ (B0 ∪ E) by an isotopy
of biholomorphic maps through pseudoconvex Runge domains in X, ensur-
ing that the traces of these isotopies for j = 1, . . . , k are pairwise disjoint,
contained in X \B0, and their unions (together with B0) are Runge in X for
every value of the parameter. (The set B0 remains fixed during this process.)
Assuming that the Stein manifold X has the density property, we can apply
the approximation theorem for such isotopies of injective holomorphic maps
(see [18, Theorem 4.10.5]) to obtain an automorphism Ψ ∈ Aut(X) as in the
proof of Lemma 3.1. The remainder of the proof is exactly as in the case
X = C

n. �

With Lemma 3.2 in hand, we obtain Theorem 1.7 by following the proof
of Theorem 1.5, and we leave the obvious details to the reader. �

Proof of Theorem 1.8. Let F0 be a proper holomorphic foliation on a Stein
manifold X with the density property, and let Ω be a pseudoconvex Runge
domain in X. Using Lemma 3.2 inductively, we find a normal exhaustion
Ω1 � Ω2 � · · · ⊂ ⋃∞

i=1 Ωi = Ω by open relatively compact pseudoconvex
Runge domains and for each i = 1, 2, . . . a labyrinth Γi ⊂ Ωi+1\Ωi having the
properties (a)–(c) in Lemma 3.2 for a given constant Mi > 0 chosen such that∑

i Mi = +∞. Furthermore, we can ensure that the compact set Γi+1 ∪ Ωi

is O(Ω)-convex (and hence also O(X)-convex) for every i ∈ N. Since the
components of the labyrinth Γ =

⋃∞
i=1 Γi are holomorphically contractible,

we can apply the proof of Theorem 1.5 to inductively twist the foliation F0

by a sequence of automorphisms Φi ∈ Aut(X) (i = 1, 2, . . .), chosen so that
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they converge uniformly on compacts in Ω, and the leaves of the foliations
Fi = (Φi)∗Fi−1 avoid more and more components of Γ as i → ∞. The limit
holomorphic foliation F = limi→∞ Fi on Ω is such that every leaf avoids all
but finitely many labyrinths Γi, and hence it is g-complete. Furthermore, the
construction ensures that every leaf is a pseudoconvex Runge domain in a
leaf of the initial foliation F0 on X. The details can be found (for the case
X = C

n) in [9] and [5]. �

In Theorems 1.5, 1.7, and 1.8 we focused on constructing complete non-
singular holomorphic foliations. However, the proofs of these results also ap-
ply to individual closed complex submanifolds and yield the following result.

Theorem 3.3. Let X be a Stein manifold with the density property, and let Y
be a closed complex submanifold of X. The following assertions hold.

(i) Given a Riemannian metric g on X there is a holomorphic automor-
phism Φ ∈ Aut(X) such that the submanifold Φ(Y ) is g-complete.

(ii) Let Ω be a pseudoconvex Runge domain in X such that Ω ∩ Y = ∅.
Given a Riemannian metric g on Ω and a connected compact subset
K ⊂ Ω∩Y , there is a g-complete closed complex submanifold of Ω which
is biholomorphic to a pseudoconvex Runge domain in Y containing K.

By combining assertion (i) in Theorem 3.3 with the embedding theorems
for Stein manifolds (see [12,15,27]) we obtain the following corollary.

Corollary 3.4. Every Stein manifold Y of dimension n ≥ 1 admits a proper g-
complete holomorphic embedding in (CN , g) for any N ≥ max

{
3,

[
3n
2

]
+ 1

}
,

and a proper g-complete holomorphic embedding in (X, g) for any Riemann-
ian Stein manifold X with the density property of dimension dim X ≥ 2n+1.
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[7] Alarcón, A., Forstnerič, F., López, F.J.: Minimal surfaces from a complex ana-
lytic viewpoint. Springer Monographs in Mathematics. Springer, Cham (2021)

[8] Alarcón, A., Globevnik, J.: Complete embedded complex curves in the ball of
C

2 can have any topology. Anal. PDE 10(8), 1987–1999 (2017)
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