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Mann-Type Inertial Projection and
Contraction Method for Solving Split
Pseudomonotone Variational Inequality
Problem with Multiple Output Sets

T. O. Alakoya and O. T. Mewomo

Abstract. In this paper, we study the concept of split variational in-
equality problem with multiple output sets when the cost operators are
pseudomonotone and non-Lipschitz. We introduce a new Mann-type in-
ertial projection and contraction method with self-adaptive step sizes for
approximating the solution of the problem in the framework of Hilbert
spaces. Under some mild conditions on the control parameters and with-
out prior knowledge of the operator norms, we prove a strong conver-
gence theorem for the proposed algorithm. We point out that while the
cost operators are non-Lipschitz, our proposed method does not require
any linesearch method but uses a more efficient self-adaptive step size
technique that generates a non-monotonic sequence of step sizes. Finally,
we apply our result to study certain classes of optimization problems and
we present several numerical experiments to illustrate the applicability
of the proposed method. Several of the existing results in the literature
could be viewed as special cases of our result in this study.
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1. Introduction

Let H be a real Hilbert space with an inner product 〈·, ·〉 and induced norm
||·||. Let C be a nonempty, closed and convex subset of H, and let A : H → H
be a mapping. The variational inequality problem (VIP) is formulated as
finding a point p ∈ C such that

〈x − p,Ap〉 ≥ 0, ∀ x ∈ C. (1.1)
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We denote the solution set of the VIP (1.1) by V I(C,A). Variational inequal-
ity theory was first introduced independently by Fichera [13] and Stampac-
chia [34]. The VIP is a fundamental problem in optimization theory, which
unifies several important concepts in applied mathematics, such as the nec-
essary network equilibrium problems, optimality conditions, systems of non-
linear equations and complementarity problems (e.g. see [4,5,20]). In the
recent years, the VIP has attracted the attention of researchers due to its
numerous applications in diverse fields, such as in optimization theory, eco-
nomics, structural analysis, operations research, sciences and engineering (see
[10,17,36] and the references therein). Several authors have proposed and
studied different iterative methods for approximating the solution of the VIP
(see [2,7,16,25,26] and references therein).
The split inverse problem (SIP) is another area of research which has recently
received great research attention (see [42] and the references therein) due to
its several applications in different fields, for instance, in signal processing,
phase retrieval, medical image reconstruction, data compression, intensity-
modulated radiation therapy, etc. (e.g. see [8,9,18,22,29]). The SIP model is
formulated as follows:

Find x̂ ∈ H1 that solves IP1 (1.2)

such that

ŷ := T x̂ ∈ H2 solves IP2, (1.3)

where H1 and H2 are real Hilbert spaces, IP1 denotes an inverse problem
formulated in H1 and IP2 denotes an inverse problem formulated in H2, and
T : H1 → H2 is a bounded linear operator.
In 1994, Censor and Elfving in [9] introduced the first instance of the SIP
called the split feasibility problem (SFP) for modelling inverse problems that
arise from medical image reconstruction. The SFP finds application in the
control theory, approximation theory, signal processing, geophysics, commu-
nications, biomedical engineering, etc. [8,23,31,32]. Let C and Q be nonempty,
closed and convex subsets of Hilbert spaces H1 and H2, respectively, and let
T : H1 → H2 be a bounded linear operator. The SFP is defined as follows:

Find x̂ ∈ C such that ŷ = T x̂ ∈ Q. (1.4)

Several iterative algorithms for solving the SFP (1.4) have been constructed
and investigated by researchers (see, e.g. [8,23,24] and the references therein).
An important generalization of the SFP is the split variational inequality
problem (SVIP) introduced by Censor et al. [10]. The SVIP is formulated as
follows:

Find x̂ ∈ C that solves 〈A1x̂, x − x̂〉 ≥ 0, ∀x ∈ C (1.5)

such that

ŷ = T x̂ ∈ H2 solves 〈A2ŷ, y − ŷ〉 ≥ 0, ∀y ∈ Q, (1.6)

where A1 : H1 → H1, A2 : H2 → H2 are single-valued operators. Several
authors have studied and proposed different iterative methods for approxi-
mating the solution of SVIP (see [19,21,37] and the references therein).
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In 2020, Reich and Tuyen [28] introduced and studied the concept of split
feasibility problem with multiple output sets in Hilbert spaces (SFPMOS),
which is formulated as follows: Find a point u† such that

u† ∈ Γ := C ∩
(

N⋂
i=1

T−1
i (Qi)

)
	= ∅. (1.7)

where Ti : H → Hi, i = 1, 2, ..., N , are bounded linear operators, C and Qi

are nonempty, closed and convex subsets of Hilbert spaces H and Hi, i =
1, 2, . . . , N, respectively.
Moreover, Reich and Tuyen [30] proposed the following two algorithms for
approximating the solution of SFPMOS (1.7) in Hilbert spaces:

xn+1 = PC

[
xn − γn

N∑
i=1

T ∗
i (I − PQi

)Tixn

]
, (1.8)

and

xn+1 = αnf(xn) + (1 − αn)PC

[
xn − γn

N∑
i=1

T ∗
i (I − PQi

)Tixn)

]
, (1.9)

where f : C → C is a strict contraction, {γn} ⊂ (0,∞) and {αn} ⊂ (0, 1).
The authors obtained weak and strong convergence result for Algorithm (1.8)
and Algorithm (1.9), respectively.
In this paper, we study the split variational inequality problem with multiple
output sets. Let H,Hi, i = 1, 2, ..., N, be real Hilbert spaces and let C,Ci be
nonempty, closed and convex subsets of real Hilbert spaces H and Hi, i =
1, 2, ..., N, respectively. Let Ti : H → Hi, i = 1, 2, ..., N, be bounded linear
operators and let A : H → H,Ai : Hi → Hi, i = 1, 2, ..., N, be single-valued
operators. The split variational inequality problem with multiple output sets
(SVIPMOS) is formulated as finding a point x∗ ∈ C such that

x∗ ∈ Ω := V I(C,A) ∩ (
N∩

i=1
T−1

i V I(Ci, Ai)) 	= ∅. (1.10)

It is clear that the SVIPMOS (1.10) generalizes the SFPMOS (1.7).
In the last couple of years, developing iterative methods with a high rate of
convergence for solving optimization problems has become of great interest
to researchers. One of the approaches employed by researchers to achieve
this objective is the inertial technique. This technique originates from an
implicit time discretization method (the heavy ball method) of second-order
dynamical systems. In recent years, several authors have constructed highly
efficient iterative methods by employing the inertial technique, see, e.g., [1,
3,11,14,38,40].
In this paper, we propose and analyze a new Mann-type inertial projection
and contraction algorithm with self-adaptive step sizes for approximating
the solution SVIPMOS (1.10) when the cost operators are pseudomonotone
and non-Lipschitz. While the cost operators are non-Lipschitz, our proposed
method does not involve any line search method but uses a more efficient
self-adaptive step size technique which generates a non-monotonic sequence
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of step sizes. Furthermore, we prove that the sequence generated by our pro-
posed method converges to the minimum-norm solution of the problem in
Hilbert spaces. Finally, we apply our result to study certain classes of opti-
mization problems and we present several numerical experiments to demon-
strate the applicability of our proposed algorithm.
The outline of the paper is as follows: In Sect. 2, we give some definitions
and results required for the convergence analysis. In Sect. 3, we present the
proposed algorithm and in Sect. 4 we analyze the convergence of our proposed
method. In Sect. 5 we apply our result to study certain classes of optimization
problems, and in Sect. 6 we carry out several numerical experiments with
graphical illustrations. Finally, we give some concluding remarks in Sect. 7.

2. Preliminaries

Definition 2.1. [2,16] An operator A : H → H is said to be

(i) α-strongly monotone, if there exists α > 0 such that

〈x − y,Ax − Ay〉 ≥ α‖x − y‖2, ∀ x, y ∈ H;

(ii) monotone, if

〈x − y,Ax − Ay〉 ≥ 0, ∀ x, y ∈ H;

(iii) pseudomonotone, if

〈Ay, x − y〉 ≥ 0 =⇒ 〈Ax, x − y〉 ≥ 0, ∀x, y ∈ H,

(iv) L-Lipschitz continuous, if there exists a constant L > 0 such that

||Ax − Ay|| ≤ L||x − y||, ∀ x, y ∈ H;

(v) uniformly continuous, if for every ε > 0, there exists δ = δ(ε) > 0, such
that

‖Ax − Ay‖ < ε whenever ‖x − y‖ < δ, ∀x, y ∈ H;

Remark 2.2. We note that the following implications hold: (i) =⇒ (ii) =⇒
(iii) but the converses are not generally true. We also point out that uniform
continuity is a weaker notion than Lipschitz continuity.

It is well known that if D is a convex subset of H, then A : D → H is
uniformly continuous if and only if, for every ε > 0, there exists a constant
K < +∞ such that

‖Ax − Ay‖ ≤ K‖x − y‖ + ε ∀x, y ∈ D. (2.1)

Lemma 2.3. [27,39] Let H be a real Hilbert space. Then the following results
hold for all x, y ∈ H and δ ∈ (0, 1) :

(i) ||x + y||2 ≤ ||x||2 + 2〈y, x + y〉;
(ii) ||x + y||2 = ||x||2 + 2〈x, y〉 + ||y||2;
(iii) ||δx + (1 − δ)y||2 = δ||x||2 + (1 − δ)||y||2 − δ(1 − δ)||x − y||2.
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Lemma 2.4. ([33]) Let {an} be a sequence of nonnegative real numbers, {αn}
be a sequence in (0, 1) with

∑∞
n=1 αn = ∞ and {bn} be a sequence of real

numbers. Assume that

an+1 ≤ (1 − αn)an + αnbn for all n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying
lim infk→∞(ank+1 − ank

) ≥ 0, then limn→∞ an = 0.

Lemma 2.5. [35] Suppose {λn} and {θn} are two nonnegative real sequences
such that

λn+1 ≤ λn + φn, ∀n ≥ 1.

If
∑∞

n=1 φn < ∞, then limn→∞ λn exists.

Lemma 2.6. [12] Consider the V IP (1.1) with C being a nonempty, closed,
convex subset of a real Hilbert space H and A : C → H being pseudomonotone
and continuous. Then p is a solution of V IP (1.1) if and only if

〈Ax, x − p〉 ≥ 0, ∀x ∈ C

3. Main Results

In this section, we present our proposed algorithm for solving the SVIPMOS
(1.10). We analyze the convergence of the proposed method under the fol-
lowing conditions:
Let C,Ci be nonempty, closed and convex subsets of real Hilbert spaces
H,Hi, i = 1, 2, ..., N, respectively, and let Ti : H → Hi, i = 1, 2, ..., N, be
bounded linear operators with adjoints T ∗

i . Let A : H → H,Ai : Hi → Hi, i =
1, 2, ...,
N, be uniformly continuous pseudomonotone operators satisfying the fol-
lowing property:

whenever {Tixn} ⊂ Ci, Tixn ⇀ Tiz, then ‖AiTiz‖
≤ lim inf

n→∞ ‖AiTixn‖, i = 0, 1, 2 . . . , N,C0 = C,A0 = A, T0 = IH .(3.1)

Moreover, we assume that the solution set Ω 	= ∅ and the control parameters
satisfy the following conditions:

Assumption A. (A1) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = +∞,
limn→∞ εn

αn
= 0, {ξn} ⊂ [a, b] ⊂ (0, 1 − αn), θ > 0;

(A2) 0 < ci < c′
i < 1, 0 < φi < φ′

i < 1, 0 < ki < k′
i < 2, {cn,i}, {φn,i}, {kn,i} ⊂

R+, limn→∞ cn,i = limn→∞ φn,i = limn→∞ kn,i = 0, λ1,i > 0, ∀ i =
0, 1, 2, . . . , N ;

(A3) {ρn,i} ⊂ R+,
∑∞

n=1 ρn,i < +∞, 0 < ai ≤ δn,i ≤ bi < 1,
∑N

i=0 δn,i = 1 for
each n ≥ 1.

Now, the algorithm is presented as follows:

Remark 3.2. By conditions (C1) and (C2), it follows from (3.2) that

lim
n→∞ θn||xn − xn−1|| = 0 and lim

n→∞
θn

αn
||xn − xn−1|| = 0.
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Algorithm 3.1.

Step 0. Select initial points x0, x1 ∈ H. Let C0 = C, T0 = IH , A0 = A
and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that
0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ, εn

‖xn−xn−1‖
}

, if xn 	= xn−1,

θ, otherwise.
(3.2)

Step 2. Compute
wn = xn + θn(xn − xn−1).

Step 3. Compute
yn,i = PCi

(Tiwn − λn,iAiTiwn)

λn+1,i =

⎧⎪⎨
⎪⎩

min{ (cn,i+ci)‖Tiwn−yn,i‖
‖AiTiwn−Aiyn,i‖ , λn,i + ρn,i}, if AiTiwn

−Aiyn,i 	= 0,

λn,i + ρn,i, otherwise.
zn,i = Tiwn − βn,irn,i,

where
rn,i = Tiwn − yn,i − λn,i(AiTiwn − Aiyn,i)

and

βn,i =

{
(ki + kn,i)

〈Tiwn−yn,i,rn,i〉
‖rn,i‖2 , if rn,i 	= 0

0, otherwise.
Step 4. Compute

bn =
∑N

i=0 δn,i

(
wn + ηn,iT

∗
i (zn,i − Tiwn)

)
,

where

ηn,i =

{
(φn,i+φi)‖Tiwn−zn,i‖2

‖T ∗
i (Tiwn−zn,i)‖2 , if ‖T ∗

i (Tiwn − zn,i)‖ 	= 0,

0, otherwise.
(3.3)

Step 5. Compute
xn+1 = (1 − αn − ξn)wn + ξnbn.

Set n := n + 1 and return to Step 1.

Remark 3.3. Observe that while the cost operators Ai, i = 0, 1, 2, . . . , N are
non-Lipschitz, our method does not require any linesearch technique, which
could be computationally too expensive too implement. Rather, we employ
self-adaptive step sizes that only require simple computations of known in-
formation per iteration.

4. Convergence Analysis

First, we prove some lemmas needed for our strong convergence theorem.

Lemma 4.1. Suppose {λn,i} is the sequence generated by Algorithm 3.1 such
that Assumption A holds. Then {λn,i} is well defined for each i = 0, 1, 2, . . . , N
and limn→∞ λn,i = λ1,i ∈ [min{ ci

Mi
, λ1,i}, λ1,i + Φi], where Φi =

∑∞
n=1 ρn,i.
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Proof. Since Ai is uniformly continuous for each i = 0, 1, 2, . . . , N, then by
(2.1) we have that for any given εi > 0, there exists Ki < +∞ such that
‖AiTiwn − Aiyn,i‖ ≤ Ki‖Tiwn − yn,i‖ + εi. Hence, for the case AiTiwn −
Aiyn,i 	= 0 for all n ≥ 1 we have

(cn,i + ci)‖Tiwn − yn,i‖
‖AiTiwn − Aiyn,i‖ ≥ (cn,i + ci)‖Tiwn − yn,i‖

Ki‖Tiwn − yn,i‖ + εi

=
(cn,i + ci)‖Tiwn − yn,i‖
(Ki + μi)‖Tiwn − yn,i‖ =

(cn,i + ci)
Mi

≥ ci

Mi
,

where εi = μi‖Tiwn − yn,i‖ for some μi ∈ (0, 1) and Mi = Ki + μi. Thus, by
the definition of λn+1, the sequence {λn,i} has lower bound min{ ci

Mi
, λ1,i} and

has upper bound λ1,i + Φi. By Lemma 2.5, the limit limn→∞ λn,i exists and
we denote by λi = limn→∞ λn,i. It is clear that λi ∈ [

min{ ci
Mi

, λ1,i}, λ1,i+Φi

]
for each i = 0, 1, 2 . . . , N. �

Lemma 4.2. If ‖T ∗
i (Tiwn − zn,i)‖ 	= 0, then the sequence {ηn,i} defined by

(3.3) has a positive lower bounded for each i = 0, 1, 2, . . . , N.

Proof. If ‖T ∗
i (Tiwn − zn,i)‖ 	= 0, we have for each i = 0, 1, 2, . . . , N

ηn,i =
(φn,i + φi)‖Tiwn − zn,i‖2

‖T ∗
i (Tiwn − zn,i)‖2

.

Since Ti is a bounded linear operator and limn→∞ φn,i = 0 for each i =
0, 1, 2, . . . ,
N, we have

(φn,i + φi)‖Tiwn − zn,i‖2

‖T ∗
i (Tiwn − zn,i)‖2

≥ (φn,i + φi)‖Tiwn − zn,i‖2

‖Ti‖2‖Tiwn − zn,i‖‖2
≥ φi

‖Ti‖2
,

which implies that φi

‖Ti‖2 is a lower bound of {ηn,i} for each i = 0, 1, 2, . . . , N .
�

Lemma 4.3. Suppose Assumption A of Algorithm 3.1 holds. Then, there ex-
ists a positive integer N such that

ki + kn,i ∈ (0, 2), φi + φn,i ∈ (0, 1), and
λn,i(cn,i + ci)

λn+1,i
∈ (0, 1), ∀n ≥ N.

Proof. Since 0 < ki < k′
i < 2 and limn→∞ kn,i = 0 for each i = 0, 1, 2, . . . , N,

there exists a positive integer N1,i such that

0 < ki + kn,i ≤ k′
i < 2, ∀n ≥ N1,i.

By similar argument, there exists a positive integer N2,i for each i = 0, 1, 2, . . . ,
N, such that

0 < φi + φn,i ≤ φ′
i < 1, ∀n ≥ N2,i.

In addition, since 0 < ci < c′
i < 1, limn→∞ cn,i = 0 and limn→∞ λn,i = λi for

each i = 0, 1, 2, . . . , N, we have

limn→∞
(
1 − λn,i(cn,i + ci)

λn+1,i

)
= 1 − ci > 1 − c′

i > 0.
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Therefore, for each i = 0, 1, 2, . . . , N, there exists a positive integer N3,i such
that

1 − λn,i(cn,i + ci)
λn+1,i

> 0, ∀n ≥ N3,i.

Now, by setting N = max{N1,i, N2,i, N3,i : i = 0, 1, 2, . . . , N}, the required
result follows. �

Lemma 4.4. Let {xn} be a sequence generated by Algorithm 3.1 such that
Assumption A holds. Then {xn} is bounded.

Proof. Let p ∈ Ω. This implies that Tip ∈ V I(Ci, Ai), i = 0, 1, 2, . . . , N.
Then, by applying the triangular inequality, it follows from the definition of
wn that

‖wn − p‖ = ‖xn + θn(xn − xn−1) − p‖
≤ ‖xn − p‖ + θn‖xn − xn−1‖
= ‖xn − p‖ + αn

θn

αn
‖xn − xn−1‖. (4.1)

By Remark (3.2), there exists M1 > 0 such that
θn

αn
‖xn − xn−1‖ ≤ M1, ∀ n ≥ 1.

Thus, it follows from (4.1) that

‖wn − p‖ ≤ ‖xn − p‖ + αnM1, ∀n ≥ 1. (4.2)

Since yn,i = PCi
(Tiwn −λn,iAiTiwn) and Tip ∈ V I(Ci, Ai), i = 0, 1, 2 . . . , N,

by the property of the projection map it follows that

〈yn,i − Tiwn + λn,iAiTiwn, yn,i − Tip〉 ≤ 0. (4.3)

Moreover, since yn,i ∈ Ci, i = 0, 1, 2, . . . , N, we have

〈AiTip, yn,i − Tip〉 ≥ 0,

which follows from the pseudomonotonicity of Ai that 〈Aiyn,i, yn,i−Tip〉 ≥ 0.
Since λn,i > 0, i = 0, 1, 2,
. . . , N, we have

〈λn,iAiyn,i, yn,i − Tip〉 ≥ 0. (4.4)

From (4.3) and (4.4) we obtain

〈Tiwn − yn,i − λn,i(AiTiwn − Aiyn,i), yn,i − Tip〉 ≥ 0. (4.5)

Now, applying the definition of rn,i and (4.5) we get

〈Tiwn − Tip, rn,i〉 = 〈Tiwn − yn,i, rn,i〉 + 〈yn,i − Tip, rn,i〉
= 〈Tiwn − yn,i, rn,i〉

+〈Tiwn − yn,i − λn,i(AiTiwn − Aiyn,i), yn,i − Tip〉
≥ 〈Tiwn − yn,i, rn,i〉. (4.6)

Since zn,i = Tiwn − βn,irn,i, it follows that

‖βn,irn,i‖2 = ‖zn,i − Tiwn‖2. (4.7)
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By Lemma 4.3, there exists a positive integer N such that 0 < ki + kn,i <
2 ∀n ≥ N. From the definition of βn,i, if rn,i 	= 0 i = 0, 1, 2, . . . , N, we have

βn,i‖rn,i‖2 = (ki + kn,i)〈Tiwn − yn,i, rn,i〉. (4.8)

Now, by applying Lemma 2.3, (4.6), (4.7) and (4.8) we get

‖zn,i − Tip‖2 = ‖Tiwn − βn,irn,i − Tip‖2

= ‖Tiwn − Tip‖2 + β2
n,i‖rn,i‖2 − 2βn,i〈Tiwn − Tip, rn,i〉

≤ ‖Tiwn − Tip‖2 + β2
n,i‖rn,i‖2 − 2βn,i〈Tiwn − yn,i, rn,i〉

= ‖Tiwn − Tip‖2 + β2
n,i‖rn,i‖2 − 2

ki + kn,i
β2

n,i‖rn,i‖2

= ‖Tiwn − Tip‖2 +
(
1 − 2

ki + kn,i

)
‖zn,i − Tiwn‖2

≤ ‖Tiwn − Tip‖2. (4.9)

Observe that if rn,i = 0, i = 0, 1, 2, . . . , N, (4.9) still holds.
Next, since the function ‖ · ‖2 is convex, we have

‖bn − p‖2 = ‖
N∑

i=0

δn,i

(
wn + ηn,iT

∗
i (zn,i − Tiwn)

) − p‖2

≤
N∑

i=0

δn,i‖wn + ηn,iT
∗
i (zn,i − Tiwn) − p‖2. (4.10)

By Lemma 4.3, there exists a positive integer N such that 0 < φn,i + φi <
1, i = 0, 1, 2, . . . , N for all n ≥ N. Now, from (4.10) and by applying Lemma
2.3 and (4.9) we have

‖wn + ηn,iT
∗
i (zn,i − Tiwn) − p‖2

= ‖wn − p‖2 + η2
n,i‖T ∗

i (zn,i − Tiwn)‖2 + 2ηn,i〈wn − p, T ∗
i (zn,i − Tiwn)〉

= ‖wn − p‖2 + η2
n,i‖T ∗

i (zn,i − Tiwn)‖2 + 2ηn,i〈Tiwn − Tip, zn,i − Tiwn〉
= ‖wn − p‖2 + η2

n,i‖T ∗
i (zn,i − Tiwn)‖2 + ηn,i[‖zn,i − Tip‖2 − ‖Tiwn − Tip‖2

−‖zn,i − Tiwn‖2]

≤ ‖wn − p‖2 + η2
n,i‖T ∗

i (zn,i − Tiwn)‖2 − ηn,i‖zn,i − Tiwn‖2

= ‖wn − p‖2 − ηn,i[‖zn,i − Tiwn‖2 − ηn,i‖T ∗
i (zn,i − Tiwn)‖2]. (4.11)

If ‖T ∗
i (zn,i − Tiwn)‖ 	= 0, then using the definition of ηn,i we have

‖zn,i − Tiwn‖2 − ηn,i‖T ∗
i (zn,i − Tiwn)‖2 = [1 − (φn,i + φi)]‖Tiwn − zn,i‖2 ≥ 0.

(4.12)

Thus, by applying (4.12) in (4.11) and substituting in (4.10) we have

‖bn − p‖2 ≤ ‖wn − p‖2 −
N∑

i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2

≤ ‖wn − p‖2. (4.13)
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Observe that if ‖T ∗
i (zn,i − Tiwn)‖ = 0, (4.13) still holds from (4.11).

By the definition of xn+1, we have

‖xn+1 − p‖ = ‖(1 − αn − ξn)(wn − p) + ξn(bn − p) − αnp‖
≤ ‖(1 − αn − ξn)(wn − p) + ξn(bn − p)‖ + αn‖p‖. (4.14)

Applying Lemma 2.3(ii) together with (4.13) we have

‖(1 − αn − ξn)(wn − p) + ξn(bn − p)‖2

= (1 − αn − ξn)2‖wn − p‖2 + 2(1 − αn − ξn)ξn〈wn − p, bn − p〉
+ ξ2

n‖bn − p‖2

≤ (1 − αn − ξn)2‖wn − p‖2 + 2(1 − αn − ξn)ξn‖wn − p‖‖bn − p‖
+ ξ2

n‖bn − p‖2

≤ (1 − αn − ξn)2‖wn − p‖2 + (1 − αn − ξn)ξn

[‖wn − p‖2 + ‖bn − p‖2
]

+ ξ2
n‖bn − p‖2

= (1 − αn − ξn)(1 − αn)‖wn − p‖2 + ξn(1 − αn)‖bn − p‖2

≤ (1 − αn − ξn)(1 − αn)‖wn − p‖2 + ξn(1 − αn)‖wn − p‖2

= (1 − αn)2‖wn − p‖2,

which implies that

‖(1 − αn − ξn)(wn − p) + ξn(bn − p)‖ ≤ (1 − αn)‖wn − p‖. (4.15)

Now, applying (4.2) and (4.15) in (4.14), we have for all n ≥ N

‖xn+1 − p‖ ≤ (1 − αn)‖wn − p‖ + αn‖p‖
≤ (1 − αn)

[‖xn − p‖ + αnM1

]
+ αn‖p‖

≤ (1 − αn)‖xn − p‖ + αn

[‖p‖ + M1

]
≤ max

{‖xn − p‖, ‖p‖ + M1

}
...

≤ max
{‖xN − p‖, ‖p‖ + M1

}
.

which implies that {xn} is bounded. Hence, {wn}, {yn,i}, {zn,i}, {yn,i}, {rn,i}
and {bn} are all bounded. �

Lemma 4.5. Suppose {wn} and {bn} are two sequences generated by Algo-
rithm 3.1 with subsequences {wnk

} and {bnk
}, respectively, such that

limk→∞ ‖wnk
− bnk

‖ = 0. If wnk
⇀ z ∈ H, then z ∈ Ω.

Proof. From (4.13), we have

‖bnk
− p‖2 ≤ ‖wnk

− p‖2 −
N∑

i=0

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2.

(4.16)
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From this, we obtain
N∑

i=0

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2

≤ ‖wnk
− p‖2 − ‖bnk

− p‖2

≤ ‖wnk
− bnk

‖2 + 2‖wnk
− bnk

‖‖bnk
− p‖. (4.17)

Since by the hypothesis of the lemma limk→∞ ‖wnk
− bnk

‖ = 0, it follows
from (4.17) that

N∑
i=0

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2 → 0, k → ∞,

which implies that

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2 → 0, k → ∞, ∀i = 0, 1, 2, . . . , N.

By the definition of ηn,i, we have

δnk,i(φnk,i + φi)[1 − (φnk,i + φi)]
‖Tiwnk

− znk,i‖4

‖T ∗
i (Tiwnk

− znk,i)‖2
→ 0,

k → ∞, ∀i = 0, 1, 2, . . . , N,

which implies that

‖Tiwnk
− znk,i‖2

‖T ∗
i (Tiwnk

− znk,i)‖ → 0, k → ∞, ∀i = 0, 1, 2, . . . , N,

Since {‖T ∗
i (Tiwnk

− znk,i)‖} is bounded, it follows that

‖Tiwnk
− znk,i‖ → 0, k → ∞, ∀i = 0, 1, 2, . . . , N. (4.18)

Thus, we have

‖T ∗
i (Tiwnk − znk,i)‖ ≤ ‖T ∗

i ‖‖(Tiwnk − znk,i)‖ = ‖Ti‖‖(Tiwnk − znk,i)‖ → 0,

k → ∞, ∀i = 0, 1, 2, . . . , N. (4.19)

By the definition of λn+1,i, it follows that

〈Tiwnk
− ynk,i, rnk,i〉

= 〈Tiwnk
− ynk,i, Tiwnk

− ynk,i − λnk,i(AiTiwnk
− Aiynk,i)〉

= ‖Tiwnk
− ynk,i‖2 − 〈Tiwnk

− ynk,i, λnk,i(AiTiwnk
− Aiynk,i)〉

≥ ‖Tiwnk
− ynk,i‖2 − λnk,i‖Tiwnk

− ynk,i‖‖AiTiwnk
− Aiynk,i‖

≥ ‖Tiwnk
− ynk,i‖2 − λnk,i

λnk+1,i
(cnk,i + ci)‖Tiwnk

− ynk,i‖2

=
(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)
‖Tiwnk

− ynk,i‖2. (4.20)

From Lemma 4.1 we know that limk→∞ λnk,i = λi, i = 0, 1, 2, . . . , N and by
Lemma 4.3, there exists a positive integer N such that 1− λnk,i

λnk+1,i
(cnk,i+ci) >
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0, ∀n ≥ N, i = 0, 1, 2, . . . , N. If rn,i 	= 0, then by applying the continuity of
Ai, the definitions of βn,i, rn,i and zn,i i = 0, 1, 2, . . . , N, from (4.20) we have

‖Tiwnk
− ynk,i‖2

≤ 1(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

) 〈Tiwnk
− ynk,i, rnk,i〉

=
1

(ki + knk,i)
(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)βnk,i‖rnk,i‖2

=
1

(ki + knk,i)
(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)βnk,i‖rnk,i‖‖Tiwnk
− ynk,i

−λnk,i(AiTiwnk
− Aiynk,i)

≤ 1

(ki + knk,i)
(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)βnk,i‖rnk,i‖
(
‖Tiwnk

− ynk,i‖

+λnk,i‖AiTiwnk
− Aiynk,i‖

)
≤ 1

(ki + knk,i)
(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)βnk,i‖rnk,i‖

(
1 +

λnk,i

λnk+1,i
(cnk,i + ci)

)
‖Tiwnk

− ynk,i‖

=

(
1 + λnk,i

λnk+1,i
(cnk,i + ci)

)
(ki + knk,i)

(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)‖Tiwnk
− znk,i‖‖Tiwnk

− ynk,i‖.

(4.21)

Thus, we have

‖Tiwnk
− ynk,i‖ ≤

(
1 + λnk,i

λnk+1,i
(cnk,i + ci)

)
(ki + knk,i)

(
1 − λnk,i

λnk+1,i
(cnk,i + ci)

)‖Tiwnk
− znk,i‖.

(4.22)

Since limk→∞ cnk,i = knk,i = 0 and by Lemma 4.1 limk→∞
λnk,i

λnk+1,i
= 1, i =

0, 1, 2, . . . , N, then from (4.22) and by applying (4.18) we have

‖Tiwnk
− ynk,i‖ → 0, k → ∞, ∀i = 0, 1, 2, . . . , N. (4.23)

If rn,i = 0, from (4.20) we know that (4.23) still holds.
Since yn,i = PCi

(Tiwn − λn,iAiTiwn), by the property of the projection map
we have

〈Tiwnk
− λnk,iAiTiwnk

− ynk,i, Tix − ynk,i〉 ≤ 0, ∀ Tix ∈ Ci,

i = 0, 1, 2, . . . , N,
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which implies that
1

λnk,i
〈Tiwnk

− ynk,i, Tix − ynk,i〉 ≤ 〈AiTiwnk
, Tix − ynk,i〉,

∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

From the last inequality, we get
1

λnk,i
〈Tiwnk

− ynk,i, Tix − ynk,i〉 + 〈AiTiwnk
, ynk,i − Tiwnk

〉
≤ 〈AiTiwnk

, Tix − Tiwnk
〉, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N. (4.24)

By applying (4.23) and the fact that limk→∞ λnk,i = λi > 0, from (4.24) we
obtain

lim inf
k→∞

〈AiTiwnk
, Tix − Tiwnk

〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

(4.25)

Observe that

〈Aiynk,i, Tix − ynk,i〉 = 〈Aiynk,i − AiTiwnk
, Tix − Tiwnk

〉
+〈AiTiwnk

, Tix − Tiwnk
〉 + 〈Aiynk,i, Tiwnk

− ynk,i〉. (4.26)

By the continuity of Ai, from (4.23) we have

‖AiTiwnk
− Aiynk,i‖ → 0, k → ∞, ∀i = 0, 1, 2, . . . , N. (4.27)

By applying (4.23) and (4.27), we obtain from (4.25) and (4.26) that

lim inf
k→∞

〈Aiynk,i, Tix − ynk,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N. (4.28)

Next, let {Θk,i} be a decreasing sequence of positive numbers such that
Θk,i → 0 as k → ∞, i = 0, 1, 2, . . . , N. For each k, let Nk denote the smallest
positive integer such that

〈Aiynj ,i, Tix − ynj ,i〉 + Θk,i ≥ 0, ∀ j ≥ Nk, Tix ∈ Ci, i = 0, 1, 2, . . . , N,

(4.29)

where the existence of Nk follows from (4.28). Since {Θk,i} is decreasing,
then {Nk} is increasing. Furthermore, since {yNk,i} ⊂ Ci for each k, we can
suppose AiyNk,i 	= 0 (otherwise, yNk,i ∈ V I(Ci, Ai), i = 0, 1, 2 . . . , N) and
let

uNk,i =
AiyNk,i

‖AiyNk,i‖2

Then, 〈AiyNk,i, uNk,i〉 = 1 for each k, i = 0, 1, 2, . . . , N. From (4.29), we
obtain

〈AiyNk,i, Tix + Θk,iuNk,i − yNk,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

By the pseudomonotonicity of Ai, we obtain

〈Ai(Tix + Θk,iuNk,i), Tix + Θk,iuNk,i − yNk,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2,

. . . , N.
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which is equivalent to

〈AiTix, Tix − yNk,i〉 ≥ 〈AiTix − Ai(Tix + Θk,iuNk,i), Tix

+Θk,iuNk,i − yNk,i〉 − Θk,i〈AiTix, uNk,i〉, ∀Tix ∈ Ci, i = 0, 1, . . . , N.

(4.30)

To complete the proof, we need to show that limk→∞ Θk,iuNk,i = 0. Since
wnk

⇀ z and Ti is a bounded linear operator for each i = 0, 1, 2, . . . , N, we
have Tiwnk

⇀ Tiz, ∀i = 0, 1, 2, . . . , N. Thus, from (4.23) we get ynk,i ⇀
Tiz, ∀ i = 0, 1, 2, . . . , N. Since {ynk,i} ⊂ Ci, i = 0, 1, 2, . . . , N, we have
Tiz ∈ Ci. If Tiz = 0, ∀ i = 0, 1, 2, . . . , N, then Tiz ∈ V I(Ci, Ai) ∀ i =
0, 1, 2, . . . , N, which implies that z ∈ Ω. On the contrary, we suppose Tiz 	=
0, ∀ i = 0, 1, 2, . . . , N. Since Ai satisfies condition (3.1), we have for all
i = 0, 1, 2, . . . , N

0 < ‖AiTiz‖ ≤ lim inf
k→∞

‖Aiynk,i‖.

Using the facts that {yNk,i} ⊂ {ynk,i} and Θk,i → 0 as k → ∞, i =
0, 1, 2 . . . , N, we have

0 ≤ lim sup
k→∞

‖Θk,iuNk,i‖ = lim sup
k→∞

( Θk,i

‖Aiynk,i‖
)

≤
lim sup

k→∞
Θk,i

lim inf
k→∞

‖Aiynk,i‖ = 0,

which implies that lim supk→∞ Θk,iuNk,i = 0. Applying the facts that Ai

is continuous, {yNk,i} and {uNk,i} are bounded and limk→∞ Θk,iuNk,i = 0,
from (4.30) we obtain

lim inf
k→∞

〈AiTix, Tix − yNk,i〉 ≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

From the last inequality, we obtain

〈AiTix, Tix − Tiz〉 = lim
k→∞

〈AiTix, Tix − yNk,i〉 = lim inf
k→∞

〈AiTix, Tix − yNk,i〉
≥ 0, ∀ Tix ∈ Ci, i = 0, 1, 2, . . . , N.

By Lemma 2.6, we have

Tiz ∈ V I(Ci, Ai), i = 0, 1, 2, . . . , N,

which implies that

z ∈ T−1
i

(
V I(Ci, Ai)

)
, i = 0, 1, 2, . . . , N,

Thus, we have z ∈ ⋂N
i=0 T−1

i

(
V I(Ci, Ai)

)
, which implies that z ∈ Ω as re-

quired. �

Lemma 4.6. Let {xn} be a sequence generated by Algorithm 3.1 under As-
sumption A. Then, the following inequality holds for all p ∈ Ω :

‖xn+1 − p‖2 ≤(1 − αn)||xn − p||2

+ αn

[
3M2(1 − αn)2

θn

αn
‖xn − xn−1‖ + 2〈p, p − xn+1〉

]

− ξn(1 − αn)
N∑

i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2.
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Proof. Let p ∈ Ω. Then, by applying Lemma 2.3 together with the Cauchy-
Schwartz inequality we have

‖wn − p‖2 = ‖xn + θn(xn − xn−1) − p‖2

= ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − p, xn − xn−1〉

≤ ‖xn − p‖2 + θ2
n‖xn − xn−1‖2 + 2θn‖xn − xn−1‖‖xn − p‖

= ‖xn − p‖2 + θn‖xn − xn−1‖(θn‖xn − xn−1‖ + 2‖xn − p‖)
≤ ‖xn − p‖2 + 3M2θn‖xn − xn−1‖
= ‖xn − p‖2 + 3M2αn

θn

αn
‖xn − xn−1‖, (4.31)

where M2 := supn∈N{‖xn − p‖, θn‖xn − xn−1‖} > 0.

Next, by the definition of xn+1, (4.13), (4.31) and applying Lemma 2.3 we
have

‖xn+1 − p‖2 = ‖(1 − αn − ξn)(wn − p) + ξn(bn − p) − αnp‖2

≤ ‖(1 − αn − ξn)(wn − p) + ξn(bn − p)‖2 − 2αn〈p, xn+1 − p〉
= (1 − αn − ξn)2‖wn − p‖2 + ξ2n‖bn − p‖2

+ 2ξn(1 − αn − ξn)〈wn − p, bn − p〉
+ 2αn〈p, p − xn+1〉

≤ (1 − αn − ξn)2‖wn − p‖2 + ξ2n‖bn − p‖2

+ 2ξn(1 − αn − ξn)‖wn − p‖‖bn − p‖
+ 2αn〈p, p − xn+1〉
≤ (1 − αn − ξn)2‖wn − p‖2 + ξ2n‖bn − p‖2

+ ξn(1 − αn − ξn)
[‖wn − p‖2 + ‖bn − p‖2]

+ 2αn〈p, p − xn+1〉
= (1 − αn − ξn)(1 − αn)‖wn − p‖2 + ξn(1 − αn)‖bn − p‖2

+ 2αn〈p, p − xn+1〉
≤ (1 − αn − ξn)(1 − αn)‖wn − p‖2 + ξn(1 − αn)

[
‖wn − p‖2

−
N∑
i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2
]

+ 2αn〈p, p − xn+1〉

= (1 − αn)2‖wn − p‖2 − ξn(1 − αn)

N∑
i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2

+ 2αn〈p, p − xn+1〉

≤ (1 − αn)2||xn − p||2 + 3M2αn(1 − αn)2
θn
αn

‖xn − xn−1‖
+ 2αn〈p, p − xn+1〉

− ξn(1 − αn)
N∑
i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2
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≤ (1 − αn)||xn − p||2 + αn

[
3M2(1 − αn)2

θn
αn

‖xn − xn−1‖

+ 2〈p, p − xn+1〉
]

− ξn(1 − αn)
N∑
i=0

δn,iηn,i[1 − (φn,i + φi)]‖Tiwn − zn,i‖2,

which is the required inequality. �

Theorem 4.7. Let {xn} be a sequence generated by Algorithm 3.1 such that
Assumption A holds. Then, {xn} converges strongly to x̂ ∈ Ω, where x̂ =
min{‖p‖ : p ∈ Ω}.

Proof. Let x̂ = min{‖p‖ : p ∈ Ω}, that is, x̂ = PΩ(0). Then, from Lemma 4.6
we obtain

‖xn+1 − x̂‖2 ≤ (1 − αn)||xn − x̂||2

+αn

[
3M2(1 − αn)2

θn

αn
‖xn − xn−1‖ + 2〈x̂, x̂ − xn+1〉

]
= (1 − αn)||xn − x̂||2 + αndn, (4.32)

where dn = 3M2(1 − αn)2 θn

αn
‖xn − xn−1‖ + 2〈x̂, x̂ − xn+1〉.

Now, we claim that the sequence {‖xn − x̂‖} converges to zero. In view of
Lemma 2.4, it suffices to show that lim supk→∞ dnk

≤ 0 for every subsequence
{‖xnk

− x̂‖} of {‖xn − x̂‖} satisfying

lim inf
k→∞

(‖xnk+1 − x̂‖ − ‖xnk
− x̂‖) ≥ 0. (4.33)

Suppose that {‖xnk
− x̂‖} is a subsequence of {‖xn − x̂‖} such that (4.33)

holds. Again, from Lemma 4.6, we obtain

ξnk
(1 − αnk

)
N∑

i=0

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2

≤ (1 − αnk
)‖xnk

− x̂‖2 − ‖xnk+1 − x̂‖2

+ αnk

[
3M2(1 − αnk

)2
θnk

αnk

‖xnk
− xnk−1‖

+ 2〈x̂, x̂ − xnk+1〉
]
.

By (4.33), Remark 3.2 and the fact that limk→∞ αnk
= 0, we have

ξnk
(1 − αnk

)
N∑

i=0

δnk,iηnk,i[1 − (φnk,i + φi)]‖Tiwnk
− znk,i‖2 → 0, k → ∞.

Thus, we get

limk→∞ ‖Tiwnk
− znk,i‖ = 0, ∀i = 0, 1, 2, . . . , N. (4.34)

It follows that

‖T ∗
i (znk,i − Tiwnk)‖ ≤ ‖T ∗

i ‖‖znk,i − Tiwnk‖ → 0, k → ∞ ∀i = 0, 1, 2, . . . , N.

(4.35)
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By the definition of bn and by applying (4.35), we obtain

‖bnk
− wnk

‖ = ‖
N∑

i=0

δnk,i

(
wnk

+ ηnk,iT
∗
i (znk,i − Tiwnk

)
) − wnk

‖

≤
N∑

i=0

δnk,iηnk,i‖T ∗
i (znk,i − Tiwnk

)‖ → 0. (4.36)

From the definition of wn and by Remark 3.2, we get

‖wnk
− xnk

‖ = θnk
‖xnk

− xnk−1‖ → 0, k → ∞. (4.37)

Next, from (4.36) and (4.37) we obtain

‖xnk
− bnk

‖ ≤ ‖xnk
− wnk

‖ + ‖wnk
− bnk

‖ → 0, k → ∞. (4.38)

Applying (4.37), (4.38) and the fact that limk→∞ αnk
= 0 we obtain

‖xnk+1 − xnk
‖ = ‖(1 − αnk

− ξnk
)(wnk

− xnk
) + ξnk

(bnk
− xnk

) − αnxnk
‖

≤ (1 − αnk
− ξnk

)‖wnk
− xnk

‖ + ξnk
‖bnk

− xnk
‖

+αnk
‖xnk

‖ → 0, k → ∞. (4.39)

Since {xn} is bounded, wω(xn) 	= ∅. Let x∗ ∈ wω(xn) be an arbitrary element.
Then, there exist a subsequence {xnk

} of {xn} such that xnk
⇀ x∗. It follows

from (4.37) that wnk
⇀ x∗. Now, invoking Lemma 4.5 and applying (4.36)

we have x∗ ∈ Ω. Since x∗ ∈ wω(xn) was chosen arbitrarily, it follows that
wω(xn) ⊂ Ω.
Next, by the boundedness of {xnk

}, there exists a subsequence {xnkj
} of

{xnk
} such that xnkj

⇀ q and

lim sup
k→∞

〈x̂, x̂ − xnk
〉 = limj→∞〈x̂, x̂ − xnkj

〉.

Since x̂ = PΩ(0), it follows from the property of the metric projection that

lim sup
k→∞

〈x̂, x̂ − xnk
〉 = limj→∞〈x̂, x̂ − xnkj

〉 = 〈x̂, x̂ − q〉 ≤ 0, (4.40)

Hence, from (4.39) and (4.40) we obtain

lim sup
k→∞

〈x̂, x̂ − xnk+1〉 ≤ 0. (4.41)

Now, by Remark 3.2 and (4.41) we have lim sup
k→∞

dnk
≤ 0. Thus, by applying

Lemma 2.4 it follows from (4.32) that {‖xn − x̂‖} converges to zero, which
completes the proof. �

5. Applications

5.1. Split Convex Minimization Problem with Multiple Output Sets

Let C be a nonempty, closed and convex subset of a real Hilbert space H.
The convex minimization problem is formulated as finding a point x∗ ∈ C,
such that

g(x∗) = min
x∈C

g(x), (5.1)
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Figure 1. Experiment 6.5: m = 25

where g is a real-valued convex function. We denote the solution set of Prob-
lem (5.1) by arg min g.
Let C,Ci be nonempty, closed and convex subsets of real Hilbert spaces
H,Hi, i = 1, 2, ..., N, respectively, and let Ti : H → Hi, i = 1, 2, ..., N, be
bounded linear operators with adjoints T ∗

i . Let g : H → R, gi : Hi → R be
convex and differentiable functions. Here, we apply our result to approximate
the solution of the following split convex minimization problem with multiple
output sets (SCMPMOS): Find x∗ ∈ C such that

x∗ ∈ Γ := arg min g ∩ ( N∩
i=1

T−1
i

(
arg min gi

)) 	= ∅. (5.2)

We need the following lemma to establish our next result.

Lemma 5.1. [36] Let C be a nonempty, closed and convex subset of a real
Banach space E. Let g be a convex function of E into R. If g is Fréchet dif-
ferentiable, then z is a solution of Problem (5.1) if and only if z ∈ V I(C,�g),
where �g is the gradient of g.

Now, by applying Theorem 4.7 and Lemma 5.1, we obtain the following strong
convergence theorem for approximating the solution of the SCMPMOS (5.2)
in Hilbert spaces.

Theorem 5.2. Let C,Ci be nonempty, closed and convex subsets of real Hilbert
spaces H,Hi, i = 1, 2, ..., N, respectively, and let Ti : H → Hi, i = 1, 2, ..., N,
be bounded linear operators with adjoints T ∗

i . Let g : H → R, gi : Hi →
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Figure 2. Experiment 6.5: m = 50

Figure 3. Experiment 6.5: m = 100
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Figure 4. Experiment 6.5: m = 2000

Table 1. Numerical results for ( Experiment 6.5)

Proposed m = 25 m = 50 m = 100 m = 200
Alg. 3.1 Iter. CPU Iter. CPU Iter. CPU Iter. CPU

Time Time Time Time

φn,i = 3
n+1 13 3.5072 14 4.0949 15 9.0474 15 5.1828

φn,i = 6
(n+1)2 13 2.7786 14 3.3384 15 5.0823 15 4.4530

φn,i = 9
(n+1)3 13 2.7132 14 3.3103 15 5.0511 15 4.4659

φn,i = 12
(n+1)4 13 2.7295 14 3.3348 15 5.1468 15 4.4561

φn,i = 15
(n+1)5 13 2.7467 14 3.2094 15 5.0072 15 4.4961

R be fréchet differentiable convex functions such that �g,�gi are uniformly
continuous. Suppose that Assumption A of Theorem 4.7 holds and the solution
set Γ 	= ∅. Then, the sequence {xn} generated by the following algorithm
converges strongly to x̂ ∈ Γ, where x̂ = min{‖p‖ : p ∈ Γ}.

Proof. Since gi , i = 0, 1, 2, . . . , N are convex, then �gi are monotone [36] and
thus pseudomonotone. Consequently, the result follows by applying Lemma
5.1 and setting Ai = �gi in Theorem 4.7. �
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Figure 5. Experiment 6.6: m = 10

Figure 6. Experiment 6.6: m = 20
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Figure 7. Experiment 6.6: m = 30

Figure 8. Experiment 6.6: m = 40
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Algorithm 5.3.

Step 0. Select initial points x0, x1 ∈ H. Let C0 = C, T0 = IH , �g0 =
�g and set n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that
0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ, εn

‖xn−xn−1‖
}

, if xn 	= xn−1,

θ, otherwise.
Step 2. Compute

wn = xn + θn(xn − xn−1).
Step 3. Compute

yn,i = PCi
(Tiwn − λn,i�giTiwn)

λn+1,i =

⎧⎪⎨
⎪⎩

min{ (cn,i+ci)‖Tiwn−yn,i‖
‖�giTiwn−�giyn,i‖ , λn,i + ρn,i}, if �giTiwn−

�giyn,i 	= 0,

λn,i + ρn,i, otherwise.
zn,i = Tiwn − βn,irn,i,

where
rn,i = Tiwn − yn,i − λn,i(�giTiwn − �giyn,i)

and

βn,i =

{
(ki + kn,i)

〈Tiwn−yn,i,rn,i〉
‖rn,i‖2 , if rn,i 	= 0

0, otherwise.
Step 4. Compute

bn =
∑N

i=0 δn,i

(
wn + ηn,iT

∗
i (zn,i − Tiwn)

)
,

where

ηn,i =

{
(φn,i+φi)‖Tiwn−zn,i‖2

‖T ∗
i (Tiwn−zn,i)‖2 , if ‖T ∗

i (Tiwn − zn,i)‖ 	= 0,

0, otherwise.
Step 5. Compute

xn+1 = (1 − αn − ξn)wn + ξnbn.
Set n := n + 1 and return to Step 1.

5.2. Generalized Split Variational Inequality Problem

Finally, we apply our result to study the generalized split variational inequal-
ity problem (see [28]). Let Ci be nonempty, closed and convex subsets of real
Hilbert spaces Hi, i = 1, 2, ..., N, and let Si : Hi → Hi+1, i = 1, 2, ..., N −1, be
bounded linear operators, such that Si 	= 0. Let Bi : Hi → Hi, i = 1, 2, ..., N,
be single-valued operators. The generalized split variational inequality prob-
lem (GSVIP) is formulated as finding a point x∗ ∈ C1 such that

x∗ ∈ Γ := V I(C1, B1) ∩ S−1
1 (V I(C2, B2)) ∩ . . .

S−1
1 (S−1

2 . . . (S−1
N−1(V I(CN , BN )))) 	= ∅; (5.3)

that is, x∗ ∈ C1 such that

x∗ ∈ V I(C1, B1), S1x
∗ ∈ V I(C2, B2), . . . , SN−1(SN−2 . . . S1x

∗) ∈ V I(CN , BN ).
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Table 2. Numerical results for ( Experiment 6.6)

Proposed m = 10 m = 20 m = 30 m = 40
Alg. 3.1 Iter. CPU Iter. CPU Iter. CPU Iter. CPU

Time Time Time Time

cn,i = 15
n0.1 68 0.0692 80 0.0720 89 0.0971 94 0.1070

cn,i = 30
n0.01 68 0.0456 80 0.0596 89 0.06613 94 0.1080

cn,i = 45
n0.001 68 0.0559 80 0.0521 89 0.0746 94 0.1044

cn,i = 60
n0,0001 68 0.0495 80 0.0546 89 0.0852 94 0.0940

cn,i = 75
n0.00001 68 0.0398 80 0.0602 89 0.0699 94 0.1104

Observe that if we let C = C1, A = B1, Ai = Bi+1, 1 ≤ i ≤ N − 1, T1 =
S1, T2 = S2S1, . . . , and TN−1 = SN−1SN−2 . . . S1, then the SVIPMOS
(1.10) becomes the GSVIP (5.3). Hence, we obtain the following result for
approximating the solution of GSVIP (5.3) when the cost operators are pseu-
domonotone and uniformly continuous.

Theorem 5.4. Let Ci be nonempty, closed and convex subsets of real Hilbert
spaces Hi, i = 1, 2, ..., N, and let Si : Hi → Hi+1, i = 1, 2, ..., N − 1, be
bounded linear operators with adjoints S∗

i such that Si 	= 0. Let Bi : Hi →
Hi, 1, 2, ..., N be uniformly continuous pseudomonotone operators satisfying
condition (3.1), and suppose Assumption A of Theorem 4.7 holds and the
solution set Γ 	= ∅. Then, the sequence {xn} generated by the following algo-
rithm converges strongly to x̂ ∈ Γ, where x̂ = min{‖p‖ : p ∈ Γ}.

6. Numerical experiments

In this section, we present some numerical experiments to illustrate the im-
plementability of our proposed method (Proposed Alg. 3.1). For simplicity,
in all the experiments we consider the case when N = 4. All numerical com-
putations were carried out using Matlab version R2021(b).
In our computations, we choose αn = 1

2n+3 , εn = 1
(2n+3)3 , ξn = (1−αn)

2 , θ =
0.99, λ1,i = i + 1.2, ci = 0.97, φi = 0.98, ki = 1.96, ρn,i = 10

n2 , δn,i = 1
5 .

We consider the following test examples in both finite and infinite dimensional
Hilbert spaces for our numerical experiments.

Example 6.1. Let Hi = R
m, i = 0, 1, . . . , 4, and let Ai : Rm → R

m be a linear
operator defined by Ai(x) = Sx+q, where q ∈ R

m and S = NNT +Q+D,N
is a m × m matrix, Q is a m × m skew-symmetric matrix, and D is a m × m
diagonal matrix with its diagonal entries being nonnegative (thus S is positive
symmetric definite). We let Ci = {x ∈ R

m : −(i + 2) ≤ xj ≤ i + 2, j =
1, ...,m}. In this example, we generate randomly all the entries of N,Q in
[−3, 3] while D is randomly generated in [0, 3], q = 0 and Tix = 3x

i+3 .
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Figure 9. Experiment 6.7(1):CaseI

Figure 10. Experiment 6.7(1):Case2
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Algorithm 5.5.

Step 0. Select initial points x0, x1 ∈ H1. Let S0 = IH1 , ŜN−1 =
SN−1SN−2 . . . S0, Ŝ∗

N−1 = S∗
0S∗

1 . . . S∗
N−1, i = 1, 2, . . . , N and set

n = 1.
Step 1. Given the (n − 1)th and nth iterates, choose θn such that
0 ≤ θn ≤ θ̂n with θ̂n defined by

θ̂n =

{
min

{
θ, εn

‖xn−xn−1‖
}

, if xn 	= xn−1,

θ, otherwise.
Step 2. Compute

wn = xn + θn(xn − xn−1).
Step 3. Compute

yn,i = PCi
(Ŝi−1wn − λn,iBiŜi−1wn)

λn+1,i =

⎧⎪⎪⎨
⎪⎪⎩

min{ (cn,i+ci)‖Ŝi−1wn−yn,i‖
‖BiŜi−1wn−Biyn,i‖ , λn,i + ρn,i}, if BiŜi−1wn

−Biyn,i 	= 0,

λn,i + ρn,i, otherwise.
zn,i = Ŝi−1wn − βn,irn,i,

where
rn,i = Ŝi−1wn − yn,i − λn,i(BiŜi−1wn − Biyn,i)

and

βn,i =

{
(ki + kn,i)

〈Ŝi−1wn−yn,i,rn,i〉
‖rn,i‖2 , if rn,i 	= 0

0, otherwise.
Step 4. Compute

bn =
∑N

i=1 δn,i

(
wn + ηn,iŜ

∗
i−1(zn,i − Ŝi−1wn)

)
,

where

ηn,i =

⎧⎨
⎩

(φn,i+φi)‖Ŝi−1wn−zn,i‖2

‖Ŝ∗
i−1(Ŝi−1wn−zn,i)‖2 , if ‖Ŝ∗

i−1(Ŝi−1wn − zn,i)‖ 	= 0,

0, otherwise.
Step 5. Compute

xn+1 = (1 − αn − ξn)wn + ξnbn.
Set n := n + 1 and return to Step 1.

Example 6.2. For each i = 0, 1, . . . , 4, we define the feasible set Ci = R
m,

Tix = 2x
i+2 and Ai(x) = Mx, where M is a square m × m matrix given by

aj,k =

⎧⎪⎨
⎪⎩

−1, if k = m + 1 − j and k > j,

1 if k = m + 1 − j and k ≤ j,

0, otherwise.

We note that M is a Hankel-type matrix with nonzero reverse diagonal.

Example 6.3. Let Hi = R
2 and Ci = [−1−i, 1+i]2, i = 0, 1, . . . , 4. We define

Tix = 4x
i+4 and the cost operator Ai : R2 → R

2 is defined by

Ai(x, y) = (−xey, y), (i = 0, 1, . . . , 4).
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Table 3. Numerical results for Experiment 6.7(1)

Proposed Alg. 3.1 Case I Case II
Iter. CPU time Iter. CPU time

φn,i = 3
n+1 13 3.5072 14 4.0949

φn,i = 6
(n+1)2 13 2.7786 14 3.3384

φn,i = 9
(n+1)3 13 2.7132 14 3.3103

φn,i = 12
(n+1)4 13 2.7295 14 3.3348

φn,i = 15
(n+1)5 13 2.7467 14 3.2094

Figure 11. Experiment 6.7(2):Case I

We consider the next example in infinite dimensional Hilbert space.

Example 6.4. Let Hi = (�2(R), ‖ · ‖2), i = 0, 1, . . . , 4, where �2(R) := {x =
(x1, x2, . . . , xj , . . .), xj ∈ R :

∑∞
j=1 |xj |2 < ∞}, ||x||2 = (

∑∞
j=1 |xj |2) 1

2 for
all x ∈ �2(R). Let Ci := {x = (x1, x2, . . . , xj , . . . , ) ∈ E : ‖x‖2 ≤ i + 1},
and we define Ti = 5x

i+5 and the cost operator Ai : Hi → Hi by Aix =
( 1

‖x‖+s + ‖x‖)x, (s > 0; i = 0, 1, · · · 4). Then, Ai is uniformly continuous
and pseudomonotone.

We test Examples 6.1, 6.2, 6.3 and 6.4 under the following experiments:
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Figure 12. Experiment 6.7(2):Case II

Experiment 6.5. In this experiment, we check the behavior of our method by
fixing the other parameters and varying φn,i in Example 6.1. We do this to
check the effects of this parameter and the sensitivity of our method to it.
We consider φn,i ∈ { 3

(n+1) ,
5

(n+1)2 , 7
(n+1)3 , 9

(n+1)4 , 11
(n+1)5 } with m = 25, m =

50, m = 100 and m = 200.

Using ‖xn+1 − xn‖ < 10−3 as the stopping criterion, we plot the graphs of
‖xn+1 − xn‖ against the number of iterations for each m.. The numerical
results are reported in Figs. 1, 2, 3, 4 and Table 1.

Experiment 6.6. In this experiment, we check the behavior of our method by
fixing the other parameters and varying cn,i in Example 6.2. We do this to
check the effects of this parameter and the sensitivity of our method on it.

We consider cn,i ∈ { 15
n0.1 , 30

n0.01 , 45
n0.001 , 60

n0.0001 , 75
n0.00001 } with m = 10, m =

20, m = 30 and m = 40.

Using ‖xn+1 − xn‖ < 10−3 as the stopping criterion, we plot the graphs
of ‖xn+1 − xn‖ against the number of iterations in each case. The numerical
results are reported in Figures 5, 6, 7, 8 and Table 2.

Finally, we test Examples 6.3 and 6.4 under the following experiment:

Experiment 6.7. In this experiment, we check the behavior of our method by
fixing the other parameters and varying kn,i and cn,i in Examples 6.3 and
6.4. We do this to check the effects of these parameters and the sensitivity of
our method on them.
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Table 4. Numerical results for Experiment 6.7 (2)

Proposed Alg. 3.1 Case I Case II
Iter. CPU time Iter. CPU time

φn,i = 3
n+1 8 0.0354 8 0.0327

φn,i = 6
(n+1)2 8 0.0211 8 0.0198

φn,i = 9
(n+1)3 8 0.0211 8 0.0195

φn,i = 12
(n+1)4 8 0.0172 8 0.0192

φn,i = 15
(n+1)5 8 0.0222 8 0.0189

(1) We consider kn,i ∈ { 2
(n+1) ,

4
(2n+1)2 , 6

(3n+1)3 , 8
(4n+1)4 , 10

(5n+1)5 } with the
following two cases of initial values x0 and x1 :

Case I: x0 = (2, 3); x1 = (3, 4);
Case II: x0 = (1, 3); x1 = (2, 0).

Using ‖xn+1−xn‖ < 10−4 as the stopping criterion, we plot the graphs of
‖xn+1−xn‖ against the number of iterations in each case. The numerical
results are reported in Figs. 9, 10 and Table 3.

(2) We consider cn,i ∈ { 15
n0.1 , 30

n0.01 , 45
n0.001 , 60

n0.0001 , 75
n0.00001 } with the following

two cases of initial values x0 and x1 :
Case I: x0 = (3, 1, 1

3 , · · · ); x1 = (1
3 , 1

6 , 1
12 , · · · );

Case II: x0 = (2, 1, 1
2 , · · · ); x1 = (1

2 , 1
8 , 1

32 , · · · ).
Using ‖xn+1−xn‖ < 10−4 as the stopping criterion, we plot the graphs of
‖xn+1−xn‖ against the number of iterations in each case. The numerical
results are reported in Figs. 11, 12 and Table 4.

Remark 6.8. Using different initial values, cases of m and varying the key
parameters in Examples 6.1–6.4, we obtained the numerical results displayed
in Tables 1, 2 and 3 and Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. We noted
the following from our numerical experiments:
(1) In all the examples, the choice of the key parameters cn,i, kn,i and φn,i

does not affect the number of iterations and no significant difference in
the CPU time. Thus, our method is not sensitive to these key parameters
for each initial value and case of m.

(2) The number of iterations for our method remains consistent in all the
examples and so well-behaved.

7. Conclusion

In this paper, we studied the concept of split variational inequality prob-
lem with multiple output sets when the cost operators are pseudomonotone
and uniformly continuous. We proposed a new Mann-type inertial projection
and contraction method with self-adaptive step sizes for approximating the
solution of the

problem in the framework of Hilbert spaces. Under some mild conditions
on the control sequences and without prior knowledge of the operator norms,
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we obtained strong convergence result for the proposed algorithm. Finally,
we applied our result to study certain classes of optimization problems and
we presented several numerical experiments to illustrate the applicability of
the proposed method.
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