Mann-Type Inertial Projection and Contraction Method for Solving Split Pseudomonotone Variational Inequality Problem with Multiple Output Sets

T. O. Alakoya and O. T. Mewomo

Abstract

In this paper, we study the concept of split variational inequality problem with multiple output sets when the cost operators are pseudomonotone and non-Lipschitz. We introduce a new Mann-type inertial projection and contraction method with self-adaptive step sizes for approximating the solution of the problem in the framework of Hilbert spaces. Under some mild conditions on the control parameters and without prior knowledge of the operator norms, we prove a strong convergence theorem for the proposed algorithm. We point out that while the cost operators are non-Lipschitz, our proposed method does not require any linesearch method but uses a more efficient self-adaptive step size technique that generates a non-monotonic sequence of step sizes. Finally, we apply our result to study certain classes of optimization problems and we present several numerical experiments to illustrate the applicability of the proposed method. Several of the existing results in the literature could be viewed as special cases of our result in this study.

Mathematics Subject Classification. 65K15, 47J25, 65J15, 90C33.
Keywords. Split inverse problems, variationl inequalities, non-Lipschitz operators, projection \& contraction method, inertial technique.

1. Introduction

Let H be a real Hilbert space with an inner product $\langle\cdot, \cdot \cdot\rangle$ and induced norm $\|\cdot\|$. Let C be a nonempty, closed and convex subset of H, and let $A: H \rightarrow H$ be a mapping. The variational inequality problem (VIP) is formulated as finding a point $p \in C$ such that

$$
\begin{equation*}
\langle x-p, A p\rangle \geq 0, \quad \forall x \in C \tag{1.1}
\end{equation*}
$$

We denote the solution set of the VIP (1.1) by $V I(C, A)$. Variational inequality theory was first introduced independently by Fichera [13] and Stampacchia [34]. The VIP is a fundamental problem in optimization theory, which unifies several important concepts in applied mathematics, such as the necessary network equilibrium problems, optimality conditions, systems of nonlinear equations and complementarity problems (e.g. see $[4,5,20]$). In the recent years, the VIP has attracted the attention of researchers due to its numerous applications in diverse fields, such as in optimization theory, economics, structural analysis, operations research, sciences and engineering (see $[10,17,36]$ and the references therein). Several authors have proposed and studied different iterative methods for approximating the solution of the VIP (see $[2,7,16,25,26]$ and references therein).
The split inverse problem (SIP) is another area of research which has recently received great research attention (see [42] and the references therein) due to its several applications in different fields, for instance, in signal processing, phase retrieval, medical image reconstruction, data compression, intensitymodulated radiation therapy, etc. (e.g. see $[8,9,18,22,29]$). The SIP model is formulated as follows:

$$
\begin{equation*}
\text { Find } \hat{x} \in H_{1} \quad \text { that solves } \mathrm{IP}_{1} \tag{1.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\hat{y}:=T \hat{x} \in H_{2} \quad \text { solves } \mathrm{IP}_{2} \tag{1.3}
\end{equation*}
$$

where H_{1} and H_{2} are real Hilbert spaces, IP_{1} denotes an inverse problem formulated in H_{1} and IP_{2} denotes an inverse problem formulated in H_{2}, and $T: H_{1} \rightarrow H_{2}$ is a bounded linear operator.
In 1994, Censor and Elfving in [9] introduced the first instance of the SIP called the split feasibility problem (SFP) for modelling inverse problems that arise from medical image reconstruction. The SFP finds application in the control theory, approximation theory, signal processing, geophysics, communications, biomedical engineering, etc. [8,23,31,32]. Let C and Q be nonempty, closed and convex subsets of Hilbert spaces H_{1} and H_{2}, respectively, and let $T: H_{1} \rightarrow H_{2}$ be a bounded linear operator. The SFP is defined as follows:

$$
\begin{equation*}
\text { Find } \hat{x} \in C \text { such that } \hat{y}=T \hat{x} \in Q \text {. } \tag{1.4}
\end{equation*}
$$

Several iterative algorithms for solving the SFP (1.4) have been constructed and investigated by researchers (see, e.g. $[8,23,24]$ and the references therein). An important generalization of the SFP is the split variational inequality problem (SVIP) introduced by Censor et al. [10]. The SVIP is formulated as follows:

$$
\begin{equation*}
\text { Find } \hat{x} \in C \text { that solves }\left\langle A_{1} \hat{x}, x-\hat{x}\right\rangle \geq 0, \quad \forall x \in C \tag{1.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
\hat{y}=T \hat{x} \in H_{2} \text { solves }\left\langle A_{2} \hat{y}, y-\hat{y}\right\rangle \geq 0, \quad \forall y \in Q \tag{1.6}
\end{equation*}
$$

where $A_{1}: H_{1} \rightarrow H_{1}, A_{2}: H_{2} \rightarrow H_{2}$ are single-valued operators. Several authors have studied and proposed different iterative methods for approximating the solution of SVIP (see $[19,21,37]$ and the references therein).

In 2020, Reich and Tuyen [28] introduced and studied the concept of split feasibility problem with multiple output sets in Hilbert spaces (SFPMOS), which is formulated as follows: Find a point u^{\dagger} such that

$$
\begin{equation*}
u^{\dagger} \in \Gamma:=C \cap\left(\bigcap_{i=1}^{N} T_{i}^{-1}\left(Q_{i}\right)\right) \neq \emptyset . \tag{1.7}
\end{equation*}
$$

where $T_{i}: H \rightarrow H_{i}, i=1,2, \ldots, N$, are bounded linear operators, C and Q_{i} are nonempty, closed and convex subsets of Hilbert spaces H and $H_{i}, i=$ $1,2, \ldots, N$, respectively.
Moreover, Reich and Tuyen [30] proposed the following two algorithms for approximating the solution of SFPMOS (1.7) in Hilbert spaces:

$$
\begin{equation*}
x_{n+1}=P_{C}\left[x_{n}-\gamma_{n} \sum_{i=1}^{N} T_{i}^{*}\left(I-P_{Q_{i}}\right) T_{i} x_{n}\right], \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) P_{C}\left[x_{n}-\gamma_{n} \sum_{i=1}^{N} T_{i}^{*}\left(I-P_{Q_{i}}\right) T_{i} x_{n}\right)\right] \tag{1.9}
\end{equation*}
$$

where $f: C \rightarrow C$ is a strict contraction, $\left\{\gamma_{n}\right\} \subset(0, \infty)$ and $\left\{\alpha_{n}\right\} \subset(0,1)$. The authors obtained weak and strong convergence result for Algorithm (1.8) and Algorithm (1.9), respectively.
In this paper, we study the split variational inequality problem with multiple output sets. Let $H, H_{i}, i=1,2, \ldots, N$, be real Hilbert spaces and let C, C_{i} be nonempty, closed and convex subsets of real Hilbert spaces H and $H_{i}, i=$ $1,2, \ldots, N$, respectively. Let $T_{i}: H \rightarrow H_{i}, i=1,2, \ldots, N$, be bounded linear operators and let $A: H \rightarrow H, A_{i}: H_{i} \rightarrow H_{i}, i=1,2, \ldots, N$, be single-valued operators. The split variational inequality problem with multiple output sets (SVIPMOS) is formulated as finding a point $x^{*} \in C$ such that

$$
\begin{equation*}
x^{*} \in \Omega:=V I(C, A) \cap\left(\cap_{i=1}^{N} T_{i}^{-1} V I\left(C_{i}, A_{i}\right)\right) \neq \emptyset . \tag{1.10}
\end{equation*}
$$

It is clear that the SVIPMOS (1.10) generalizes the SFPMOS (1.7).
In the last couple of years, developing iterative methods with a high rate of convergence for solving optimization problems has become of great interest to researchers. One of the approaches employed by researchers to achieve this objective is the inertial technique. This technique originates from an implicit time discretization method (the heavy ball method) of second-order dynamical systems. In recent years, several authors have constructed highly efficient iterative methods by employing the inertial technique, see, e.g., [1, $3,11,14,38,40]$.
In this paper, we propose and analyze a new Mann-type inertial projection and contraction algorithm with self-adaptive step sizes for approximating the solution SVIPMOS (1.10) when the cost operators are pseudomonotone and non-Lipschitz. While the cost operators are non-Lipschitz, our proposed method does not involve any line search method but uses a more efficient self-adaptive step size technique which generates a non-monotonic sequence
of step sizes. Furthermore, we prove that the sequence generated by our proposed method converges to the minimum-norm solution of the problem in Hilbert spaces. Finally, we apply our result to study certain classes of optimization problems and we present several numerical experiments to demonstrate the applicability of our proposed algorithm.
The outline of the paper is as follows: In Sect. 2, we give some definitions and results required for the convergence analysis. In Sect.3, we present the proposed algorithm and in Sect. 4 we analyze the convergence of our proposed method. In Sect. 5 we apply our result to study certain classes of optimization problems, and in Sect. 6 we carry out several numerical experiments with graphical illustrations. Finally, we give some concluding remarks in Sect. 7.

2. Preliminaries

Definition 2.1. [2,16] An operator $A: H \rightarrow H$ is said to be
(i) α-strongly monotone, if there exists $\alpha>0$ such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|x-y\|^{2}, \forall x, y \in H
$$

(ii) monotone, if

$$
\langle x-y, A x-A y\rangle \geq 0, \quad \forall x, y \in H
$$

(iii) pseudomonotone, if

$$
\langle A y, x-y\rangle \geq 0 \Longrightarrow\langle A x, x-y\rangle \geq 0, \forall x, y \in H,
$$

(iv) L-Lipschitz continuous, if there exists a constant $L>0$ such that

$$
\|A x-A y\| \leq L\|x-y\|, \quad \forall x, y \in H
$$

(v) uniformly continuous, if for every $\epsilon>0$, there exists $\delta=\delta(\epsilon)>0$, such that

$$
\|A x-A y\|<\epsilon \quad \text { whenever } \quad\|x-y\|<\delta, \quad \forall x, y \in H
$$

Remark 2.2. We note that the following implications hold: $(i) \Longrightarrow(i i) \Longrightarrow$ (iii) but the converses are not generally true. We also point out that uniform continuity is a weaker notion than Lipschitz continuity.

It is well known that if D is a convex subset of H, then $A: D \rightarrow H$ is uniformly continuous if and only if, for every $\epsilon>0$, there exists a constant $K<+\infty$ such that

$$
\begin{equation*}
\|A x-A y\| \leq K\|x-y\|+\epsilon \quad \forall x, y \in D \tag{2.1}
\end{equation*}
$$

Lemma 2.3. $[27,39]$ Let H be a real Hilbert space. Then the following results hold for all $x, y \in H$ and $\delta \in(0,1)$:
(i) $\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle$;
(ii) $\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}$;
(iii) $\|\delta x+(1-\delta) y\|^{2}=\delta\|x\|^{2}+(1-\delta)\|y\|^{2}-\delta(1-\delta)\|x-y\|^{2}$.

Lemma 2.4. ([33]) Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers, $\left\{\alpha_{n}\right\}$ be a sequence in $(0,1)$ with $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\left\{b_{n}\right\}$ be a sequence of real numbers. Assume that

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} b_{n} \quad \text { for all } n \geq 1
$$

If $\limsup \sup _{k \rightarrow \infty} b_{n_{k}} \leq 0$ for every subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$ satisfying $\liminf \inf _{k \rightarrow \infty}\left(a_{n_{k+1}}-a_{n_{k}}\right) \geq 0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Lemma 2.5. [35] Suppose $\left\{\lambda_{n}\right\}$ and $\left\{\theta_{n}\right\}$ are two nonnegative real sequences such that

$$
\lambda_{n+1} \leq \lambda_{n}+\phi_{n}, \quad \forall n \geq 1
$$

If $\sum_{n=1}^{\infty} \phi_{n}<\infty$, then $\lim _{n \rightarrow \infty} \lambda_{n}$ exists.
Lemma 2.6. [12] Consider the VIP (1.1) with C being a nonempty, closed, convex subset of a real Hilbert space H and $A: C \rightarrow H$ being pseudomonotone and continuous. Then p is a solution of VIP (1.1) if and only if

$$
\langle A x, x-p\rangle \geq 0, \forall x \in C
$$

3. Main Results

In this section, we present our proposed algorithm for solving the SVIPMOS (1.10). We analyze the convergence of the proposed method under the following conditions:
Let C, C_{i} be nonempty, closed and convex subsets of real Hilbert spaces $H, H_{i}, i=1,2, \ldots, N$, respectively, and let $T_{i}: H \rightarrow H_{i}, i=1,2, \ldots, N$, be bounded linear operators with adjoints T_{i}^{*}. Let $A: H \rightarrow H, A_{i}: H_{i} \rightarrow H_{i}, i=$ $1,2, \ldots$,
N, be uniformly continuous pseudomonotone operators satisfying the following property:

$$
\begin{align*}
& \text { whenever }\left\{T_{i} x_{n}\right\} \subset C_{i}, T_{i} x_{n} \rightharpoonup T_{i} z \text {, then }\left\|A_{i} T_{i} z\right\| \\
& \quad \leq \liminf _{n \rightarrow \infty}\left\|A_{i} T_{i} x_{n}\right\|, i=0,1,2 \ldots, N, C_{0}=C, A_{0}=A, T_{0}=I^{H} . \tag{3.1}
\end{align*}
$$

Moreover, we assume that the solution set $\Omega \neq \emptyset$ and the control parameters satisfy the following conditions:

Assumption A. (A1) $\left\{\alpha_{n}\right\} \subset(0,1), \lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=+\infty$, $\lim _{n \rightarrow \infty} \frac{\epsilon_{n}}{\alpha_{n}}=0,\left\{\xi_{n}\right\} \subset[a, b] \subset\left(0,1-\alpha_{n}\right), \theta>0 ;$
(A2) $0<c_{i}<c_{i}^{\prime}<1,0<\phi_{i}<\phi_{i}^{\prime}<1,0<k_{i}<k_{i}^{\prime}<2,\left\{c_{n, i}\right\},\left\{\phi_{n, i}\right\},\left\{k_{n, i}\right\} \subset$ $\mathbb{R}_{+}, \lim _{n \rightarrow \infty} c_{n, i}=\lim _{n \rightarrow \infty} \phi_{n, i}=\lim _{n \rightarrow \infty} k_{n, i}=0, \lambda_{1, i}>0, \forall i=$ $0,1,2, \ldots, N$;
(A3) $\left\{\rho_{n, i}\right\} \subset \mathbb{R}_{+}, \sum_{n=1}^{\infty} \rho_{n, i}<+\infty, 0<a_{i} \leq \delta_{n, i} \leq b_{i}<1, \sum_{i=0}^{N} \delta_{n, i}=1$ for each $n \geq 1$.
Now, the algorithm is presented as follows:
Remark 3.2. By conditions (C1) and (C2), it follows from (3.2) that

$$
\lim _{n \rightarrow \infty} \theta_{n}\left\|x_{n}-x_{n-1}\right\|=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|=0
$$

Algorithm 3.1.
Step 0. Select initial points $x_{0}, x_{1} \in H$. Let $C_{0}=C, T_{0}=I^{H}, A_{0}=A$ and set $n=1$.
Step 1. Given the $(n-1) t h$ and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}= \begin{cases}\min \{\theta, & \left.\frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, \quad \text { if } x_{n} \neq x_{n-1} \tag{3.2}\\ \theta, & \text { otherwise }\end{cases}
$$

Step 2. Compute

$$
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)
$$

Step 3. Compute

$$
\begin{aligned}
& y_{n, i}=P_{C_{i}}\left(T_{i} w_{n}-\lambda_{n, i} A_{i} T_{i} w_{n}\right) \\
& \lambda_{n+1, i}= \begin{cases}\min \left\{\frac{\left(c_{n, i}+c_{i}\left\|T_{i} w_{n}-y_{n, i}\right\|\right.}{\left\|A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right\|}, \lambda_{n, i}+\rho_{n, i}\right\}, & \text { if } A_{i} T_{i} w_{n} \\
& -A_{i} y_{n, i} \neq 0, \\
\lambda_{n, i}+\rho_{n, i}, & \text { otherwise }\end{cases} \\
& z_{n, i}=T_{i} w_{n}-\beta_{n, i} r_{n, i},
\end{aligned}
$$

where

$$
r_{n, i}=T_{i} w_{n}-y_{n, i}-\lambda_{n, i}\left(A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right)
$$

and

$$
\beta_{n, i}= \begin{cases}\left(k_{i}+k_{n, i}\right) \frac{\left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle}{\left\|r_{n, i}\right\|^{2}}, & \text { if } r_{n, i} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Step 4. Compute

$$
b_{n}=\sum_{i=0}^{N} \delta_{n, i}\left(w_{n}+\eta_{n, i} T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right)
$$

where

$$
\eta_{n, i}= \begin{cases}\frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}}{\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\|^{2}}, & \text { if }\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\| \neq 0 \tag{3.3}\\ 0, & \text { otherwise }\end{cases}
$$

Step 5. Compute

$$
x_{n+1}=\left(1-\alpha_{n}-\xi_{n}\right) w_{n}+\xi_{n} b_{n}
$$

Set $n:=n+1$ and return to Step 1.

Remark 3.3. Observe that while the cost operators $A_{i}, i=0,1,2, \ldots, N$ are non-Lipschitz, our method does not require any linesearch technique, which could be computationally too expensive too implement. Rather, we employ self-adaptive step sizes that only require simple computations of known information per iteration.

4. Convergence Analysis

First, we prove some lemmas needed for our strong convergence theorem.
Lemma 4.1. Suppose $\left\{\lambda_{n, i}\right\}$ is the sequence generated by Algorithm 3.1 such that Assumption A holds. Then $\left\{\lambda_{n, i}\right\}$ is well defined for each $i=0,1,2, \ldots, N$ and $\lim _{n \rightarrow \infty} \lambda_{n, i}=\lambda_{1, i} \in\left[\min \left\{\frac{c_{i}}{M_{i}}, \lambda_{1, i}\right\}, \lambda_{1, i}+\Phi_{i}\right]$, where $\Phi_{i}=\sum_{n=1}^{\infty} \rho_{n, i}$.

Proof. Since A_{i} is uniformly continuous for each $i=0,1,2, \ldots, N$, then by (2.1) we have that for any given $\epsilon_{i}>0$, there exists $K_{i}<+\infty$ such that $\left\|A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right\| \leq K_{i}\left\|T_{i} w_{n}-y_{n, i}\right\|+\epsilon_{i}$. Hence, for the case $A_{i} T_{i} w_{n}-$ $A_{i} y_{n, i} \neq 0$ for all $n \geq 1$ we have

$$
\begin{aligned}
& \frac{\left(c_{n, i}+c_{i}\right)\left\|T_{i} w_{n}-y_{n, i}\right\|}{\left\|A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right\|} \geq \frac{\left(c_{n, i}+c_{i}\right)\left\|T_{i} w_{n}-y_{n, i}\right\|}{K_{i}\left\|T_{i} w_{n}-y_{n, i}\right\|+\epsilon_{i}} \\
& \quad=\frac{\left(c_{n, i}+c_{i}\right)\left\|T_{i} w_{n}-y_{n, i}\right\|}{\left(K_{i}+\mu_{i}\right)\left\|T_{i} w_{n}-y_{n, i}\right\|}=\frac{\left(c_{n, i}+c_{i}\right)}{M_{i}} \geq \frac{c_{i}}{M_{i}}
\end{aligned}
$$

where $\epsilon_{i}=\mu_{i}\left\|T_{i} w_{n}-y_{n, i}\right\|$ for some $\mu_{i} \in(0,1)$ and $M_{i}=K_{i}+\mu_{i}$. Thus, by the definition of λ_{n+1}, the sequence $\left\{\lambda_{n, i}\right\}$ has lower bound $\min \left\{\frac{c_{i}}{M_{i}}, \lambda_{1, i}\right\}$ and has upper bound $\lambda_{1, i}+\Phi_{i}$. By Lemma 2.5, the limit $\lim _{n \rightarrow \infty} \lambda_{n, i}$ exists and we denote by $\lambda_{i}=\lim _{n \rightarrow \infty} \lambda_{n, i}$. It is clear that $\lambda_{i} \in\left[\min \left\{\frac{c_{i}}{M_{i}}, \lambda_{1, i}\right\}, \lambda_{1, i}+\Phi_{i}\right]$ for each $i=0,1,2 \ldots, N$.

Lemma 4.2. If $\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\| \neq 0$, then the sequence $\left\{\eta_{n, i}\right\}$ defined by (3.3) has a positive lower bounded for each $i=0,1,2, \ldots, N$.

Proof. If $\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\| \neq 0$, we have for each $i=0,1,2, \ldots, N$

$$
\eta_{n, i}=\frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}}{\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\|^{2}}
$$

Since T_{i} is a bounded linear operator and $\lim _{n \rightarrow \infty} \phi_{n, i}=0$ for each $i=$ $0,1,2, \ldots$,
N, we have

$$
\frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}}{\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\|^{2}} \geq \frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}}{\left\|T_{i}\right\|^{2}\left\|T_{i} w_{n}-z_{n, i}\right\| \|^{2}} \geq \frac{\phi_{i}}{\left\|T_{i}\right\|^{2}}
$$

which implies that $\frac{\phi_{i}}{\left\|T_{i}\right\|^{2}}$ is a lower bound of $\left\{\eta_{n, i}\right\}$ for each $i=0,1,2, \ldots, N$.

Lemma 4.3. Suppose Assumption A of Algorithm 3.1 holds. Then, there exists a positive integer N such that
$k_{i}+k_{n, i} \in(0,2), \phi_{i}+\phi_{n, i} \in(0,1), \quad$ and $\quad \frac{\lambda_{n, i}\left(c_{n, i}+c i\right)}{\lambda_{n+1, i}} \in(0,1), \quad \forall n \geq N$.
Proof. Since $0<k_{i}<k_{i}^{\prime}<2$ and $\lim _{n \rightarrow \infty} k_{n, i}=0$ for each $i=0,1,2, \ldots, N$, there exists a positive integer $N_{1, i}$ such that

$$
0<k_{i}+k_{n, i} \leq k_{i}^{\prime}<2, \forall n \geq N_{1, i}
$$

By similar argument, there exists a positive integer $N_{2, i}$ for each $i=0,1,2, \ldots$, N, such that

$$
0<\phi_{i}+\phi_{n, i} \leq \phi_{i}^{\prime}<1, \forall n \geq N_{2, i}
$$

In addition, since $0<c_{i}<c_{i}^{\prime}<1, \lim _{n \rightarrow \infty} c_{n, i}=0$ and $\lim _{n \rightarrow \infty} \lambda_{n, i}=\lambda_{i}$ for each $i=0,1,2, \ldots, N$, we have

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda_{n, i}\left(c_{n, i}+c_{i}\right)}{\lambda_{n+1, i}}\right)=1-c_{i}>1-c_{i}^{\prime}>0
$$

Therefore, for each $i=0,1,2, \ldots, N$, there exists a positive integer $N_{3, i}$ such that

$$
1-\frac{\lambda_{n, i}\left(c_{n, i}+c_{i}\right)}{\lambda_{n+1, i}}>0, \forall n \geq N_{3, i} .
$$

Now, by setting $N=\max \left\{N_{1, i}, N_{2, i}, N_{3, i}: i=0,1,2, \ldots, N\right\}$, the required result follows.

Lemma 4.4. Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.1 such that Assumption A holds. Then $\left\{x_{n}\right\}$ is bounded.

Proof. Let $p \in \Omega$. This implies that $T_{i} p \in V I\left(C_{i}, A_{i}\right), i=0,1,2, \ldots, N$. Then, by applying the triangular inequality, it follows from the definition of w_{n} that

$$
\begin{align*}
\left\|w_{n}-p\right\| & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-p\right\| \\
& \leq\left\|x_{n}-p\right\|+\theta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& =\left\|x_{n}-p\right\|+\alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| . \tag{4.1}
\end{align*}
$$

By Remark (3.2), there exists $M_{1}>0$ such that

$$
\frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \leq M_{1}, \forall n \geq 1
$$

Thus, it follows from (4.1) that

$$
\begin{equation*}
\left\|w_{n}-p\right\| \leq\left\|x_{n}-p\right\|+\alpha_{n} M_{1}, \forall n \geq 1 \tag{4.2}
\end{equation*}
$$

Since $y_{n, i}=P_{C_{i}}\left(T_{i} w_{n}-\lambda_{n, i} A_{i} T_{i} w_{n}\right)$ and $T_{i} p \in V I\left(C_{i}, A_{i}\right), i=0,1,2 \ldots, N$, by the property of the projection map it follows that

$$
\begin{equation*}
\left\langle y_{n, i}-T_{i} w_{n}+\lambda_{n, i} A_{i} T_{i} w_{n}, y_{n, i}-T_{i} p\right\rangle \leq 0 . \tag{4.3}
\end{equation*}
$$

Moreover, since $y_{n, i} \in C_{i}, i=0,1,2, \ldots, N$, we have

$$
\left\langle A_{i} T_{i} p, y_{n, i}-T_{i} p\right\rangle \geq 0
$$

which follows from the pseudomonotonicity of A_{i} that $\left\langle A_{i} y_{n, i}, y_{n, i}-T_{i} p\right\rangle \geq 0$. Since $\lambda_{n, i} \quad>\quad 0, \quad i \quad=0,1,2$, \ldots, N, we have

$$
\begin{equation*}
\left\langle\lambda_{n, i} A_{i} y_{n, i}, y_{n, i}-T_{i} p\right\rangle \geq 0 \tag{4.4}
\end{equation*}
$$

From (4.3) and (4.4) we obtain

$$
\begin{equation*}
\left\langle T_{i} w_{n}-y_{n, i}-\lambda_{n, i}\left(A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right), y_{n, i}-T_{i} p\right\rangle \geq 0 . \tag{4.5}
\end{equation*}
$$

Now, applying the definition of $r_{n, i}$ and (4.5) we get

$$
\begin{align*}
\left\langle T_{i} w_{n}-T_{i} p, r_{n, i}\right\rangle= & \left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle+\left\langle y_{n, i}-T_{i} p, r_{n, i}\right\rangle \\
= & \left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle \\
& +\left\langle T_{i} w_{n}-y_{n, i}-\lambda_{n, i}\left(A_{i} T_{i} w_{n}-A_{i} y_{n, i}\right), y_{n, i}-T_{i} p\right\rangle \\
\geq \geq & \left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle . \tag{4.6}
\end{align*}
$$

Since $z_{n, i}=T_{i} w_{n}-\beta_{n, i} r_{n, i}$, it follows that

$$
\begin{equation*}
\left\|\beta_{n, i} r_{n, i}\right\|^{2}=\left\|z_{n, i}-T_{i} w_{n}\right\|^{2} \tag{4.7}
\end{equation*}
$$

By Lemma 4.3, there exists a positive integer N such that $0<k_{i}+k_{n, i}<$ $2 \forall n \geq N$. From the definition of $\beta_{n, i}$, if $r_{n, i} \neq 0 i=0,1,2, \ldots, N$, we have

$$
\begin{equation*}
\beta_{n, i}\left\|r_{n, i}\right\|^{2}=\left(k_{i}+k_{n, i}\right)\left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle . \tag{4.8}
\end{equation*}
$$

Now, by applying Lemma 2.3, (4.6), (4.7) and (4.8) we get

$$
\begin{align*}
\left\|z_{n, i}-T_{i} p\right\|^{2} & =\left\|T_{i} w_{n}-\beta_{n, i} r_{n, i}-T_{i} p\right\|^{2} \\
& =\left\|T_{i} w_{n}-T_{i} p\right\|^{2}+\beta_{n, i}^{2}\left\|r_{n, i}\right\|^{2}-2 \beta_{n, i}\left\langle T_{i} w_{n}-T_{i} p, r_{n, i}\right\rangle \\
& \leq\left\|T_{i} w_{n}-T_{i} p\right\|^{2}+\beta_{n, i}^{2}\left\|r_{n, i}\right\|^{2}-2 \beta_{n, i}\left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle \\
& =\left\|T_{i} w_{n}-T_{i} p\right\|^{2}+\beta_{n, i}^{2}\left\|r_{n, i}\right\|^{2}-\frac{2}{k_{i}+k_{n, i}} \beta_{n, i}^{2}\left\|r_{n, i}\right\|^{2} \\
& =\left\|T_{i} w_{n}-T_{i} p\right\|^{2}+\left(1-\frac{2}{k_{i}+k_{n, i}}\right)\left\|z_{n, i}-T_{i} w_{n}\right\|^{2} \\
& \leq\left\|T_{i} w_{n}-T_{i} p\right\|^{2} . \tag{4.9}
\end{align*}
$$

Observe that if $r_{n, i}=0, i=0,1,2, \ldots, N$, (4.9) still holds.
Next, since the function $\|\cdot\|^{2}$ is convex, we have

$$
\begin{align*}
\left\|b_{n}-p\right\|^{2} & =\left\|\sum_{i=0}^{N} \delta_{n, i}\left(w_{n}+\eta_{n, i} T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right)-p\right\|^{2} \\
& \leq \sum_{i=0}^{N} \delta_{n, i}\left\|w_{n}+\eta_{n, i} T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)-p\right\|^{2} \tag{4.10}
\end{align*}
$$

By Lemma 4.3, there exists a positive integer N such that $0<\phi_{n, i}+\phi_{i}<$ $1, i=0,1,2, \ldots, N$ for all $n \geq N$. Now, from (4.10) and by applying Lemma 2.3 and (4.9) we have

$$
\begin{align*}
& \left\|w_{n}+\eta_{n, i} T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)-p\right\|^{2} \\
& \quad=\left\|w_{n}-p\right\|^{2}+\eta_{n, i}^{2}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}+2 \eta_{n, i}\left\langle w_{n}-p, T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\rangle \\
& =\left\|w_{n}-p\right\|^{2}+\eta_{n, i}^{2}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}+2 \eta_{n, i}\left\langle T_{i} w_{n}-T_{i} p, z_{n, i}-T_{i} w_{n}\right\rangle \\
& =\left\|w_{n}-p\right\|^{2}+\eta_{n, i}^{2}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}+\eta_{n, i}\left[\left\|z_{n, i}-T_{i} p\right\|^{2}-\left\|T_{i} w_{n}-T_{i} p\right\|^{2}\right. \\
& \left.\quad-\left\|z_{n, i}-T_{i} w_{n}\right\|^{2}\right] \\
& \leq\left\|w_{n}-p\right\|^{2}+\eta_{n, i}^{2}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}-\eta_{n, i}\left\|z_{n, i}-T_{i} w_{n}\right\|^{2} \\
& =\left\|w_{n}-p\right\|^{2}-\eta_{n, i}\left[\left\|z_{n, i}-T_{i} w_{n}\right\|^{2}-\eta_{n, i}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}\right] . \tag{4.11}
\end{align*}
$$

If $\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\| \neq 0$, then using the definition of $\eta_{n, i}$ we have

$$
\begin{equation*}
\left\|z_{n, i}-T_{i} w_{n}\right\|^{2}-\eta_{n, i}\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|^{2}=\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2} \geq 0 \tag{4.12}
\end{equation*}
$$

Thus, by applying (4.12) in (4.11) and substituting in (4.10) we have

$$
\begin{align*}
\left\|b_{n}-p\right\|^{2} & \leq\left\|w_{n}-p\right\|^{2}-\sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2} \\
& \leq\left\|w_{n}-p\right\|^{2} \tag{4.13}
\end{align*}
$$

Observe that if $\left\|T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right\|=0$, (4.13) still holds from (4.11).
By the definition of x_{n+1}, we have

$$
\begin{align*}
\left\|x_{n+1}-p\right\| & =\left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)-\alpha_{n} p\right\| \\
& \leq\left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)\right\|+\alpha_{n}\|p\| . \tag{4.14}
\end{align*}
$$

Applying Lemma 2.3(ii) together with (4.13) we have

$$
\begin{aligned}
&\left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)\right\|^{2} \\
&=\left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+2\left(1-\alpha_{n}-\xi_{n}\right) \xi_{n}\left\langle w_{n}-p, b_{n}-p\right\rangle \\
&+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
& \leq\left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+2\left(1-\alpha_{n}-\xi_{n}\right) \xi_{n}\left\|w_{n}-p\right\|\left\|b_{n}-p\right\| \\
&+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
& \leq\left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+\left(1-\alpha_{n}-\xi_{n}\right) \xi_{n}\left[\left\|w_{n}-p\right\|^{2}+\left\|b_{n}-p\right\|^{2}\right] \\
&+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
&=\left(1-\alpha_{n}-\xi_{n}\right)\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|^{2}+\xi_{n}\left(1-\alpha_{n}\right)\left\|b_{n}-p\right\|^{2} \\
& \leq\left(1-\alpha_{n}-\xi_{n}\right)\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|^{2}+\xi_{n}\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|^{2} \\
&=\left(1-\alpha_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)\right\| \leq\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\| . \tag{4.15}
\end{equation*}
$$

Now, applying (4.2) and (4.15) in (4.14), we have for all $n \geq N$

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & \leq\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|+\alpha_{n}\|p\| \\
& \leq\left(1-\alpha_{n}\right)\left[\left\|x_{n}-p\right\|+\alpha_{n} M_{1}\right]+\alpha_{n}\|p\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\left[\|p\|+M_{1}\right] \\
& \leq \max \left\{\left\|x_{n}-p\right\|,\|p\|+M_{1}\right\} \\
& \vdots \\
& \leq \max \left\{\left\|x_{N}-p\right\|,\|p\|+M_{1}\right\} .
\end{aligned}
$$

which implies that $\left\{x_{n}\right\}$ is bounded. Hence, $\left\{w_{n}\right\},\left\{y_{n, i}\right\},\left\{z_{n, i}\right\},\left\{y_{n, i}\right\},\left\{r_{n, i}\right\}$ and $\left\{b_{n}\right\}$ are all bounded.

Lemma 4.5. Suppose $\left\{w_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences generated by Algorithm 3.1 with subsequences $\left\{w_{n_{k}}\right\}$ and $\left\{b_{n_{k}}\right\}$, respectively, such that $\lim _{k \rightarrow \infty}\left\|w_{n_{k}}-b_{n_{k}}\right\|=0$. If $w_{n_{k}} \rightharpoonup z \in H$, then $z \in \Omega$.

Proof. From (4.13), we have

$$
\begin{equation*}
\left\|b_{n_{k}}-p\right\|^{2} \leq\left\|w_{n_{k}}-p\right\|^{2}-\sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \tag{4.16}
\end{equation*}
$$

From this, we obtain

$$
\begin{align*}
& \sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \\
& \quad \leq\left\|w_{n_{k}}-p\right\|^{2}-\left\|b_{n_{k}}-p\right\|^{2} \\
& \quad \leq\left\|w_{n_{k}}-b_{n_{k}}\right\|^{2}+2\left\|w_{n_{k}}-b_{n_{k}}\right\|\left\|b_{n_{k}}-p\right\| . \tag{4.17}
\end{align*}
$$

Since by the hypothesis of the lemma $\lim _{k \rightarrow \infty}\left\|w_{n_{k}}-b_{n_{k}}\right\|=0$, it follows from (4.17) that

$$
\sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \rightarrow 0, \quad k \rightarrow \infty
$$

which implies that
$\delta_{n_{k}, i} \eta_{n_{k}, i}\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \rightarrow 0, \quad k \rightarrow \infty, \forall i=0,1,2, \ldots, N$.
By the definition of $\eta_{n, i}$, we have

$$
\begin{aligned}
& \delta_{n_{k}, i}\left(\phi_{n_{k}, i}+\phi_{i}\right)\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right] \frac{\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{4}}{\left\|T_{i}^{*}\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\|^{2}} \rightarrow 0 \\
& \quad k \rightarrow \infty, \forall i=0,1,2, \ldots, N
\end{aligned}
$$

which implies that

$$
\frac{\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2}}{\left\|T_{i}^{*}\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\|} \rightarrow 0, \quad k \rightarrow \infty, \quad \forall i=0,1,2, \ldots, N
$$

Since $\left\{\left\|T_{i}^{*}\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\|\right\}$ is bounded, it follows that

$$
\begin{equation*}
\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\| \rightarrow 0, \quad k \rightarrow \infty, \quad \forall i=0,1,2, \ldots, N \tag{4.18}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \left\|T_{i}^{*}\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\| \leq\left\|T_{i}^{*}\right\|\left\|\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\|=\left\|T_{i}\right\|\left\|\left(T_{i} w_{n_{k}}-z_{n_{k}, i}\right)\right\| \rightarrow 0, \\
& \quad k \rightarrow \infty, \forall i=0,1,2, \ldots, N . \tag{4.19}
\end{align*}
$$

By the definition of $\lambda_{n+1, i}$, it follows that

$$
\begin{align*}
& \left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, r_{n_{k}, i}\right\rangle \\
& \quad=\left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, T_{i} w_{n_{k}}-y_{n_{k}, i}-\lambda_{n_{k}, i}\left(A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right)\right\rangle \\
& \quad=\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|^{2}-\left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, \lambda_{n_{k}, i}\left(A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right)\right\rangle \\
& \quad \geq\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|^{2}-\lambda_{n_{k}, i}\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|\left\|A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right\| \\
& \quad \geq\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|^{2}-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|^{2} \\
& \quad=\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|^{2} . \tag{4.20}
\end{align*}
$$

From Lemma 4.1 we know that $\lim _{k \rightarrow \infty} \lambda_{n_{k}, i}=\lambda_{i}, i=0,1,2, \ldots, N$ and by Lemma 4.3, there exists a positive integer N such that $1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)>$
$0, \forall n \geq N, i=0,1,2, \ldots, N$. If $r_{n, i} \neq 0$, then by applying the continuity of A_{i}, the definitions of $\beta_{n, i}, r_{n, i}$ and $z_{n, i} i=0,1,2, \ldots, N$, from (4.20) we have

$$
\begin{align*}
\| & T_{i} w_{n_{k}}-y_{n_{k}, i} \|^{2} \\
\leq & \frac{1}{\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)}\left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, r_{n_{k}, i}\right\rangle \\
= & \frac{1}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)} \beta_{n_{k}, i}\left\|r_{n_{k}, i}\right\|^{2} \\
= & \frac{1}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)} \beta_{n_{k}, i}\left\|r_{n_{k}, i}\right\| \| T_{i} w_{n_{k}}-y_{n_{k}, i} \\
& -\lambda_{n_{k}, i}\left(A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right) \\
\leq & \frac{1}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)} \beta_{n_{k}, i}\left\|r_{n_{k}, i}\right\|\left(\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|\right. \\
& \left.+\lambda_{n_{k}, i}\left\|A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right\|\right) \\
\leq & \frac{1}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)} \beta_{n_{k}, i}\left\|r_{n_{k}, i}\right\| \\
& \left(1+\frac{\lambda_{n_{k}, i}}{\left.\lambda_{n_{k}+1, i}\left(c_{n_{k}, i}+c_{i}\right)\right)\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\|}\right. \\
= & \frac{\left(1+\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)}\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\| . \tag{4.21}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\| \leq \frac{\left(1+\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)}{\left(k_{i}+k_{n_{k}, i}\right)\left(1-\frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}\left(c_{n_{k}, i}+c_{i}\right)\right)}\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\| \tag{4.22}
\end{equation*}
$$

Since $\lim _{k \rightarrow \infty} c_{n_{k}, i}=k_{n_{k}, i}=0$ and by Lemma $4.1 \lim _{k \rightarrow \infty} \frac{\lambda_{n_{k}, i}}{\lambda_{n_{k}+1, i}}=1, i=$ $0,1,2, \ldots, N$, then from (4.22) and by applying (4.18) we have

$$
\begin{equation*}
\left\|T_{i} w_{n_{k}}-y_{n_{k}, i}\right\| \rightarrow 0, \quad k \rightarrow \infty, \forall i=0,1,2, \ldots, N . \tag{4.23}
\end{equation*}
$$

If $r_{n, i}=0$, from (4.20) we know that (4.23) still holds.
Since $y_{n, i}=P_{C_{i}}\left(T_{i} w_{n}-\lambda_{n, i} A_{i} T_{i} w_{n}\right)$, by the property of the projection map we have

$$
\begin{aligned}
& \left\langle T_{i} w_{n_{k}}-\lambda_{n_{k}, i} A_{i} T_{i} w_{n_{k}}-y_{n_{k}, i}, T_{i} x-y_{n_{k}, i}\right\rangle \leq 0, \quad \forall T_{i} x \in C_{i} \\
& \quad i=0,1,2, \ldots, N
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \frac{1}{\lambda_{n_{k}, i}}\left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, T_{i} x-y_{n_{k}, i}\right\rangle \leq\left\langle A_{i} T_{i} w_{n_{k}}, T_{i} x-y_{n_{k}, i}\right\rangle, \\
& \quad \forall T_{i} x \in C_{i}, \quad i=0,1,2, \ldots, N
\end{aligned}
$$

From the last inequality, we get

$$
\begin{align*}
& \frac{1}{\lambda_{n_{k}, i}}\left\langle T_{i} w_{n_{k}}-y_{n_{k}, i}, T_{i} x-y_{n_{k}, i}\right\rangle+\left\langle A_{i} T_{i} w_{n_{k}}, y_{n_{k}, i}-T_{i} w_{n_{k}}\right\rangle \\
& \quad \leq\left\langle A_{i} T_{i} w_{n_{k}}, T_{i} x-T_{i} w_{n_{k}}\right\rangle, \forall T_{i} x \in C_{i}, i=0,1,2, \ldots, N . \tag{4.24}
\end{align*}
$$

By applying (4.23) and the fact that $\lim _{k \rightarrow \infty} \lambda_{n_{k}, i}=\lambda_{i}>0$, from (4.24) we obtain

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\langle A_{i} T_{i} w_{n_{k}}, T_{i} x-T_{i} w_{n_{k}}\right\rangle \geq 0, \quad \forall T_{i} x \in C_{i}, i=0,1,2, \ldots, N \tag{4.25}
\end{equation*}
$$

Observe that

$$
\begin{align*}
& \left\langle A_{i} y_{n_{k}, i}, T_{i} x-y_{n_{k}, i}\right\rangle=\left\langle A_{i} y_{n_{k}, i}-A_{i} T_{i} w_{n_{k}}, T_{i} x-T_{i} w_{n_{k}}\right\rangle \\
& \quad+\left\langle A_{i} T_{i} w_{n_{k}}, T_{i} x-T_{i} w_{n_{k}}\right\rangle+\left\langle A_{i} y_{n_{k}, i}, T_{i} w_{n_{k}}-y_{n_{k}, i}\right\rangle . \tag{4.26}
\end{align*}
$$

By the continuity of A_{i}, from (4.23) we have

$$
\begin{equation*}
\left\|A_{i} T_{i} w_{n_{k}}-A_{i} y_{n_{k}, i}\right\| \rightarrow 0, \quad k \rightarrow \infty, \forall i=0,1,2, \ldots, N \tag{4.27}
\end{equation*}
$$

By applying (4.23) and (4.27), we obtain from (4.25) and (4.26) that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\langle A_{i} y_{n_{k}, i}, T_{i} x-y_{n_{k}, i}\right\rangle \geq 0, \quad \forall T_{i} x \in C_{i}, i=0,1,2, \ldots, N \tag{4.28}
\end{equation*}
$$

Next, let $\left\{\Theta_{k, i}\right\}$ be a decreasing sequence of positive numbers such that $\Theta_{k, i} \rightarrow 0$ as $k \rightarrow \infty, i=0,1,2, \ldots, N$. For each k, let N_{k} denote the smallest positive integer such that

$$
\begin{equation*}
\left\langle A_{i} y_{n_{j}, i}, T_{i} x-y_{n_{j}, i}\right\rangle+\Theta_{k, i} \geq 0, \quad \forall j \geq N_{k}, T_{i} x \in C_{i}, i=0,1,2, \ldots, N \tag{4.29}
\end{equation*}
$$

where the existence of N_{k} follows from (4.28). Since $\left\{\Theta_{k, i}\right\}$ is decreasing, then $\left\{N_{k}\right\}$ is increasing. Furthermore, since $\left\{y_{N_{k}, i}\right\} \subset C_{i}$ for each k, we can suppose $A_{i} y_{N_{k}, i} \neq 0$ (otherwise, $\left.y_{N_{k}, i} \in V I\left(C_{i}, A_{i}\right), i=0,1,2 \ldots, N\right)$ and let

$$
u_{N_{k}, i}=\frac{A_{i} y_{N_{k}, i}}{\left\|A_{i} y_{N_{k}, i}\right\|^{2}}
$$

Then, $\left\langle A_{i} y_{N_{k}, i}, u_{N_{k}, i}\right\rangle=1$ for each $k, i=0,1,2, \ldots, N$. From (4.29), we obtain

$$
\left\langle A_{i} y_{N_{k}, i}, T_{i} x+\Theta_{k, i} u_{N_{k}, i}-y_{N_{k}, i}\right\rangle \geq 0, \quad \forall T_{i} x \in C_{i}, i=0,1,2, \ldots, N
$$

By the pseudomonotonicity of A_{i}, we obtain

$$
\left\langle A_{i}\left(T_{i} x+\Theta_{k, i} u_{N_{k}, i}\right), T_{i} x+\Theta_{k, i} u_{N_{k}, i}-y_{N_{k}, i}\right\rangle \geq 0, \quad \forall T_{i} x \in C_{i}, i=0,1,2
$$

which is equivalent to

$$
\begin{align*}
& \left\langle A_{i} T_{i} x, T_{i} x-y_{N_{k}, i}\right\rangle \geq\left\langle A_{i} T_{i} x-A_{i}\left(T_{i} x+\Theta_{k, i} u_{N_{k}, i}\right), T_{i} x\right. \\
& \left.\quad+\Theta_{k, i} u_{N_{k}, i}-y_{N_{k}, i}\right\rangle-\Theta_{k, i}\left\langle A_{i} T_{i} x, u_{N_{k}, i}\right\rangle, \forall T_{i} x \in C_{i}, i=0,1, \ldots, N . \tag{4.30}
\end{align*}
$$

To complete the proof, we need to show that $\lim _{k \rightarrow \infty} \Theta_{k, i} u_{N_{k}, i}=0$. Since $w_{n_{k}} \rightharpoonup z$ and T_{i} is a bounded linear operator for each $i=0,1,2, \ldots, N$, we have $T_{i} w_{n_{k}} \rightharpoonup T_{i} z, \forall i=0,1,2, \ldots, N$. Thus, from (4.23) we get $y_{n_{k}, i} \rightharpoonup$ $T_{i} z, \forall i=0,1,2, \ldots, N$. Since $\left\{y_{n_{k}, i}\right\} \subset C_{i}, i=0,1,2, \ldots, N$, we have $T_{i} z \in C_{i}$. If $T_{i} z=0, \forall i=0,1,2, \ldots, N$, then $T_{i} z \in V I\left(C_{i}, A_{i}\right) \forall i=$ $0,1,2, \ldots, N$, which implies that $z \in \Omega$. On the contrary, we suppose $T_{i} z \neq$ $0, \forall i=0,1,2, \ldots, N$. Since A_{i} satisfies condition (3.1), we have for all $i=0,1,2, \ldots, N$

$$
0<\left\|A_{i} T_{i} z\right\| \leq \liminf _{k \rightarrow \infty}\left\|A_{i} y_{n_{k}, i}\right\|
$$

Using the facts that $\left\{y_{N_{k}, i}\right\} \subset\left\{y_{n_{k}, i}\right\}$ and $\Theta_{k, i} \rightarrow 0$ as $k \rightarrow \infty, i=$ $0,1,2 \ldots, N$, we have

$$
0 \leq \limsup _{k \rightarrow \infty}\left\|\Theta_{k, i} u_{N_{k}, i}\right\|=\limsup _{k \rightarrow \infty}\left(\frac{\Theta_{k, i}}{\left\|A_{i} y_{n_{k}, i}\right\|}\right) \leq \frac{\limsup _{k \rightarrow \infty} \Theta_{k, i}}{\liminf _{k \rightarrow \infty}\left\|A_{i} y_{n_{k}, i}\right\|}=0
$$

which implies that $\limsup _{k \rightarrow \infty} \Theta_{k, i} u_{N_{k}, i}=0$. Applying the facts that A_{i} is continuous, $\left\{y_{N_{k}, i}\right\}$ and $\left\{u_{N_{k}, i}\right\}$ are bounded and $\lim _{k \rightarrow \infty} \Theta_{k, i} u_{N_{k}, i}=0$, from (4.30) we obtain

$$
\liminf _{k \rightarrow \infty}\left\langle A_{i} T_{i} x, T_{i} x-y_{N_{k}, i}\right\rangle \geq 0, \quad \forall T_{i} x \in C_{i}, i=0,1,2, \ldots, N
$$

From the last inequality, we obtain

$$
\begin{aligned}
& \left\langle A_{i} T_{i} x, T_{i} x-T_{i} z\right\rangle=\lim _{k \rightarrow \infty}\left\langle A_{i} T_{i} x, T_{i} x-y_{N_{k}, i}\right\rangle=\liminf _{k \rightarrow \infty}\left\langle A_{i} T_{i} x, T_{i} x-y_{N_{k}, i}\right\rangle \\
& \quad \geq 0, \forall T_{i} x \in C_{i}, \quad i=0,1,2, \ldots, N .
\end{aligned}
$$

By Lemma 2.6, we have

$$
T_{i} z \in V I\left(C_{i}, A_{i}\right), i=0,1,2, \ldots, N
$$

which implies that

$$
z \in T_{i}^{-1}\left(V I\left(C_{i}, A_{i}\right)\right), i=0,1,2, \ldots, N
$$

Thus, we have $z \in \bigcap_{i=0}^{N} T_{i}^{-1}\left(V I\left(C_{i}, A_{i}\right)\right)$, which implies that $z \in \Omega$ as required.

Lemma 4.6. Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.1 under Assumption A. Then, the following inequality holds for all $p \in \Omega$:

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2} \leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2} \\
& +\alpha_{n}\left[3 M_{2}\left(1-\alpha_{n}\right)^{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle p, p-x_{n+1}\right\rangle\right] \\
& -\xi_{n}\left(1-\alpha_{n}\right) \sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2} .
\end{aligned}
$$

Proof. Let $p \in \Omega$. Then, by applying Lemma 2.3 together with the CauchySchwartz inequality we have

$$
\begin{align*}
\left\|w_{n}-p\right\|^{2} & =\left\|x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right)-p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\langle x_{n}-p, x_{n}-x_{n-1}\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}+\theta_{n}^{2}\left\|x_{n}-x_{n-1}\right\|^{2}+2 \theta_{n}\left\|x_{n}-x_{n-1}\right\|\left\|x_{n}-p\right\| \\
& =\left\|x_{n}-p\right\|^{2}+\theta_{n}\left\|x_{n}-x_{n-1}\right\|\left(\theta_{n}\left\|x_{n}-x_{n-1}\right\|+2\left\|x_{n}-p\right\|\right) \\
& \leq\left\|x_{n}-p\right\|^{2}+3 M_{2} \theta_{n}\left\|x_{n}-x_{n-1}\right\| \\
& =\left\|x_{n}-p\right\|^{2}+3 M_{2} \alpha_{n} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|, \tag{4.31}
\end{align*}
$$

where $M_{2}:=\sup _{n \in \mathbb{N}}\left\{\left\|x_{n}-p\right\|, \theta_{n}\left\|x_{n}-x_{n-1}\right\|\right\}>0$.
Next, by the definition of $x_{n+1},(4.13)$, (4.31) and applying Lemma 2.3 we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)-\alpha_{n} p\right\|^{2} \\
\leq & \left\|\left(1-\alpha_{n}-\xi_{n}\right)\left(w_{n}-p\right)+\xi_{n}\left(b_{n}-p\right)\right\|^{2}-2 \alpha_{n}\left\langle p, x_{n+1}-p\right\rangle \\
= & \left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
& +2 \xi_{n}\left(1-\alpha_{n}-\xi_{n}\right)\left\langle w_{n}-p, b_{n}-p\right\rangle \\
& +2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
\leq & \left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
& +2 \xi_{n}\left(1-\alpha_{n}-\xi_{n}\right)\left\|w_{n}-p\right\|\left\|b_{n}-p\right\| \\
+ & 2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
\leq & \left(1-\alpha_{n}-\xi_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}+\xi_{n}^{2}\left\|b_{n}-p\right\|^{2} \\
& +\xi_{n}\left(1-\alpha_{n}-\xi_{n}\right)\left[\left\|w_{n}-p\right\|^{2}+\left\|b_{n}-p\right\|^{2}\right] \\
& +2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
= & \left(1-\alpha_{n}-\xi_{n}\right)\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|^{2}+\xi_{n}\left(1-\alpha_{n}\right)\left\|b_{n}-p\right\|^{2} \\
& +2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
\leq & \left(1-\alpha_{n}-\xi_{n}\right)\left(1-\alpha_{n}\right)\left\|w_{n}-p\right\|^{2}+\xi_{n}\left(1-\alpha_{n}\right)\left[\left\|w_{n}-p\right\|^{2}\right. \\
& \left.-\sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}\right]+2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
= & \left(1-\alpha_{n}\right)^{2}\left\|w_{n}-p\right\|^{2}-\xi_{n}\left(1-\alpha_{n}\right) \\
& \sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2} \\
& +2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-p\right\|^{2}+3 M_{2} \alpha_{n}\left(1-\alpha_{n}\right)^{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\| \\
& +2 \alpha_{n}\left\langle p, p-x_{n+1}\right\rangle \\
& -\xi_{n}\left(1-\alpha_{n}\right) \sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-p\right\|^{2}+\alpha_{n}\left[3 M_{2}\left(1-\alpha_{n}\right)^{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|\right. \\
& \left.+2\left\langle p, p-x_{n+1}\right\rangle\right] \\
& -\xi_{n}\left(1-\alpha_{n}\right) \sum_{i=0}^{N} \delta_{n, i} \eta_{n, i}\left[1-\left(\phi_{n, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n}-z_{n, i}\right\|^{2},
\end{aligned}
$$

which is the required inequality.
Theorem 4.7. Let $\left\{x_{n}\right\}$ be a sequence generated by Algorithm 3.1 such that Assumption A holds. Then, $\left\{x_{n}\right\}$ converges strongly to $\hat{x} \in \Omega$, where $\hat{x}=$ $\min \{\|p\|: p \in \Omega\}$.

Proof. Let $\hat{x}=\min \{\|p\|: p \in \Omega\}$, that is, $\hat{x}=P_{\Omega}(0)$. Then, from Lemma 4.6 we obtain

$$
\begin{align*}
& \left\|x_{n+1}-\hat{x}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\hat{x}\right\|^{2} \\
& \quad+\alpha_{n}\left[3 M_{2}\left(1-\alpha_{n}\right)^{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle\hat{x}, \hat{x}-x_{n+1}\right\rangle\right] \\
& \quad=\left(1-\alpha_{n}\right)\left\|x_{n}-\hat{x}\right\|^{2}+\alpha_{n} d_{n}, \tag{4.32}
\end{align*}
$$

where $d_{n}=3 M_{2}\left(1-\alpha_{n}\right)^{2} \frac{\theta_{n}}{\alpha_{n}}\left\|x_{n}-x_{n-1}\right\|+2\left\langle\hat{x}, \hat{x}-x_{n+1}\right\rangle$.
Now, we claim that the sequence $\left\{\left\|x_{n}-\hat{x}\right\|\right\}$ converges to zero. In view of Lemma 2.4, it suffices to show that $\lim \sup _{k \rightarrow \infty} d_{n_{k}} \leq 0$ for every subsequence $\left\{\left\|x_{n_{k}}-\hat{x}\right\|\right\}$ of $\left\{\left\|x_{n}-\hat{x}\right\|\right\}$ satisfying

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left(\left\|x_{n_{k}+1}-\hat{x}\right\|-\left\|x_{n_{k}}-\hat{x}\right\|\right) \geq 0 \tag{4.33}
\end{equation*}
$$

Suppose that $\left\{\left\|x_{n_{k}}-\hat{x}\right\|\right\}$ is a subsequence of $\left\{\left\|x_{n}-\hat{x}\right\|\right\}$ such that (4.33) holds. Again, from Lemma 4.6, we obtain

$$
\begin{aligned}
\xi_{n_{k}}\left(1-\alpha_{n_{k}}\right) \sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}[1- & \left.\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \\
\leq & \left(1-\alpha_{n_{k}}\right)\left\|x_{n_{k}}-\hat{x}\right\|^{2}-\left\|x_{n_{k}+1}-\hat{x}\right\|^{2} \\
& +\alpha_{n_{k}}\left[3 M_{2}\left(1-\alpha_{n_{k}}\right)^{2} \frac{\theta_{n_{k}}}{\alpha_{n_{k}}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\|\right. \\
& \left.+2\left\langle\hat{x}, \hat{x}-x_{n_{k}+1}\right\rangle\right]
\end{aligned}
$$

By (4.33), Remark 3.2 and the fact that $\lim _{k \rightarrow \infty} \alpha_{n_{k}}=0$, we have

$$
\xi_{n_{k}}\left(1-\alpha_{n_{k}}\right) \sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}\left[1-\left(\phi_{n_{k}, i}+\phi_{i}\right)\right]\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|^{2} \rightarrow 0, \quad k \rightarrow \infty
$$

Thus, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|T_{i} w_{n_{k}}-z_{n_{k}, i}\right\|=0, \quad \forall i=0,1,2, \ldots, N \tag{4.34}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left\|T_{i}^{*}\left(z_{n_{k}, i}-T_{i} w_{n_{k}}\right)\right\| \leq\left\|T_{i}^{*}\right\|\left\|z_{n_{k}, i}-T_{i} w_{n_{k}}\right\| \rightarrow 0, \quad k \rightarrow \infty \forall i=0,1,2, \ldots, N . \tag{4.35}
\end{equation*}
$$

By the definition of b_{n} and by applying (4.35), we obtain

$$
\begin{align*}
\left\|b_{n_{k}}-w_{n_{k}}\right\| & =\left\|\sum_{i=0}^{N} \delta_{n_{k}, i}\left(w_{n_{k}}+\eta_{n_{k}, i} T_{i}^{*}\left(z_{n_{k}, i}-T_{i} w_{n_{k}}\right)\right)-w_{n_{k}}\right\| \\
& \leq \sum_{i=0}^{N} \delta_{n_{k}, i} \eta_{n_{k}, i}\left\|T_{i}^{*}\left(z_{n_{k}, i}-T_{i} w_{n_{k}}\right)\right\| \rightarrow 0 \tag{4.36}
\end{align*}
$$

From the definition of w_{n} and by Remark 3.2, we get

$$
\begin{equation*}
\left\|w_{n_{k}}-x_{n_{k}}\right\|=\theta_{n_{k}}\left\|x_{n_{k}}-x_{n_{k}-1}\right\| \rightarrow 0, \quad k \rightarrow \infty . \tag{4.37}
\end{equation*}
$$

Next, from (4.36) and (4.37) we obtain

$$
\begin{equation*}
\left\|x_{n_{k}}-b_{n_{k}}\right\| \leq\left\|x_{n_{k}}-w_{n_{k}}\right\|+\left\|w_{n_{k}}-b_{n_{k}}\right\| \rightarrow 0, \quad k \rightarrow \infty . \tag{4.38}
\end{equation*}
$$

Applying (4.37), (4.38) and the fact that $\lim _{k \rightarrow \infty} \alpha_{n_{k}}=0$ we obtain

$$
\begin{align*}
\left\|x_{n_{k}+1}-x_{n_{k}}\right\|= & \left\|\left(1-\alpha_{n_{k}}-\xi_{n_{k}}\right)\left(w_{n_{k}}-x_{n_{k}}\right)+\xi_{n_{k}}\left(b_{n_{k}}-x_{n_{k}}\right)-\alpha_{n} x_{n_{k}}\right\| \\
\leq & \left(1-\alpha_{n_{k}}-\xi_{n_{k}}\right)\left\|w_{n_{k}}-x_{n_{k}}\right\|+\xi_{n_{k}}\left\|b_{n_{k}}-x_{n_{k}}\right\| \\
& +\alpha_{n_{k}}\left\|x_{n_{k}}\right\| \rightarrow 0, \quad k \rightarrow \infty . \tag{4.39}
\end{align*}
$$

Since $\left\{x_{n}\right\}$ is bounded, $w_{\omega}\left(x_{n}\right) \neq \emptyset$. Let $x^{*} \in w_{\omega}\left(x_{n}\right)$ be an arbitrary element. Then, there exist a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \rightharpoonup x^{*}$. It follows from (4.37) that $w_{n_{k}} \rightharpoonup x^{*}$. Now, invoking Lemma 4.5 and applying (4.36) we have $x^{*} \in \Omega$. Since $x^{*} \in w_{\omega}\left(x_{n}\right)$ was chosen arbitrarily, it follows that $w_{\omega}\left(x_{n}\right) \subset \Omega$.
Next, by the boundedness of $\left\{x_{n_{k}}\right\}$, there exists a subsequence $\left\{x_{n_{k_{j}}}\right\}$ of $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k_{j}}} \rightharpoonup q$ and

$$
\limsup _{k \rightarrow \infty}\left\langle\hat{x}, \hat{x}-x_{n_{k}}\right\rangle=\lim _{j \rightarrow \infty}\left\langle\hat{x}, \hat{x}-x_{n_{k_{j}}}\right\rangle .
$$

Since $\hat{x}=P_{\Omega}(0)$, it follows from the property of the metric projection that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle\hat{x}, \hat{x}-x_{n_{k}}\right\rangle=\lim _{j \rightarrow \infty}\left\langle\hat{x}, \hat{x}-x_{n_{k_{j}}}\right\rangle=\langle\hat{x}, \hat{x}-q\rangle \leq 0, \tag{4.40}
\end{equation*}
$$

Hence, from (4.39) and (4.40) we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\langle\hat{x}, \hat{x}-x_{n_{k+1}}\right\rangle \leq 0 . \tag{4.41}
\end{equation*}
$$

Now, by Remark 3.2 and (4.41) we have $\lim \sup d_{n_{k}} \leq 0$. Thus, by applying Lemma 2.4 it follows from (4.32) that $\left\{\left\|x_{n}^{k \rightarrow \infty}-\hat{x}\right\|\right\}$ converges to zero, which completes the proof.

5. Applications

5.1. Split Convex Minimization Problem with Multiple Output Sets

Let C be a nonempty, closed and convex subset of a real Hilbert space H. The convex minimization problem is formulated as finding a point $x^{*} \in C$, such that

$$
\begin{equation*}
g\left(x^{*}\right)=\min _{x \in C} g(x) \tag{5.1}
\end{equation*}
$$

Figure 1. Experiment 6.5: $m=25$
where g is a real-valued convex function. We denote the solution set of Problem (5.1) by arg $\min g$.
Let C, C_{i} be nonempty, closed and convex subsets of real Hilbert spaces $H, H_{i}, i=1,2, \ldots, N$, respectively, and let $T_{i}: H \rightarrow H_{i}, i=1,2, \ldots, N$, be bounded linear operators with adjoints T_{i}^{*}. Let $g: H \rightarrow \mathbb{R}, g_{i}: H_{i} \rightarrow \mathbb{R}$ be convex and differentiable functions. Here, we apply our result to approximate the solution of the following split convex minimization problem with multiple output sets (SCMPMOS): Find $x^{*} \in C$ such that

$$
\begin{equation*}
x^{*} \in \Gamma:=\arg \min g \cap\left(\bigcap_{i=1}^{N} T_{i}^{-1}\left(\arg \min g_{i}\right)\right) \neq \emptyset . \tag{5.2}
\end{equation*}
$$

We need the following lemma to establish our next result.
Lemma 5.1. [36] Let C be a nonempty, closed and convex subset of a real Banach space E. Let g be a convex function of E into \mathbb{R}. If g is Fréchet differentiable, then z is a solution of Problem (5.1) if and only if $z \in V I(C, \nabla g)$, where ∇g is the gradient of g.

Now, by applying Theorem 4.7 and Lemma 5.1, we obtain the following strong convergence theorem for approximating the solution of the SCMPMOS (5.2) in Hilbert spaces.

Theorem 5.2. Let C, C_{i} be nonempty, closed and convex subsets of real Hilbert spaces $H, H_{i}, i=1,2, \ldots, N$, respectively, and let $T_{i}: H \rightarrow H_{i}, i=1,2, \ldots, N$, be bounded linear operators with adjoints T_{i}^{*}. Let $g: H \rightarrow \mathbb{R}, g_{i}: H_{i} \rightarrow$

Figure 2. Experiment 6.5: $m=50$

Figure 3. Experiment 6.5: $m=100$

Figure 4. Experiment 6.5: $m=2000$

Table 1. Numerical results for (Experiment 6.5)

Proposed Alg. 3.1	$m=25$		$m=50$		$m=100$		$m=200$	
	Iter.	CPU	Iter.	CPU	Iter.	CPU	Iter.	CPU
		Time		Time		Time		Time
$\phi_{n, i}=\frac{3}{n+1}$	13	3.5072	14	4.0949	15	9.0474	15	5.1828
$\phi_{n, i}=\frac{6}{(n+1)^{2}}$	13	2.7786	14	3.3384	15	5.0823	15	4.4530
$\phi_{n, i}=\frac{9}{(n+1)^{3}}$	13	2.7132	14	3.3103	15	5.0511	15	4.4659
$\phi_{n, i}=\frac{12}{(n+1)^{4}}$	13	2.7295	14	3.3348	15	5.1468	15	4.4561
$\phi_{n, i}=\frac{15}{(n+1)^{5}}$	13	2.7467	14	3.2094	15	5.0072	15	4.4961

\mathbb{R} be fréchet differentiable convex functions such that $\nabla g, \nabla g_{i}$ are uniformly continuous. Suppose that Assumption A of Theorem 4.7 holds and the solution set $\Gamma \neq \emptyset$. Then, the sequence $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $\hat{x} \in \Gamma$, where $\hat{x}=\min \{\|p\|: p \in \Gamma\}$.

Proof. Since $g_{i}, i=0,1,2, \ldots, N$ are convex, then ∇g_{i} are monotone [36] and thus pseudomonotone. Consequently, the result follows by applying Lemma 5.1 and setting $A_{i}=\nabla g_{i}$ in Theorem 4.7.

Figure 5. Experiment 6.6: $m=10$

Figure 6. Experiment 6.6: $m=20$

Figure 7. Experiment 6.6: $m=30$

Figure 8. Experiment 6.6: $m=40$

Algorithm 5.3.
Step 0. Select initial points $x_{0}, x_{1} \in H$. Let $C_{0}=C, T_{0}=I^{H}, \nabla g_{0}=$ ∇g and set $n=1$.
Step 1. Given the $(n-1)$ th and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}= \begin{cases}\min \left\{\theta, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \\ \theta, & \text { otherwise }\end{cases}
$$

Step 2. Compute

$$
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) .
$$

Step 3. Compute

$$
\begin{aligned}
& y_{n, i}=P_{C_{i}}\left(T_{i} w_{n}-\lambda_{n, i} \nabla g_{i} T_{i} w_{n}\right) \\
& \lambda_{n+1, i}= \begin{cases}\min \left\{\frac{\left(c_{n, i}+c_{i}\right)\left\|T_{i} w_{n}-y_{n, i}\right\|}{\left\|\nabla g_{i} T_{i} w_{n}-\nabla g_{i} y_{n, i}\right\|}, \lambda_{n, i}+\rho_{n, i}\right\}, & \text { if } \nabla g_{i} T_{i} w_{n}- \\
\nabla g_{i} y_{n, i} \neq 0, & \text { otherwise. } \\
\lambda_{n, i}+\rho_{n, i},\end{cases}
\end{aligned}
$$

$$
z_{n, i}=T_{i} w_{n}-\beta_{n, i} r_{n, i}
$$

where

$$
r_{n, i}=T_{i} w_{n}-y_{n, i}-\lambda_{n, i}\left(\nabla g_{i} T_{i} w_{n}-\nabla g_{i} y_{n, i}\right)
$$

and

$$
\beta_{n, i}= \begin{cases}\left(k_{i}+k_{n, i}\right) \frac{\left\langle T_{i} w_{n}-y_{n, i}, r_{n, i}\right\rangle}{\left\|r_{n, i}\right\|^{2}}, & \text { if } r_{n, i} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Step 4. Compute

$$
b_{n}=\sum_{i=0}^{N} \delta_{n, i}\left(w_{n}+\eta_{n, i} T_{i}^{*}\left(z_{n, i}-T_{i} w_{n}\right)\right)
$$

where

$$
\eta_{n, i}= \begin{cases}\frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|T_{i} w_{n}-z_{n, i}\right\|^{2}}{\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\|^{2}}, & \text { if }\left\|T_{i}^{*}\left(T_{i} w_{n}-z_{n, i}\right)\right\| \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Step 5. Compute

$$
x_{n+1}=\left(1-\alpha_{n}-\xi_{n}\right) w_{n}+\xi_{n} b_{n} .
$$

Set $n:=n+1$ and return to Step 1.

5.2. Generalized Split Variational Inequality Problem

Finally, we apply our result to study the generalized split variational inequality problem (see [28]). Let C_{i} be nonempty, closed and convex subsets of real Hilbert spaces $H_{i}, i=1,2, \ldots, N$, and let $S_{i}: H_{i} \rightarrow H_{i+1}, i=1,2, \ldots, N-1$, be bounded linear operators, such that $S_{i} \neq 0$. Let $B_{i}: H_{i} \rightarrow H_{i}, i=1,2, \ldots, N$, be single-valued operators. The generalized split variational inequality problem (GSVIP) is formulated as finding a point $x^{*} \in C_{1}$ such that

$$
\begin{align*}
& x^{*} \in \Gamma:=V I\left(C_{1}, B_{1}\right) \cap S_{1}^{-1}\left(V I\left(C_{2}, B_{2}\right)\right) \cap \ldots \\
& S_{1}^{-1}\left(S_{2}^{-1} \ldots\left(S_{N-1}^{-1}\left(V I\left(C_{N}, B_{N}\right)\right)\right)\right) \neq \emptyset ; \tag{5.3}
\end{align*}
$$

that is, $x^{*} \in C_{1}$ such that

$$
x^{*} \in V I\left(C_{1}, B_{1}\right), S_{1} x^{*} \in V I\left(C_{2}, B_{2}\right), \ldots, S_{N-1}\left(S_{N-2} \ldots S_{1} x^{*}\right) \in V I\left(C_{N}, B_{N}\right) .
$$

Table 2. Numerical results for (Experiment 6.6)

Proposed	$m=10$		$m=20$		$m=30$		$m=40$	
Alg. 3.1	Iter.	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$	Iter.	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$	Iter.	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$	Iter.	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$
$c_{n, i}=\frac{15}{n^{0.1}}$	68	0.0692	80	0.0720	89	0.0971	94	0.1070
$c_{n, i}=\frac{30}{n^{0.01}}$	68	0.0456	80	0.0596	89	0.06613	94	0.1080
$c_{n, i}=\frac{45}{n^{0.001}}$	68	0.0559	80	0.0521	89	0.0746	94	0.1044
$c_{n, i}=\frac{60}{n^{0,0001}}$	68	0.0495	80	0.0546	89	0.0852	94	0.0940
$c_{n, i}=\frac{75}{n^{0.00001}}$	68	0.0398	80	0.0602	89	0.0699	94	0.1104

Observe that if we let $C=C_{1}, A=B_{1}, A_{i}=B_{i+1}, 1 \leq i \leq N-1, T_{1}=$ $S_{1}, T_{2}=S_{2} S_{1}, \ldots$, and $T_{N-1}=S_{N-1} S_{N-2} \ldots S_{1}$, then the SVIPMOS (1.10) becomes the GSVIP (5.3). Hence, we obtain the following result for approximating the solution of GSVIP (5.3) when the cost operators are pseudomonotone and uniformly continuous.

Theorem 5.4. Let C_{i} be nonempty, closed and convex subsets of real Hilbert spaces $H_{i}, i=1,2, \ldots, N$, and let $S_{i}: H_{i} \rightarrow H_{i+1}, i=1,2, \ldots, N-1$, be bounded linear operators with adjoints S_{i}^{*} such that $S_{i} \neq 0$. Let $B_{i}: H_{i} \rightarrow$ $H_{i}, 1,2, \ldots, N$ be uniformly continuous pseudomonotone operators satisfying condition (3.1), and suppose Assumption A of Theorem 4.7 holds and the solution set $\Gamma \neq \emptyset$. Then, the sequence $\left\{x_{n}\right\}$ generated by the following algorithm converges strongly to $\hat{x} \in \Gamma$, where $\hat{x}=\min \{\|p\|: p \in \Gamma\}$.

6. Numerical experiments

In this section, we present some numerical experiments to illustrate the implementability of our proposed method (Proposed Alg. 3.1). For simplicity, in all the experiments we consider the case when $N=4$. All numerical computations were carried out using Matlab version R2021(b).
In our computations, we choose $\alpha_{n}=\frac{1}{2 n+3}, \epsilon_{n}=\frac{1}{(2 n+3)^{3}}, \xi_{n}=\frac{\left(1-\alpha_{n}\right)}{2}, \theta=$ $0.99, \lambda_{1, i}=i+1.2, c_{i}=0.97, \phi_{i}=0.98, k_{i}=1.96, \rho_{n, i}=\frac{10}{n^{2}}, \delta_{n, i}=\frac{1}{5}$.
We consider the following test examples in both finite and infinite dimensional Hilbert spaces for our numerical experiments.

Example 6.1. Let $H_{i}=\mathbb{R}^{m}, i=0,1, \ldots, 4$, and let $A_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a linear operator defined by $A_{i}(x)=S x+q$, where $q \in \mathbb{R}^{m}$ and $S=N N^{T}+Q+D, N$ is a $m \times m$ matrix, Q is a $m \times m$ skew-symmetric matrix, and D is a $m \times m$ diagonal matrix with its diagonal entries being nonnegative (thus S is positive symmetric definite). We let $C_{i}=\left\{x \in \mathbb{R}^{m}:-(i+2) \leq x_{j} \leq i+2, j=\right.$ $1, \ldots, m\}$. In this example, we generate randomly all the entries of N, Q in $[-3,3]$ while D is randomly generated in $[0,3], q=0$ and $T_{i} x=\frac{3 x}{i+3}$.

Figure 9. Experiment 6.7(1):CaseI

Figure 10. Experiment 6.7(1):Case2

Algorithm 5.5.
Step 0. Select initial points $x_{0}, x_{1} \in H_{1}$. Let $S_{0}=I^{H_{1}}, \hat{S}_{N-1}=$ $S_{N-1} S_{N-2} \ldots S_{0}, \quad \hat{S}_{N-1}^{*}=S_{0}^{*} S_{1}^{*} \ldots S_{N-1}^{*}, i=1,2, \ldots, N$ and set $n=1$.
Step 1. Given the $(n-1)$ th and $n t h$ iterates, choose θ_{n} such that $0 \leq \theta_{n} \leq \hat{\theta}_{n}$ with $\hat{\theta}_{n}$ defined by

$$
\hat{\theta}_{n}= \begin{cases}\min \left\{\theta, \frac{\epsilon_{n}}{\left\|x_{n}-x_{n-1}\right\|}\right\}, & \text { if } x_{n} \neq x_{n-1} \\ \theta, \quad \text { otherwise }\end{cases}
$$

Step 2. Compute

$$
w_{n}=x_{n}+\theta_{n}\left(x_{n}-x_{n-1}\right) .
$$

Step 3. Compute

$$
\begin{aligned}
& y_{n, i}=P_{C_{i}}\left(\hat{S}_{i-1} w_{n}-\lambda_{n,,} B_{i} \hat{S}_{i-1} w_{n}\right) \\
& \lambda_{n+1, i}= \begin{cases}\min \left\{\frac{\left(c_{n, i}+c_{i}\right)\left\|\hat{S}_{i-1} w_{n}-y_{n, i}\right\|}{\left\|B_{i} \hat{S}_{i-1} w_{n}-B_{i} y_{n, i}\right\|}, \lambda_{n, i}+\rho_{n, i}\right\}, & \text { if } \quad B_{i} \hat{S}_{i-1} w_{n} \\
-B_{i} y_{n, i} \neq 0 \\
\lambda_{n, i}+\rho_{n, i}, & \text { otherwise }\end{cases} \\
& z_{n, i}=\hat{S}_{i-1} w_{n}-\beta_{n, i} r_{n, i},
\end{aligned}
$$

where

$$
r_{n, i}=\hat{S}_{i-1} w_{n}-y_{n, i}-\lambda_{n, i}\left(B_{i} \hat{S}_{i-1} w_{n}-B_{i} y_{n, i}\right)
$$

and

$$
\beta_{n, i}= \begin{cases}\left(k_{i}+k_{n, i}\right) \frac{\left\langle\hat{S}_{i-1} w_{n}-y_{n, i}, r_{n, i}\right\rangle}{\left\|r_{n, i}\right\|^{2}}, & \text { if } r_{n, i} \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Step 4. Compute

$$
b_{n}=\sum_{i=1}^{N} \delta_{n, i}\left(w_{n}+\eta_{n, i} \hat{S}_{i-1}^{*}\left(z_{n, i}-\hat{S}_{i-1} w_{n}\right)\right)
$$

where

$$
\eta_{n, i}= \begin{cases}\frac{\left(\phi_{n, i}+\phi_{i}\right)\left\|\hat{S}_{i-1} w_{n}-z_{n, i}\right\|^{2}}{\left\|\hat{S}_{i-1}^{*}\left(\hat{S}_{i-1} w_{n}-z_{n, i}\right)\right\|^{2}}, & \text { if }\left\|\hat{S}_{i-1}^{*}\left(\hat{S}_{i-1} w_{n}-z_{n, i}\right)\right\| \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Step 5. Compute

$$
x_{n+1}=\left(1-\alpha_{n}-\xi_{n}\right) w_{n}+\xi_{n} b_{n} .
$$

Set $n:=n+1$ and return to Step 1.

Example 6.2. For each $i=0,1, \ldots, 4$, we define the feasible set $C_{i}=\mathbb{R}^{m}$, $T_{i} x=\frac{2 x}{i+2}$ and $A_{i}(x)=M x$, where M is a square $m \times m$ matrix given by

$$
a_{j, k}= \begin{cases}-1, & \text { if } k=m+1-j \quad \text { and } \quad k>j \\ 1 & \text { if } k=m+1-j \quad \text { and } k \leq j \\ 0, & \text { otherwise }\end{cases}
$$

We note that M is a Hankel-type matrix with nonzero reverse diagonal.
Example 6.3. Let $H_{i}=\mathbb{R}^{2}$ and $C_{i}=[-1-i, 1+i]^{2}, i=0,1, \ldots, 4$. We define $T_{i} x=\frac{4 x}{i+4}$ and the cost operator $A_{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
A_{i}(x, y)=\left(-x e^{y}, y\right), \quad(i=0,1, \ldots, 4)
$$

Table 3. Numerical results for Experiment 6.7(1)

Proposed Alg. 3.1	Case I		Case II	
	Iter.	CPU time		Iter.
CPU time				
$\phi_{n, i}=\frac{3}{n+1}$	13	3.5072	14	4.0949
$\phi_{n, i}=\frac{6}{(n+1)^{2}}$	13	2.7786	14	3.3384
$\phi_{n, i}=\frac{9}{(n+1)^{3}}$	13	2.7132	14	3.3103
$\phi_{n, i}=\frac{12}{(n+1)^{4}}$	13	2.7295	14	3.3348
$\phi_{n, i}=\frac{15}{(n+1)^{5}}$	13	2.7467	14	3.2094

Figure 11. Experiment 6.7(2):Case I

We consider the next example in infinite dimensional Hilbert space.
Example 6.4. Let $H_{i}=\left(\ell_{2}(\mathbb{R}),\|\cdot\|_{2}\right), i=0,1, \ldots, 4$, where $\ell_{2}(\mathbb{R}):=\{x=$ $\left.\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots\right), x_{j} \in \mathbb{R}: \sum_{j=1}^{\infty}\left|x_{j}\right|^{2}<\infty\right\},\|x\|_{2}=\left(\sum_{j=1}^{\infty}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}$ for all $x \in \ell_{2}(\mathbb{R})$. Let $C_{i}:=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{j}, \ldots,\right) \in E:\|x\|_{2} \leq i+1\right\}$, and we define $T_{i}=\frac{5 x}{i+5}$ and the cost operator $A_{i}: H_{i} \rightarrow H_{i}$ by $A_{i} x=$ $\left(\frac{1}{\|x\|+s}+\|x\|\right) x, \quad(s>0 ; i=0,1, \cdots 4)$. Then, A_{i} is uniformly continuous and pseudomonotone.

We test Examples 6.1, 6.2, 6.3 and 6.4 under the following experiments:

Figure 12. Experiment 6.7(2):Case II

Experiment 6.5. In this experiment, we check the behavior of our method by fixing the other parameters and varying $\phi_{n, i}$ in Example 6.1. We do this to check the effects of this parameter and the sensitivity of our method to it.
We consider $\phi_{n, i} \in\left\{\frac{3}{(n+1)}, \frac{5}{(n+1)^{2}}, \frac{7}{(n+1)^{3}}, \frac{9}{(n+1)^{4}}, \frac{11}{(n+1)^{5}}\right\}$ with $m=25, m=$ $50, m=100$ and $m=200$.
Using $\left\|x_{n+1}-x_{n}\right\|<10^{-3}$ as the stopping criterion, we plot the graphs of $\left\|x_{n+1}-x_{n}\right\|$ against the number of iterations for each m.. The numerical results are reported in Figs. 1, 2, 3, 4 and Table 1.

Experiment 6.6. In this experiment, we check the behavior of our method by fixing the other parameters and varying $c_{n, i}$ in Example 6.2. We do this to check the effects of this parameter and the sensitivity of our method on it.

We consider $c_{n, i} \in\left\{\frac{15}{n^{0.1}}, \frac{30}{n^{0.01}}, \frac{45}{n^{0.001}}, \frac{60}{n^{0.0001}}, \frac{75}{n^{0.00001}}\right\}$ with $m=10, m=$ $20, m=30$ and $m=40$.

Using $\left\|x_{n+1}-x_{n}\right\|<10^{-3}$ as the stopping criterion, we plot the graphs of $\left\|x_{n+1}-x_{n}\right\|$ against the number of iterations in each case. The numerical results are reported in Figures 5, 6, 7, 8 and Table 2.

Finally, we test Examples 6.3 and 6.4 under the following experiment:
Experiment 6.7. In this experiment, we check the behavior of our method by fixing the other parameters and varying $k_{n, i}$ and $c_{n, i}$ in Examples 6.3 and 6.4. We do this to check the effects of these parameters and the sensitivity of our method on them.

Table 4. Numerical results for Experiment 6.7 (2)

Proposed Alg. 3.1	Case I		Case II	
	Iter.	CPU time		Iter.
$\phi_{n, i}=\frac{3}{n+1}$	8	0.0354	8	CPU time
$\phi_{n, i}=\frac{6}{(n+1)^{2}}$	8	0.0211	8	0.0327
$\phi_{n, i}=\frac{9}{(n+1)^{3}}$	8	0.0211	8	0.0198
$\phi_{n, i}=\frac{121}{(n+1)^{4}}$	8	0.0172	8	0.0195
$\phi_{n, i}=\frac{155}{(n+1)^{5}}$	8	0.0222	8	0.0192

(1) We consider $k_{n, i} \in\left\{\frac{2}{(n+1)}, \frac{4}{(2 n+1)^{2}}, \frac{6}{(3 n+1)^{3}}, \frac{8}{(4 n+1)^{4}}, \frac{10}{(5 n+1)^{5}}\right\}$ with the following two cases of initial values x_{0} and x_{1} :
Case I: $x_{0}=(2,3) ; x_{1}=(3,4)$;
Case II: $x_{0}=(1,3) ; x_{1}=(2,0)$.
Using $\left\|x_{n+1}-x_{n}\right\|<10^{-4}$ as the stopping criterion, we plot the graphs of $\left\|x_{n+1}-x_{n}\right\|$ against the number of iterations in each case. The numerical results are reported in Figs. 9, 10 and Table 3.
(2) We consider $c_{n, i} \in\left\{\frac{15}{n^{0.1}}, \frac{30}{n^{0.01}}, \frac{45}{n^{0.001}}, \frac{60}{n^{0.0001}}, \frac{75}{n^{0.00001}}\right\}$ with the following two cases of initial values x_{0} and x_{1} :
Case I: $x_{0}=\left(3,1, \frac{1}{3}, \cdots\right) ; x_{1}=\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \cdots\right)$;
Case II: $x_{0}=\left(2,1, \frac{1}{2}, \cdots\right) ; x_{1}=\left(\frac{1}{2}, \frac{1}{8}, \frac{1}{32}, \cdots\right)$.
Using $\left\|x_{n+1}-x_{n}\right\|<10^{-4}$ as the stopping criterion, we plot the graphs of $\left\|x_{n+1}-x_{n}\right\|$ against the number of iterations in each case. The numerical results are reported in Figs.11, 12 and Table 4.

Remark 6.8. Using different initial values, cases of m and varying the key parameters in Examples 6.1-6.4, we obtained the numerical results displayed in Tables 1, 2 and 3 and Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. We noted the following from our numerical experiments:
(1) In all the examples, the choice of the key parameters $c_{n, i}, k_{n, i}$ and $\phi_{n, i}$ does not affect the number of iterations and no significant difference in the CPU time. Thus, our method is not sensitive to these key parameters for each initial value and case of m.
(2) The number of iterations for our method remains consistent in all the examples and so well-behaved.

7. Conclusion

In this paper, we studied the concept of split variational inequality problem with multiple output sets when the cost operators are pseudomonotone and uniformly continuous. We proposed a new Mann-type inertial projection and contraction method with self-adaptive step sizes for approximating the solution of the
problem in the framework of Hilbert spaces. Under some mild conditions on the control sequences and without prior knowledge of the operator norms,
we obtained strong convergence result for the proposed algorithm. Finally, we applied our result to study certain classes of optimization problems and we presented several numerical experiments to illustrate the applicability of the proposed method.

Acknowledgements

The authors sincerely thank the anonymous referee for his careful reading, comments and useful suggestions. The research of the first author is wholly supported by the University of KwaZulu-Natal, Durban, South Africa Postdoctoral Fellowship. He is grateful for the funding and financial support. The second author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant number 119903). Opinions expressed and conclusions arrived are those of the authors and are not necessarily to be attributed to the NRF.

Author contributions Conceptualization of the article was given by OTM, methodology by TOA, formal analysis, investigation and writing-original draft preparation by TOA, software and validation by OTM, writing-review and editing by TOA and OTM, project administration by OTM. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Funding Open access funding provided by University of KwaZulu-Natal. The first author is funded by the University of KwaZulu-Natal, Durban, South Africa Postdoctoral Fellowship. The second author is supported by the National Research Foundation (NRF) of South Africa Incentive Funding for Rated Researchers (Grant Number 119903).

Availability of Data and Material Not applicable.

Declarations

Conflict of Interest The authors declare that they have no competing interests.

Ethical Approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Alakoya, T.O., Mewomo, O.T.: S-Iteration inertial subgradient extragradient method for variational inequality and fixed point problems. Optimization (2023). https://doi.org/10.1080/02331934.2023.2168482
[2] Alakoya, T.O., Mewomo, O.T., Shehu, Y.: Strong convergence results for quasimonotone variational inequalities. Math. Methods Oper. Res. 2022, 30, Art. 47 (2022)
[3] Alakoya, T.O., Uzor, V.A., Mewomo, O.T.: A new projection and contraction method for solving split monotone variational inclusion, pseudomonotone variational inequality, and common fixed point problems. Comput. Appl. Math. 42(1), 33, Paper No. 3 (2023)
[4] Alakoya, T.O., Uzor, V.A., Mewomo, O.T., Yao, J.-C.: On system of monotone variational inclusion problems with fixed-point constraint. J. Inequal. Appl. 2022, 30, Art No. 47 (2022)
[5] Aremu, K.O., Izuchukwu, C., Ogwo, G.N., Mewomo, O.T.: Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim. 17(4), 2161-2180 (2021)
[6] Bot, R.I., Csetnek, E.R., Vuong, P.T.: The forward-backward-forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces. Eur. J. Oper. Res. 287, 49-60 (2020)
[7] Ceng, L.C., Petrusel, A., Qin, X., Yao, J.C.: Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints. Optimization 70, 1337-1358 (2021)
[8] Censor, Y., Borteld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)
[9] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221-239 (1994)
[10] Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301-323 (2012)
[11] Chang, S.-S., Yao, J.-C., Wang, L., Liu, M., Zhao, L.: On the inertial forwardbackward splitting technique for solving a system of inclusion problems in Hilbert spaces. Optimization 70(12), 2511-2525 (2021)
[12] Cottle, R.W., Yao, J.C.: Pseudomonotone complementary problems in Hilbert space. J. Optim. Theory Appl. 75, 281-295 (1992)
[13] Fichera, G.: Sul problema elastostatico di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei VIII. Ser. Rend. Cl. Sci. Fis. Mat. Nat. 34, 138-142 (1963)
[14] Gibali, A., Jolaoso, L.O., Mewomo, O.T., Taiwo, A.: Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces. Results Math. 75(4), 36, Paper No. 179 (2020)
[15] Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417-437 (2017)
[16] Godwin, E.C., Alakoya, T.O., Mewomo, O.T., Yao, J.-C.: Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems. Appl. Anal. 102(15), 4253-4278 (2023)
[17] Godwin, E.C., Izuchukwu, C., Mewomo, O.T.: Image restoration using a modified relaxed inertial method for generalized split feasibility problems Math. Methods Appl. Sci. 46(5), 5521-5544 (2023)
[18] Godwin, E.C., Mewomo, O.T., Alakoya, T.O.: A strongly convergent algorithm for solving multiple set split equality equilibrium and fixed point problems in Banach spaces. Proc. Edinb. Math. Soc. (2), (2023), DOI: S0013091523000251
[19] He, H., Ling, C., Xu, H.K.: A relaxed projection method for split variational inequalities. J. Optim. Theory Appl. 166, 213-233 (2015)
[20] Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 13191344 (2011)
[21] Kim, J.K., Salahuddin, S., Lim, W.H.: General nonconvex split variational inequality problems. Korean J. Math. 25, 469-481 (2017)
[22] Kim, J.K., Tuyen, T.M., Ha, M.T.: Two projection methods for solving the split common fixed point problem with multiple output sets in Hilbert spaces. Numer. Funct. Anal. Optim. 42(8), 973-988 (2021)
[23] López, G., Martín-Márquez, V., Xu, H.K.: Iterative algorithms for the multiplesets split feasibility problem. Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems, Medical Physics Publishing, Madison 243-279 (2010)
[24] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8, 2099-2110 (2014)
[25] Ogwo, G.N., Izuchukwu, C., Shehu, Y., Mewomo, O.T.: Convergence of relaxed inertial subgradient extragradient methods for quasimonotone variational inequality problems. J. Sci. Comput. 90, Art. 10 (2022)
[26] Okeke, C.C., Mewomo, O.T.: On split equilibrium problem, variational inequality problem and fixed point problem for multi-valued mappings. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9(2), 223-248 (2017)
[27] Owolabi, A.O.-E., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A new inertialprojection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numer. Algebra Control Optim. 12(2), 255-278 (2022)
[28] Reich, S., Tuyen, T.M.: Iterative methods for solving the generalized split common null point problem in Hilbert spaces. Optimization 69, 1013-1038 (2020)
[29] Reich, S., Tuyen, T.M.: The Generalized Fermat-Torricelli Problem in Hilbert Spaces. J. Optim. Theory Appl. 196, 78-97 (2023)
[30] Reich, S., Tuyen, T.M.: The split feasibility problem with multiple output sets in Hilbert spaces. Optim. Lett. 14, 2335-2353 (2020)
[31] Reich, S., Tuyen, T.M., Ha, M.T.N.: An optimization approach to solving the split feasibility problem in Hilbert spaces. J. Glob. Optim. 79, 837-852 (2021)
[32] Reich, S., Tuyen, T.M., Thuy, N.T.T., et al.: A new self-adaptive algorithm for solving the split common fixed point problem with multiple output sets in Hilbert spaces. Numer. Algorithms 89, 1031-1047 (2022)
[33] Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742-750 (2012)
[34] Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413-4416 (1964)
[35] Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301-308 (1993)
[36] Tian, M., Jiang, B.: Inertial Haugazeau's hybrid subgradient extragradient algorithm for variational inequality problems in Banach spaces. Optimization 70(5-6), 987-1007 (2021)
[37] Tian, M., Jiang, B.N.: Weak convergence theorem for a class of split variational inequality problems and applications in Hilbert space. J. Ineq. Appl. 2017, 17, Art. no. 123 (2017)
[38] Uzor, V.A., Alakoya, T.O., Mewomo, O.T.: Strong convergence of a selfadaptive inertial Tseng's extragradient method for pseudomonotone variational inequalities and fixed point problems. Open Math. 20, 234-257 (2022)
[39] Uzor, V.A., Alakoya, T.O., Mewomo, O.T.: On split monotone variational inclusion problem with multiple output sets with fixed point constraints. Comput. Methods Appl. Math. (2022). https://doi.org/10.1515/cmam-2022-0199
[40] Wang, Z.-B., Long, X., Lei, Z.-Y., Chen, Z.-Y.: New self-adaptive methods with double inertial steps for solving splitting monotone variational inclusion problems with applications. Commun. Nonlinear Sci. Numer. Simul. 114, 106656 (2022)
[41] Xia, Y., Wang, J.: A general methodology for designing globally convergent optimization neural networks. IEEE Trans. Neural Netw. 9, 1331-1343 (1998)
[42] Wickramasinghe, M.U., Mewomo, O.T., Alakoya, T.O., Iyiola, O.S.: Manntype approximation scheme for solving a new class of split inverse problems in Hilbert spaces. Applicable Anal. (2023). https://doi.org/10.1080/00036811. 2023.2233977

T. O. Alakoya and O. T. Mewomo
School of Mathematics, Statistics and Computer Science
University of KwaZulu-Natal
Durban
South Africa
e-mail: mewomoo@ukzn.ac.za
T. O. Alakoya
e-mail: timimaths@gmail.com;
t.alakoya@qub.ac.uk

Received: November 25, 2022.
Revised: September 25, 2023.
Accepted: October 8, 2023.

