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Critical Edges in Rips Complexes and
Persistence

Peter Goričan and Žiga Virk

Abstract. We consider persistent homology obtained by applying ho-
mology to the open Rips filtration of a compact metric space (X, d).
We show that each decrease in zero-dimensional persistence and each
increase in one-dimensional persistence is induced by local minima of
the distance function d. When d attains local minimum at only finitely
many pairs of points, we prove that each above mentioned change in per-
sistence is induced by a specific critical edge in Rips complexes, which
represents a local minimum of d. We use this fact to develop a theory
(including interpretation) of critical edges of persistence. The obtained
results include upper bounds for the rank of one-dimensional persistence
and a corresponding reconstruction result. Of potential computational
interest is a simple geometric criterion recognizing local minima of d
that induce a change in persistence. We conclude with a proof that
each locally isolated minimum of d can be detected through persistent
homology with selective Rips complexes. The results of this paper offer
the first interpretation of critical scales of persistent homology (obtained
via Rips complexes) for general compact metric spaces.
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1. Introduction

Given a metric space X and a scale r ≥ 0, there are various constructions
that assign a simplicial complex to X at scale a r ≥ 0: Rips complex, Čech
complex, alpha complex, etc. A collection of any of the mentioned complexes
for all r ≥ 0 yields a filtration, an increasing sequence of simplicial complexes
representing X at all scales. In the past hundred years, filtrations were used to
study metric spaces from infinitesimal (shape theory) and asymptotic (coarse
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geometry) point of view. At the turn of the century, filtrations emerged as
one of the foundational concepts of persistent homology, which is obtained
by applying a homology to a Rips filtration and is a stable descriptor of
metric spaces. This point of view is being used to great effect in topological
data analysis. Its computational convenience was established with the first
persistence algorithm [11] for finite filtrations. A simplified topological idea
used in the algorithm is the following: adding an edge to a simplicial complex
either decreases H0 or increases H1. Elaborating on this idea we can see that
each decrease H0 or increase H1 can be assigned to a specific edge. This fact
which is crucial to extract corresponding homology representatives with the
aim to identify those geometric features in our space, that generate parts of
persistent homology.

In this paper, we study analogous results for persistent homology ob-
tained by applying Rips filtration to a compact metric space. In this setting,
it is not apparent what the critical edges corresponding to changes in per-
sistence are and whether they exist (in fact, in general they do not). Besides
being of theoretical interest of its own, the stability result of persistent homol-
ogy imply that our results describe the limit of persistent homologies obtained
from ever finer finite samples of X. As such our results interpret and provide
additional structure to practical computations of persistent homology.

The main results of this paper are:
• Theorems 3.4 and 4.5: Each scale c where H0 decreases or H1 increases

is in the closure of local minima of the distance function d.
• Theorem 3.4 and Proposition 4.8: When the cardinality of pairs at which

d attains a local minimum is finite, each mentioned change in persis-
tent homology corresponds to specific pairs at which d attains a local
minimum.

Expanding on this context, we use our main results to develop a theory
of critical edges of persistent homology. Our secondary results include:

• Theorem 4.14: Reconstruction result for first homology and fundamental
group of compact metric spaces.

• Corollary 4.13 and Theorem 4.19: Bounds on the change of H1 and H0

at critical scales of persistent homology, and bounds on the ranks of the
same groups. These include the first results on finiteness of the rank of
H1 for Rips complexes of non-finite spaces at all scales.

• Theorem 4.21: A simple combinatorial criterion to determine whether
the unique pair of points at which d attains an isolated local minimum
causes change in persistent homology.

• Theorem 5.3: Detecting each strict local minimum of d through persis-
tent homology via selective Rips complexes.

These results are complemented by examples demonstrating the necessity
of our assumptions. While some of the results of this paper might seem as
expected analogues of finite filtrations, the mentioned examples demonstrate
that the technicalities of the analogy are far from straightforward. Almost all
our results fail to hold in case X is not compact or in case we use closed Rips
filtrations instead of open ones.
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Figure 1. Space X consisting of three components. By The-
orems 3.4 and 4.5, a decrease in H0(Rips(X, r)) or an in-
crease in H1(Rips(X, r)) can only be achieved at scales r
corresponding to local minima of d. Distance function d at-
tains four non-zero local minima at pairs of points of iden-
tical appearance. Let us denote the distinct local minima
(i.e., the distances between the corresponding points) by
min•,min◦min�, and min�. At min• and min� two com-
ponents are merged and thus by Theorems 3.4 and 4.19 the
only change is decrease in H0. At min◦ the rank of H1 in-
creases by 1 by Theorems 4.5, Theorem 4.19, and 4.21. At
min�, there is no change to H0 or H1 by Theorem 4.21,
although by using appropriate selective Rips complexes we
can see an increase in the rank of H1 by Theorem 5.4

While our primary focus is persistent homology, our results are stated
and proved so that they also apply to persistent fundamental group. We use
term “persistence” to encompass persistent homology and persistent funda-
mental group. Figure 1 demonstrates our results on a simple example.

Related work: To the best of our knowledge, specific identifications of
simplices inducing a change in persistent homology (via Rips complexes) of
non-finite compact spaces have only been carried out on circles [1] (criti-
cal simplices are regular (2n + 1)-gons), certain ellipses at small scales [2]
(certain critical triangles are equilateral triangles), and in the context of
one-dimensional persistence of geodesic spaces [20,21] (simplices terminat-
ing one-dimensional persistence on compact geodesic spaces are equilateral
triangles). In all these cases, the diameter function attains a local minimum
at the critical simplices. On a similar note, critical simplices of Čech filtra-
tion of a finite collection of points in an Euclidean space were studied in [4].
While one-dimensional persistence of nerves was implicitly studied in [5], the
approach did not utilize specific simplices but rather used Spanier groups.

There is a growing volume of work studying Rips complexes of simple
spaces [1,2,12,18,19] or interpreting parts of persistence diagrams with prop-
erties of the underlying space [3,17,20–23,26]. Reconstruction results using
Rips complexes are typically concerned with reconstructing the homotopy
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type of the underlying space [15,24]. To the best of our knowledge, Theo-
rem 4.14 is the first reconstruction theorem aimed at reconstructing persis-
tent homology at only certain dimension under more general assumptions.

Our results on the first homology of a Rips complex being finitely gen-
erated under certain assumptions complement results in [9], which focused
on Čech complexes. Furthermore, [9] provided an example of a space, whose
closed Rips complex has first homology group of infinite rank. The question
of such an example for open Rips complexes was left open. We provide it in
Example 6.3.

Selective Rips complexes of the last section were first introduced in [25]
for the same reason they are utilized here: to detect more geometric features
of a metric space. In [25] the features in question were certain simple closed
geodesics, in this paper they are local minima of d.

Structure of the paper: In Sect. 2, we provide preliminaries. In Sect. 3,
we provide a complete description of zero-dimensional persistence. Section 4 is
the most extensive and contains a thorough analysis of emerging homology of
one-dimensional persistence, along with a majority of the secondary results.
Selective Rips complexes and the way to use them to detect more local minima
than with Rips complexes are provided in Sect. 5. Section 6 provides several
(counter)examples that demonstrate necessity of our conditions and justify
our choices, such as X being compact and use of open Rips complexes instead
of closed ones.

2. Preliminaries

Let X = (X, d) be a metric space with d : X × X → [0,∞). For each r > 0
and x ∈ X, let B(x, r) = {y ∈ X | d(x, y) < r} be the open ball, and
let B(x, r) = {y ∈ X | d(x, y) ≤ r} be the closed ball. Let LocMin(d)
denote the collection of all local minima of the distance function d. Note
that 0 ∈ LocMin(d) if X �= ∅. Scale c is an isolated local minimum of the
distance function d if it is the only local minimum of d on some open interval
containing c.

Given a scale r ≥ 0 the (open) Rips complex Rips(X, r) is an abstract
simplicial complex defined by the following rule: A finite subset σ ⊂ X is a
simplex iff Diam(σ) < r. In particular, Rips(X, 0) is the empty set and for
each r > 0 the vertex set of Rips(X, r) is X.

Given a scale r ≥ 0 the closed Rips complex Rips(X, r) is an abstract
simplicial complex defined by the following rule: A finite subset σ ⊂ X is a
simplex iff Diam(σ) ≤ r.

In what follows, we will define persistent homology based on open Rips
complexes. Analogue construction can be made with closed Rips complexes,
or any other construction yielding a well-defined filtration (such as open and
closed Čech complexes, selective Rips complexes defined in a later section,
etc.). On the other hand, we can (and will) perform the same construction
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with fundamental groups. Our general term “persistence” will refer to per-
sistent homology or persistent fundamental group applied to any filtration,
although we will focus on Rips filtrations and its variations.

Rips filtration of X is the collection of Rips complexes {Rips(X, r)}r≥0

along with natural inclusions is,t : Rips(X, s) ↪→ Rips(X, t) for all s ≤ t. We
will be using i to denote maps of the form is,t without specifying indices.

Applying homology Hq with coefficients in G to a filtration we obtain
persistent homology consisting of homology groups {Hq(Rips(X, r);G)}r≥0

and the induced homomorphisms {(is,t)∗}s≤t. In the literature persistent
homology is sometimes sometimes denoted as the collection of the ranks
of maps (is,t)∗. Throughout this paper, persistent homology (or persistent
fundamental group) will be the object obtained by applying homology (or
fundamental group) to a filtration. The Abelian group G forming coefficients
will be considered fixed and omitted from notation.

Fixing dimension q ∈ {0, 1, . . .} we say a scale a ≥ 0 is a regular value
for Hq if there exists ε > 0 such that for all s, t ∈ (a − ε, a + ε) ∩ [0,∞)
satisfying s ≤ t, the map (is,t)∗ is an isomorphism (see [13] and [6] previous
appearances of this concept). A scale a ≥ 0 is a critical value of Hq if it
is not a regular value. It will be beneficial if we further distinguish critical
values. A scale a ≥ 0 is an emergent-regular value of Hq if there exists ε > 0
such that for all s, t ∈ (a − ε, a + ε) ∩ [0,∞) satisfying s ≤ t, the map (is,t)∗
is surjective, and is emergent-critical if it is not emergent-regular. Similarly,
scale a ≥ 0 is a terminally-regular value of Hq if there exists ε > 0 such that
for all s, t ∈ (a− ε, a+ ε)∩ [0,∞) satisfying s ≤ t, the map (is,t)∗ is injective,
and is terminally-critical if it is not terminally regular. In a similar way, we
define regular and critical values of persistent fundamental group.

We will refer to the collection of critical values in any of the mentioned
cases as the spectrum. For example, the emergent H1 spectrum is the collec-
tion of emergent-critical values of H1. Note that by definition each spectrum
is a closed subset of [0,∞).

Given a field F and an interval J ⊂ [0,∞), the interval module FJ is a
collection of F-vector spaces {Vr}r∈[0,∞) with

• Vr = F for r ∈ J ;
• Vr = 0 for r /∈ J ,

and commuting linear bonding maps Vs → Vt which are identities whenever
possible (i.e., for s, t ∈ J) and zero elsewhere. When persistent homology of
a Rips filtration of a compact metric space X is computed with coefficients
in a field F, it decomposes (uniquely up to permutation of the summands)
as a direct sum of interval modules (see q-tameness condition in Proposition
5.1 of [9], the property of being radical in [8], and the main result in [8] along
with its corollaries for details). The intervals determining the said collection
of interval modules are called bars. They form a multiset called barcode of
the persistence homology. For each bar, its endpoints form a pair of numbers
from (0,∞)∪{∞}, with the left endpoint being smaller than ∞. These pairs
form a multiset called a persistence diagram.
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3. Zero-Dimensional Persistence

In this section, we will analyze critical scales of persistent zero-dimensional
homology of a compact metric space X obtained through the Rips filtra-
tion. It is apparent that the only emergent-critical value of H0 is zero as
Rips(X, 0) = ∅ while the vertex set of Rips(X, r) for each r > 0 is X. We
thus turn our attention to terminally-critical values.

Lemma 3.1. (Finiteness property) Let X be a compact metric space. Then for
every r > 0, H0(Rips(X, r)) is finitely generated. The rank of H0(Rips(X, r))
is bounded from above by the number of open r balls required to cover X.

Proof. Let r > 0. H0((Rips(X, r)) is generated by elements of the form [vn],
where vn ∈ X. Since X is compact, we can cover it with finitely many open
balls of radius r, i.e.,

⋃k
j=1 B(vj , r) = X. For each x ∈ B(vn, r), we have

[x] = [vn] ∈ H0((Rips(X, r)) hence [v1], . . . [vk] is a finite generating set. �

Let ρ > 0. A finite ρ-sequence between points x, y ∈ X is a sequence x =
x1, x2, . . . , xp = y of points in X such that d(xj , xj+1) ≤ ρ. A finite strictly
ρ-sequence between points x, y ∈ X is a sequence x = x1, x2, . . . , xp = y of
points in X such that d(xj , xj+1) < ρ.

Definition 3.2. Let X be a compact metric space and r > 0. We define an
equivalence relation ∼r on X by x ∼r y ⇔ [x] = [y] ∈ H0(Rips(X, r)).
Equivalently, x ∼r y if there is a finite strictly r-sequence between them.

Lemma 3.3. This equivalence classes of ∼r are open and closed subsets of X.

Proof. If x ∈ X and y ∈ B(x, r), then [x] = [y] and thus the equivalence class
[x] is open in X. According to the Lemma 3.1 there are only finitely many
equivalence classes, so they are also closed. �

Theorem 3.4. (Geometry of terminally critical scales) Let X be a compact
metric space. Then:
(1) The only potential accumulation point of the H0 critical values is 0.
(2) Each terminally-critical value of persistent H0 (i.e., {H0(Rips(X, r))}r≥0)

is a local minimum of the distance function d.
(3) Assume a1 < a2 are consecutive H0 terminally critical values and r ∈

(a1, a2], or a1 is the largest H0 critical value and r > a1. Then, points
x, y ∈ X satisfy x ∼r y iff there is a finite a1-sequence between them.

Proof. Let r1 > 0 and assume A1, A2, . . . An ⊆ X are the finitely many (by
Lemma 3.1) equivalence classes of ∼r1 . It is apparent that there at most n−1
critical scales of H0 larger than r1, with each of them being a scale at which
at least two equivalence classes merge. This implies (1) as r1 > 0 can was
chosen arbitrarily. Define

d(Aj , Ak) = min{d(xj , xk) | xj ∈ Aj , xk ∈ Ak}, j, k = 1, 2, . . . n.

Let c1 = min{d(Aj , Ak) | j �= k}. By Lemma 3.3 we may assume c1 =
d(A1, A2) = d(x1, x2) for some x1 ∈ A1, x2 ∈ A2. For each s > c1, [A1] =
[A2] ∈ H0(Rips(X, s)). Furthermore, for each r ≤ c1, [Aj ] �= [Ak] ∈ H0
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((Rips(X, r)) for all j �= k as every pair of points in X at distance less than
r is contained in the single class Aj by the definition of c1. Therefore, c1 is
the first critical values of H0 larger than r1. We claim c1 is a local minimum
of the distance function d.

Take the open neighborhood A1 × A2 ⊂ X × X of (x1, x2). By the
definition of the pair (x1, x2), we have d(x′

1, x
′
2) ≥ d(x1, x2) for each pair

(x′
1, x

′
2) ∈ A1 × A2. Hence d attains a local minimum c1 at (x1, x2). As there

are only finitely many critical scales of H0 larger than r1 we may proceed by
induction: set r2 = c1 and repeat the argument for r2 instead of r1, etc. We
thus obtained (2).

In order to prove (3), we may assume a1 = c1. From the argument
above observe that a1 is the minimum of {d(Aj , Ak) | j �= k} while a2—if
finite—is the second smallest number of {d(Aj , Ak) | j �= k}. Since x ∼r y,
there is a finite strictly r-sequence between them. Each consecutive pair of
points (x′

j , x
′
j+1) from this sequence can be replaced by a finite c1-sequence

as follows:
• If both x′

j and x′
j+1 are from the same Ak, then they may be connected

by a finite strictly c1-sequence.
• Assume x′

j ∈ Ak1 and x′
j+1 ∈ Ak2 for k1 �= k2. Then, d(Ak1 , Ak2) < r

and thus d(Ak1 , Ak2) = c1. Without loss of generality, we may assume
k1 = 1 and k2 = 2 given the setting at the beginning of the proof. Then,
we may connect:

– x′
j to x1 by a finite strictly c1-sequence.

– x1 to x2 by the obvious finite c1-sequence x1, x2.
– x′

j+1 to x2 by a finite strictly c1-sequence.

As a result, we obtain a finite c1-sequence from x to y thus (3) holds. �

Remark 3.5. Let us summarize some of the the obtained results:
(1) The only emergent-critical value of H0 is zero.
(2) Each terminally critical value of H0 is a local minimum of d, i.e., the

H0 spectrum is contained in LocMin(d).
(3) The collection of terminally critical values of H0 is either finite or forms

a sequence converging towards zero.
(4) Given a terminally critical value c of H0 choose ε > 0 such that no

other critical value lies in (c − 2ε, c + 2ε). Then for each non-trivial
[α] ∈ ker ic−ε,c+ε ⊂ H0(Rips(X, c − ε)), the 0-chain α is non-trivial in
H0(Rips(X, c)). In particular, [α] (which may, for example, represent
the formal difference of two components about to merge at c) becomes
trivial beyond c, but not yet at c.

(5) When persistent homology is computed with coefficients from a field,
statement (4) implies that all bars of H0 are open at the left endpoint
0 and closed at the right endpoint.

Remark 3.6. Statement (1) above holds for any space X for H0, but not for
higher-dimensional persistent homology. Statement (2) does not hold if X
is not compact: consider the union of the graphs of functions 1 + 1/x and
−1 − 1/x for x > 0, which has a critical value 2 but the distance function
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x = x1

x2

y = y1

y2
y3

y4
y5

x3

x4

x5

x6 = x′ y6 = y′

Figure 2. A sketch of a ν-descent. The distances between
consecutive points (solid lines) are smaller than ν. The
dashed distances are smaller than d(x, y)

lacks a positive local minimum. Statement (3) follows from Lemma 3.1 and
also holds for totally bounded spaces, but obviously not in general. Statement
(4) holds for any space X.

If we are using the closed Rips filtration (upon a compact metric space
X) instead of the open one, statements (1)–(3) remain the same, while (4)
changes: c is the minimal scale at which chain [α] is trivial. Statement (5)
changes to: all bars are intervals closed at the left endpoint 0 and open at
the right endpoint.

4. One-Dimensional Persistence

In this section, we will analyze emergent spectrum of persistent H1 and per-
sistent fundamental group of a compact metric space X obtained through
the Rips filtration. We first prove that the mentioned spectra are contained
in the closure LocMin(d) of the local minima of d.

4.1. Geometry of Spectra

Definition 4.1. Fix r > 0. Let (X, d) be a compact metric and x, y ∈ X with
d(x, y) < r. Choose ν < r − d(x, y). We say that (x, y) ν-descends (or simply
descends) to (x′, y′) if there are finite ν-sequences x = x1, x2, . . . , xp = x′

and y = y1, y2, . . . , yp = y′ such that for each j we have d(xj , yj) < d(x, y),
see Fig. 2.

The concept of descending will allow us to replace an edge in a simplicial
loop (or a homology cycle) with a sequence of shorter edges without changing
the homotopy (homology) type. Descending Lemma below states that we can
always descend so that the lengths of the obtained edges are at most the first
local minimum of d smaller than r if such a local minimum exists. To that
end, we introduce the following notation.

Let ρ > 0. A cyclic ρ-sequence is a finite ρ-sequence x = x1, x2, . . . , xp =
x of points in X (in particular, d(xj , xj+1) ≤ ρ). A cyclic ρ-sequence will often
be identified with a 1-cycle in Rips(X, ρ) defined as

∑p−1
j=1〈xj , xj+1〉. A cyclic

strictly ρ-sequence is a finite strictly ρ-sequence x = x1, x2, . . . , xp = x of
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points in X (in particular, d(xj , xj+1) < ρ). A cyclic strictly ρ-sequence will
often be identified with a 1-cycle in Rips(X, ρ) defined as

∑p−1
j=1〈xj , xj+1〉.

Let • be a basepoint in X and all its Rips complexes unless explicitly
stated otherwise.

Lemma 4.2. (Descending Lemma) Assume X is a compact metric space, let
r > 0, and choose a pair of points x, y ∈ X with d(x, y) < r.
(1) If c > 0 is the only local minimum of the distance function d on the

interval [c, d(x, y)), and d does not attain a local minimum at (x, y),
then (x, y) descends to a pair of points (x′, y′) at distance at most c.

(2) Choose ε > 0. If for some a ≥ 0, the distance d has no local minima on
the interval (a, d(x, y)), and d does not attain a local minimum at (x, y),
then (x, y) descends to a pair of points (x′, y′) at distance at most a+ε.

Proof. (1) Let x, y ∈ X, c < d(x, y) < r, and fix ν < r − d(x, y). Define set

A = A(x, y) = {r′ ≤ r | ∃x′, y′ ∈ X such that (x, y) ν-descends to (x′, y′)
and d(x′, y′) ≤ r′}.

It is enough to show that [c, r] ⊆ A. It is obvious that A is not empty (r ∈ A)
and A is an interval because if t ∈ A for some t < r, then t′ ∈ A for each
t′ ∈ [t, r] due to the descending condition in the definition of A(x, y) being
weaker for larger parameters, i.e., because (x, y) ν-descends to (x′, y′) with
d(x′, y′) ≤ t ≤ t′. We proceed by three steps:

• We first prove that A contains a number smaller than d(x, y). As d does
not attain a local minimum at (x, y), there exist (x′, y′) with d(x, x′) <
ν, d(y, y′) < ν, and d(x′, y′) < d(x, y). Thus, the pair (x, y) descends to
(x′, y′) and hence d(x′, y′) ∈ A.

• We next prove that if A = [ρ, r] then ρ ≤ c.
Assume A = [ρ, r] where ρ > c. There exists a pair (x′, y′) with d(x′, y′) =
ρ, to which (x, y) descends. Because ρ < d(x, y) is not a local minimum
of d we can find x′′, y′′ ∈ X with d(x′′, y′′) < d(x′, y′) = ρ, d(x′, x′′) < ν,
and d(y′, y′′) < ν. Prolonging the mentioned descent by one step using
x′′ and y′′ we see that (x, y) descends onto (x′′, y′′), d(x′′, y′′) ∈ A and
thus A �= [ρ, r].

• We conclude by showing that A is closed at the left endpoint.
For each n ∈ N let (xn, yn) be a pair in X to which (x, y) descends with
d(xn, yn) ≤ ρ + 1

n . As X is compact the sequences (xn) and (yn) have
accumulation points x′ and y′, respectively. Observe that d(x′, y′) =
ρ. We claim that (x, y) descends to (x′, y′). Choose m ∈ N such that
d(xm, x′) < ν and d(ym, y′) < ν. We can prolong the descent from (x, y)
to (xm, ym) by one step to (x′, y′), which implies ρ ∈ A.

We conclude [c, r] ⊆ A and thus (1) holds.
The proof of (2) is analogous to that of (1). When a = 0 we need to

choose ν < ε. �

Lemma 4.3. (Surjectivity Lemma) Assume X is a compact metric space and
let r > 0.
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x = x1

x2

y = y1

y2
y3

y4
y5

x3

x4

x5

x6 = x′ y6 = y′

Figure 3. A sketch of statement (1a) of Lemma 4.3. Edge
〈x, y〉 of the bold 1-cycle α is replaced by the grey finite c-
sequence along the descending finite ν-sequences obtained
by (1) of Lemma 4.2. Such a modification preserves the ho-
mology class of a cycle (and based homotopy class of a path)
containing the edge 〈x, y〉

(1) If c > 0 is the only local minimum of the distance function d on the
interval [c, r), then:
(a) For each 1-cycle α in Rips(X, r), there exists a cyclic c-sequence α′

in X such that [α′] = [α] ∈ H1(Rips(X, r)), i.e., the natural inclu-
sion induced map H1(Rips(X, c)) → H1(Rips(X, r)) is surjective.

(b) For each based simplicial loop α in Rips(X, r) there exists a based
simplicial loop α′ in Rips(X, c) such that α′ � α rel• in Rips(X, r),
i.e., the natural inclusion induced map π1(Rips(X, c), •) → π1

(Rips(X, r), •) is surjective.
(2) If for some a ≥ 0 the distance d has no local minima on the interval

(a, r), then for each ε > 0:
(a) For each 1-cycle α in Rips(X, r), there exists a cyclic (a + ε)-

sequence α′ such that [α′] = [α] ∈ H1(Rips(X, r)), i.e., the natural
inclusion induced map H1(Rips(X, a + ε)) → H1(Rips(X, r)) is
surjective.

(b) For each based simplicial loop α in Rips(X, r) there exists a based
simplicial loop α′ in Rips(X, a + ε) such that α′ � α rel • in
Rips(X, r), i.e., the natural inclusion induced map π1(Rips(X, a+
ε), •) →
π1(Rips(X, r), •) is surjective.

Proof. (1a) Given a 1-cycle α in Rips(X, r), fix its edge 〈x, y〉. By (1) of
Lemma 4.2, the pair (x, y) ν-descends to (x′, y′) via finite ν-sequences x =
x1, x2, . . . , xp = x′ and y = y1, y2, . . . , yp = y′ with d(x′, y′) ≤ c. Re-
place edge 〈x, y〉 in α by a finite c-sequence x = x1, x2, . . . , xp = x′, y′ =
yp, yp−1, . . . , y1 = y, as indicated in Fig. 3. The obtained modification pre-
serves the homology class of the 1-cycle as is evident from Fig. 3: observe
that the sides of the triangles (xj , xj+1, yj) and (xj+1, yj , yj+1) are at most
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d(x, y), ν, and d(x, y)+ ν, all of which are smaller than r by the definition of
ν.

Performing such a modification for each edge in α we obtain α′ satisfying
the conclusion of (1a).

(1b) The proof is the same as that of (1a). The proof of (2) is analogous
to that of (1). When a = 0 we need to choose ν < ε. �
Remark 4.4. Lemmas 4.2 and 4.3 consist of two parts. Parts (1) refer to
the case when LocMin(d) ∩ [0, r) has a maximum (referred to as c in the
statements). This is not always the case, see {(1/n,±(1−1/n)) | n ∈ N} ⊂ R

2.
Parts (2) consider the case when LocMin(d)∩ [0, r) does not have a maximum
(with the supremum being represented by a) or when the maximum is zero.

Theorem 4.5. Assume X is a compact metric space. Then, the emergent H1

spectrum and the emergent π1 spectrum of the open Rips filtration are both
contained in LocMin(d).

Proof. For b /∈ LocMin(d), there exists ε > 0 such that LocMin(d)∩(b−ε′, b+
ε′) = ∅. By (2) of Lemma 4.3 the inclusions {it,s | b − ε′ < t < s < b + ε′}
induced maps on H1 and π1 are surjective. �
Remark 4.6. When X is not compact Theorem 4.5 might not hold. Observe
that if X ⊆ R

n is open (and non-empty) then LocMin(d) = {0} while persis-
tent homology might be very rich. We also point out that the emergent H1

spectrum might not be contained in the emergent π1 spectrum as the latter
only considers loops in the connected component (of the Rips complexes)
containing •.

When considering persistence obtained through closed Rips filtration
ephemeral summands might yield critical values that are not in LocMin(d),
see Example 6.1. Furthermore, when persistent homology is computed with
coefficients from a field and d attains only finitely many minima, statement
(1a) of Lemma 4.3 implies that all bars of H1 are closed at the left endpoint
if that endpoint is non-zero. If the left endpoint of a bar in H1 is zero, the
bar is open at the left endpoint as Rips(X, 0) is a discrete set and thus has
trivial H1.

4.2. Emergent Cycles (Loops) and their Cardinality

In this subsection, we prove that one-dimensional homology emerging at a
locally isolated local minimum c of d arises by attaching elements of Mc (see
Definition 4.7) to Rips(X, c). We then use this fact to estimate the increase
in the rank of H1 at c.

Definition 4.7. For c ∈ LocMin(d) define

Mc := {(x, y) ∈ X2 | d(x, y) = c, d has a local minimum at (x, y)}
as the collection of pairs at which d has a local minimum at d = c.

Proposition 4.8. Assume X is a compact metric space. Let c > 0 be an emer-
gent critical value of H1 and an isolated local minimum of d, i.e., (c − ε, c +
ε) ∩ LocMin(d) = {c} for some ε > 0. Define

Rips∗(X, r) = Rips(X, r) ∪ {〈x, y〉 | (x, y) ∈ Mc}.
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Then for each t < s with c − ε < t < c < s < c + ε, the map induced on H1

by the inclusion Rips∗(X, t) ↪→ Rips(X, s) is surjective.

Proof. Choose a 1-chain α in Rips(X, s). By (1a) of Lemma 4.3, α is ho-
mologous in Rips(X, s) to a 1-chain α′ in Rips(X, c). By (2) of Lemma 4.2,
each edge of α′ that does not correspond to a pair in Mc descends to a pair
of points at distance less than t. Replacing each such edge in α′ by a finite
t-sequence arising from the mentioned descent (as in the proof of (1a) of
Lemma 4.3) we obtain a 1-cycle α′′ homologous to α′ in Rips(X, s), which
satisfies the following properties: each of its edges corresponds to either a
pair in Mc or a pair of points at distance less than t. Thus, α′′ is a 1-cycle
in Rips∗(X, t) homologous (in Rips(X, s)) to α. �

Proposition 4.9. Assume X is a compact metric space. Let c > 0 be an emer-
gent critical value of π1 and an isolated local minimum of d, i.e., (c − ε, c +
ε) ∩ LocMin(d) = {c} for some ε > 0. Define

Rips∗(X, r) = Rips(X, r) ∪ {〈x, y〉 | (x, y) ∈ Mc}.

Then, for each t < s with c − ε < t < c < s < c + ε, the inclusion
Rips∗(X, t) ↪→ Rips(X, s) induced map on π1 is surjective.

Proof. The proof is analogous to that of Proposition 4.8. �

Proposition 4.8 states that the emergent homology in persistent H1 at
a critical point, which is an isolated local minimum, is generated by comple-
menting the Rips complex by the edges corresponding to the pairs of points
at which d attains a local minimum with value c. On one hand, this yields
convenient description of emerging cycles (and loops in persistent fundamen-
tal group). On the other hand, it allows us to estimate the increase of the
rank of H1.

Definition 4.10. The cardinality of the minimal generating set of a group G
will be denoted by mgs(G).

Clearly rank(G) ≤ mgs(G) so all subsequent upper bounds on mgs of
groups also hold for the rank.

Proposition 4.11. Assume X is a compact metric space. Let c > 0 be an
isolated local minimum of d. Then, for each t < s within (c − ε, c + ε), we
have mgs(H1(Rips(X, s))) ≤ mgs(H1(Rips(X, t))) + |Mc|.
Proof. The proof is a direct consequence of Proposition 4.8 as adding |Mc|
edges to a simplicial complex increases the cardinality of the minimal gener-
ating set of its H1 by at most |Mc|. �

Remark 4.12. The analogue of Proposition 4.11 for the fundamental group
holds only if Rips(X, r) is connected for some r < c. While adding an edge to
a simplicial complex increases the cardinality of the minimal generating set
of H1 by at most 1, it might increase the rank of cardinality of the minimal
generating set of the fundamental group by more than 1 if the said edge
connects different component of the said simplicial complex.
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The following corollary refines Proposition 4.11. It states that |Mc| is
the upper bound for the increase of mgs of H1 at c plus the decrease of rank
of H0 at c.

Corollary 4.13. Assume X is a compact metric space. Let c > 0 be an isolated
local minimum of d. Then, for each t < s within (c − ε, c + ε), we have

mgs(H1(Rips(X, s))) − mgs(H1(Rips(X, t))) +
+ rank(H0(Rips(X, t))) − rank(H0(Rips(X, s))) ≤ |Mc|.

Proof. The proof is a direct consequence of Proposition 4.8 as adding an edge
to a simplicial complex either connects two of its components (thus decreasing
the rank of H0 by one) or increases the cardinality of the minimal generating
set of its H1 by at most one. �

4.3. Reconstruction Result for H1 and π1

In this subsection, we prove that for a wide class of spaces, the Rips complex
at small scales captures H1 and π1 of the underlying space X. Similar results
for fundamental groups of nerve complexes have been proved on numerous
occasions, including [5,7]. On the other hand, reconstruction results for ho-
motopy type of X using Rips complexes have been proved for certain classes
of spaces in [15,24].

Space X is simply connected up to scale R > 0 if for each x ∈ X
and each positive r < R the open r-ball around x is simply connected. In
particular, this means that such a space is locally path connected. Thus, a
compact space which is simply connected up to scale R > 0 consists of finitely
many open path-connected components.

Theorem 4.14. Let (X, •) be a based space which is compact and simply con-
nected up to scale R > 0. Then, π1(Rips(X, r), •) ∼= π1(X, •) for each positive
r < R/3. Furthermore, if r′ ∈ (r,R/3) then the natural inclusions ir,r′ of Rips
complexes at scales r < r′ induce isomorphisms on fundamental groups.

Proof. Define a map ϕ = ϕr : π1(Rips(X, r), •) → π1(X, •) by the following
rule. If α is a based simplicial loop in Rips(X, r) given by the sequence of
vertices • = x1, x2, . . . , xn = •, define ϕ([α]) as the based homotopy type of
the loop αX obtained as the concatenation of paths ψk in X between points
xk and xk+1, where each path ψk is contained in B(xk, r).

We first prove ϕ is well defined.
• We first show that ϕ([α]) = [αX ] does not depend on the choice of paths

ψk. Assume ψ′
k is a different path from xk to xk+1. Concatenating ψk

with the reversed path ψ′
k we obtain a loop contained in B(xk, 2r). As

2r < R this loop is nullhomotopic. Thus, replacing ψk by ψ′
k does not

change the homotopy type of ϕ([α]) as defined above.
• We now show that ϕ([α]) does not depend on the homotopy represen-

tative of [α]. Assume α and β are homotopic-based simplicial loops in
Rips(X, r). A homotopy is given by a simplicial map H of a triangula-
tion τ of S1 × I into Rips(X, r). Define a homotopy H ′ : S1 × I → X on
the same triangulation τ as follows:
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For each vertex v ∈ τ define H ′(v) = H(v). Orient all edges in τ . For
each oriented edge 〈a, b〉 ∈ τ define H ′ on [a, b] as a path between H(a)
and H(b) in B(H(a), r). If H(a) = H(b) choose the constant path. This
ensures the obtained homotopy H ′ is basepoint preserving. For each tri-
angle [a, b, c] ∈ τ define H ′ on [a, b, c] as the nullhomotopy in X of the
loop X defined by H ′ on the boundary of [a, b, c]. Note that the said
loop is contained in the 3r-ball around one of its vertices (the one from
which we can reach the other two vertices along the chosen orientation
of the three edges) and the mentioned nullhomotopy exists as 3r < R.
As a result, we obtain a based homotopy between ϕ([α]) and ϕ([β]).

Thus, ϕ is well defined. Furthermore, it is obviously a homomorphism.
We next prove ϕ is injective. Let α be a based simplicial loop in Rips(X, r)

given by the sequence of vertices • = x1, x2, . . . , xn = •. Assume ϕ([α]) is
contractible. Then there exists a nullhomotopy H : B2 → X defined on a
closed two-dimensional disc B2, whose restriction to the boundary S1 = ∂B2

is αX . Choose a triangulation τ of B2 containing vertices x1, x2, . . . , xn such
that for each triangle T in τ the image of H(T ) is contained in a ball of
radius r/2. Define a simplicial homotopy H ′ : B2 → Rips(X, r), where the
triangulation on B2 is τ , and for each vertex v ∈ τ define H ′(v) to be the
vertex in Rips(X, r) corresponding to the point H(v) ∈ X.

Note that H ′ is well defined as the vertices of each triangle are a set
of diameter less than r. Thus, H ′ is a simplicial nullhomotopy of α′, which
is defined as the restriction of H ′ to S1 = ∂B2, in Rips(X, r). It remains to
show that [α] = [α′] ∈ π1(Rips(X, r), •). Triangulation τ restricted to S1 is a
refinement of the triangulation on S1 induced by the vertices x1, x2, . . . , xn.
Thus, the vertices of τ restricted to S1 are (in a cyclic order so as to determine
a simplicial loop α′)

• = x1=x1,1, x1,2, . . . , x1,k1 =x2=x2,1, x2,2, . . . , x2,k2 =x3=x3,1 . . . , xn =•.

We claim that for each j the simplicial loop

xj = xj,1, xj,2, . . . , xj,kj
= xj+1, xj

is nullhomotopic in Rips(X, r). Observe that all the mentioned vertices cor-
respond to points in B(xj , r). This means that the mentioned simplicial loop
is contained in the closed star of xj in Rips(X, r) and is thus contractible.
Replacing the portion of the simplicial loop α′ between xj and xj+1 by the
single edge from xj to xj+1 (as is in α) thus preserves the homotopy type. Per-
forming such homotopy-type preserving modification for each j we transform
α′ into α and conclude the proof of injectivity.

We now prove ϕ is surjective. Let f : S1 → X be a loop based at •. For
each t ∈ S1, choose an open interval on S1 containing t, such that its image via
f is contained in an open (r/2)-ball in X. By compactness there exists a finite
collection of such intervals covering S1. Denoting the centers of the obtained
intervals by tj , we obtain a finite sequence of points • = t1, t2, . . . , tk = •
appearing in the positive order on S1 and winding around it exactly once,
such that for each k the image via f of the closed interval from tk to tk+1 (in
the positive direction) is contained in B(tk, r). The cyclic strictly r-sequence
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• = f(t1), f(t2), . . . , f(tk) = • is a simplicial based loop in Rips(X, r) whose
based homotopy class is mapped to f via ϕ.

Thus, π1(Rips(X, r), •) ∼= π1(X, •) for all positive r < R/3. As maps
ϕr commute with the inclusions induced maps on the fundamental groups of
Rips complexes, the second conclusion of the theorem also holds. �

Theorem 4.15. Let X be a based space which is compact and simply connected
up to scale R > 0. Then, H1(Rips(X, r)) ∼= H1(X) for each positive r <
R/3. Furthermore, if r′ ∈ (r,R/3) then the natural inclusions ir,r′ of Rips
complexes at scales r < r′ induce isomorphisms on H1.

Proof. As X is compact and locally path connected it consists of a finite
number of compact path connected components A1, A2, . . . , An. It follows
from definition of R that the distinct components are at distance at least R
and thus Rips(X, r) is a disjoint union of subcomplexes Rips(Aj , r). Choose
j. Fixing a basepoint • ∈ Aj , Theorem 4.14 coupled with Hurewicz theorem
states that H1(Rips(Aj , r)) ∼= H1(A1). As j was arbitraty we conclude the
isomorphism H1(Rips(X, r)) ∼= H1(X).

The second part follows similarly from the analogous property of the
fundamental group. �

Remark 4.16. Theorems 4.14 and 4.15 state that initially the persistent π1

and H1 are constant and isomorphic to the corresponding invariant of X.

4.4. Bounds on the Generating Sets of 1-Dimensional Persistence

In this subsection, we combine the reconstruction results of the previous
subsection with the behaviour of 1-dimensional persistence at critical scales
as discussed in Subsection 4.2 to provide a global bound on the rank of H1

the fundamental group of Rips complexes.
Given a space K with components K1,K2, . . . ,Km and xj ∈ Kj ,∀j,

define

MGS(K) =
m∑

j=1

mgs(π1(Kj , xj)).

Remark 4.17. Adding an edge E to a simplicial complex K can increase the
fundamental group in two ways (see also Remark 4.12):

• If both endpoints of E are in the same component B, then the addition
of E increases the rank of the fundamental group of B (with a basepoint
in B) by one.

• If the endpoints of E are in different components Bj �= Bk, then the
addition of E connects the two components and increases the rank of
the fundamental group as follows:

– For a basepoint b /∈ Bj ∪Bk, the rank of π1(K, b) does not change.
– For basepoints bj ∈ Bj and bk ∈ Bk, mgs(π1(K, bj)) increases by

mgs(π1(Bk, bk)).

In particular, adding an edge to a simplicial complex K increases MGS(K)
by at most one.
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Remark 4.18. If Y is a compact, connected, locally path connected metric
space, then mgs(π1(Y )) is known to be finite, see for example [10]. Conse-
quently, each space X, which is compact and simply connected up to scale
R > 0, has finite mgs(π1(X)), MGS(X) and mgs(H1(X)). In particular, such
a space consists of finitely many compact components, which are simply con-
nected up to scale R > 0. Applying the first statement of this remark to each
of the components (and the Hurewicz’s theorem for the homological version),
we obtain finiteness of all mentioned invariants.

Theorem 4.19. Let (X, •) be a based space which is compact and simply con-
nected up to scale R > 0. Assume LocMin(d) is finite. If Mc is finite for each
c > 0, then for each r > 0:

mgs(H1(Rips(X, r))) ≤ mgs(H1(X)) +
∑

c<r

|Mc| < ∞.

Furthermore, if A1, A2, . . . , An are the path connected components and xj ∈
Aj, then for each r > 0:

MGS(Rips(X, r)) ≤ MGS(X) +
∑

c<r

|Mc| < ∞.

and in particular,

mgs(π1(Rips(X, r), •)) ≤ MGS(X) +
∑

c<r

|Mc| < ∞.

Proof. By Theorem 4.5 mgs(H1(Rips(X, r))) may increase only at LocMin(d).
For small positive r, we have mgs(H1(Rips(X, r))) = mgs(H1(X)) by The-
orem 4.15. The increase of mgs(H1(Rips(X, r))) at each point of LocMin(d)
is bounded from above by |Mc| by Proposition 4.11, which proves the first
part of the theorem.

By Remark 4.17, Theorem 4.5, and Theorem 3.4, MGS(Rips(X, r))
may increase only at LocMin(d). Without loss of generality we have • =
x1. For small positive r, Rips(X, r) is the disjoint union of Rips(A1, r),
Rips(As, r), . . . ,Rips(An, r) and thus π1(Rips(X, r), •) = π1(Rips(A1, r), •)
by Theorem 4.14. Hence, mgs(π1(Rips(X, r), •)) = mgs(π1(A1, •)) for small
positive r and by extension of the argument, MGS(Rips(X, r)) = MGS(X) for
small positive r. The increase of MGS(Rips(X, r)) at each point of LocMin(d)
is generated by adding |Mc| edges by Proposition 4.11 and thus by Re-
mark 4.17, MGS(Rips(X, r)) increases at c by at most |Mc|.

The last statement holds as mgs(π1(Rips(X, r), •)) ≤ MGS(Rips(X, r)).
The finiteness of the mentioned invariants follows from Remark 4.18. �
Corollary 4.20. Let (X, •) be a based space which is compact and simply con-
nected up to scale R > 0, |LocMin(d)| < ∞, and |Mc| < ∞,∀c > 0. Then for
each r:

rank(H1(Rips(X, r))) < ∞ and rank(π1(Rips(X, r)), •) < ∞.

Proof. The statement follows from Theorem 4.19. �
Example 6.3 in the last section demonstrates that rank(H1(Rips(X, r)))

may be infinite if X is a compact metric space.
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4.5. Combinatorial Criterion for Spectrum

Up to this point, our results explore and exploit the fact that the H0 spectrum
and the emergent one-dimensional spectrum of a compact metric space are
in a sense induced by members of Mc. It seems to be more complicated
to provide a sufficient condition that will imply a particular element of Mc

induces any mentioned critical effect. In this subsection we provide such a
condition in case |Mc| = 1 for an isolated local minimum c. Observe that
this case includes every finite X ⊂ R

n in general position.

Theorem 4.21. Assume X is a compact metric space. Let c > 0 be an isolated
local minimum of d and Mc = {(x, y)}. Then, the following are equivalent:

(a) c is a member of either the H0 spectrum or the emergent H1 spectrum
of X.

(b) There does not exist z ∈ X \{x, y} such that d(z, x) ≤ c and d(y, z) ≤ c.

Proof. (a) =⇒ (b): Clearly c cannot be in both the H0 spectrum and the
emergent H1 spectrum of X due to Mc = {(x, y)}, as adding an edge either
connects two components or increases the H1 (see Proposition 4.8).

Let c be a member of the H0 spectrum. For each x′ ∈ X let Kx′ be
the ∼r equivalence class of points of X at scale r just before c satisfying
x′ ∈ Kx′ . By Lemma 3.3 the subsets Kx′ are disjoint compact open subsets
of X at pairwise distance at least c. Assume there exists z ∈ X\{x, y} such
that d(z, x) ≤ c and d(y, z) ≤ c. Without loss of generality we may assume
z /∈ Kx as Kx ∩ Ky = ∅. But then (x, z) is a local minimum of d different
from (x, y), a contradiction with |Mc| = 1. Hence the assumed z does not
exist.

Let c be a member the emergent H1 spectrum and let [α] be a homol-
ogy class of a connected cycle emerging at c. By (1a) of Lemma 4.3, α can
be chosen as a cyclic c-sequence in X containing a non-zero multiple of ori-
ented edge 〈x, y〉. Assume there exists z ∈ X\{x, y} such that d(z, x) ≤ c
and d(y, z) ≤ c. Then each occurrence of 〈x, y〉 within α can be replaced
using ∂〈x, z, y〉, in effect replacing edge 〈x, y〉 with the edges 〈x, z〉 and 〈z, y〉,
without changing [α]. We can now use (1) of Lemma 4.2 to replace each edge
within α at distance c by a finite strictly c-sequence without changing [α] as
such pairs are not local minima of d. Thus, we have constructed a represen-
tative of [α] appearing at scale smaller than c, hence [α] has not emerged at
c. As a result, the assumed z can not exist.

(b) =⇒ (a): Assume (a) does not hold.

(1) As c is not in the H0 spectrum, the pair {x, y} does not connect two
different components in Rips(X, c). Thus, there exists a finite strictly
c-sequence x = x0, x1, . . . , xm = y. Let α be the simplicial cycle corre-
sponding to the finite c-loop x = x0, x1, . . . , xm = y, x.

(2) As c is not in the emergent H1 spectrum, [α] is nullhomologous in
Rips(X, r) for each r > c.

(3) As c ∈ LocMin(d) and |Mc| = 1, we can choose R < c/4 such that
d(x′, y′) > c, ∀x′ ∈ B(x,R)\{x},∀y′ ∈ B(y,R)\{y}.
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(4) Define compact sets Ax =B(x,R)\B(x,R/2) and Ay =B(y,R)\B(y,R/2).
Note that by compactness and |Mc| = 1, there exist real numbers
w1 < w2 such that d(Ax × B(y,R) ∪ B(x,R) × Ay) ⊆ [w1, w2] ⊂ (c,∞).

(5) Choose ε0 > 0 so that for each x′ ∈ B(x,R) and y′ ∈ B(y,R) with
d(x′, y′) ∈ (c, c + ε0) we have x′ ∈ B(x,R/2) and y′ ∈ B(y,R/2). If
such ε0 did not exist we would have for each sufficiently large n ∈ N,
a pair tn ∈ B(x,R) and sn ∈ B(y,R) with d(tn, sn) ∈ (c, c + 1/n)
and either tn ∈ Ax or sn ∈ Ay. Without loss of generality we could
choose a subsequence (nj)j∈N of N so that tnj

∈ Ax,∀j. Then, we have
t = limj→∞ tnj

∈ Ax, s = limj→∞ snj
∈ B(y,R), and d(t, s) = c, a

contradiction with |Mc| = 1.
(6) Let r ∈ (c, c + ε0). For each 1-chain β =

∑k
j=1 μj , σj in Rips(X, r) (i.e.,

μj ∈ G and σj is an oriented 1-simplex in Rips(X, r)) we define the
invariant Nr(β) as follows. Define Fr as the collection of those indices
j ∈ {1, 2, . . . , k} for which the first vertex of σj is in B(x,R/2) and the
second is in B(y,R/2). Similarly, let Lr be the collection of those indices
j ∈ {1, 2, . . . , k} for which the second vertex of σj is in B(x,R/2) and
the first is in B(y,R/2). Define

Nr(β) =
∑

j∈Fr

μj −
∑

j∈Lr

μj ∈ G.

Quantity Nr(β) represents the total amount of weights in G pointing
from B(x,R/2) to B(y,R/2) along oriented edges of β.

(7) Fix r ∈ (c, c + ε0). Observe that Nr(α) = 1. On the other hand, (2)
implies that α is a boundary of a 2-cycle in Rips(X, r) and hence the
Nr of the said boundary is also 1. Thus there exists at least one 2-
simplex with non-trivial Nr. A simple case analysis shows that this is
possible if and only if the 2-simplex in question has:

• One vertex, say ar, in B(x,R/2).
• One vertex, say br, in B(y,R/2).
• One vertex, say zr, in X \

(
B(x,R/2) ∪ B(y,R/2)

)
.

As {ar, br, zr} forms a simplex in Rips(X, r), the pairwise distances are
smaller than r. On the other hand, (5) implies zr /∈ B(x,R) ∪ B(y,R)
thus d(ar, zr) ≥ R/2 and d(br, zr) ≥ R/2.

(8) By compactness of B(x,R/2),B(y,R/2), and X\(B(x,R) ∪ B(y,R)),
there exists a subsequence (�j)j∈N of N such that the following limits
exist in the corresponding mentioned compact sets:

a = lim
j→∞

ac+1/�j b = lim
j→∞

bc+1/�j , z = lim
j→∞

zc+1/�j .

(9) By (3) we have a = x and b = y. By the upper bounds on pairwise
distances in (7) we have d(a, z) ≤ r and d(b, z) ≤ r. Furthermore, the
lower bounds in (7) imply d(a, z) ≥ R/2 and d(b, z) ≥ R/2, which in
particular mean z ∈ X\{x, y}. Thus (b) does not hold. �

If X is connected, then replacing cycles by simplicial loops in the above
proof yields the analogous result for the emergent π1 spectrum.
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Proposition 4.22. Assume X is a connected compact metric space. Let c > 0
be an isolated local minimum of d and Mc = {(x, y)}. Then c is a member
of the H0 spectrum or the emergent π1 spectrum of X iff there exists no
z ∈ X\{x, y} such that d(z, x) ≤ c and d(y, z) ≤ c.

5. Detecting All Local Minima of the Distance Function

Theorem 4.21 provides a condition under which certain locally isolated el-
ements of LocMin(d) are detected via persistence. In this section we prove
that persistence can in fact detect each member of LocMin(d) of finite Mc,
if we use appropriate selective Rips complexes instead of Rips complexes.
Selective Rips complexes have been introduced in [25] and represent subcom-
plexes of Rips complexes with controllably thin simplices (see also [16] for a
corresponding reconstruction result). The motivation for their construction
was to provide a flexible construction of filtrations closely related to Rips
filtrations, which enables us to detect as many geodesic circles (i.e., isometric
images of circles equipped with a geodesic metric, inside a geodesic space) as
possible using persistence. In this section we use a similar approach to detect
LocMin(d).

Definition 5.1. [25] Let Y be a metric space, r1 ≥ r2, n ∈ N. Selective Rips
complex sRips(Y ; r1, n, r2) is an abstract simplicial complex defined by the
following rule: a finite subset σ ⊂ Y is a simplex iff the following two condi-
tions hold:

• Diam(σ) < r1;
• there exist subsets U0, U1, . . . , Un ⊂ U of diameter less than r2 such

that σ ⊂ U0 ∪ U1 ∪ . . . ∪ Un.

The geometric intuition behind Definition 5.1 is that simplices of dimen-
sion above n in sRips(Y ; r1, n, r2) are very thin, and up to “distortion” r2 close
to an n-dimensional simplex in Rips(X, r1). Observe that sRips(Y ; r1, n, r2)
is a subcomplex of Rips(Y, r1). In this paper we will be using selective Rips
complexes of form sRips(Y ; r1, 1, r2), which means that 2-simplices will be
thin, i.e., that the shortest side of a 2-simplex will be smaller than r2. In
order to simplify the notation of filtrations by selective Rips complexes we
will focus on filtrations of a form

F = {sRips(Y ; r, 1, r2(r))}r≥0,

Where r2 = r2(r) : [0,∞) → [0,∞) is a strictly increasing continuous bijec-
tion satisfying r2(r) ≤ r.

Many of the results of the previous sections also hold for selective Rips
complexes:

• The H0 persistence of the Rips filtration of X is isomorphic to the H0

persistence of the selective Rips filtration F as the one dimensional skele-
tons of Rips(X, r) and sRips(Y ; r, 1, r2(r)) coincide. Thus Theorem 3.4
also holds for selective Rips complexes arising from filtration F .
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• Lemmas 4.2 and 4.3 also hold for selective Rips complexes arising from
filtration F . The reason is that the descending condition of Definition 4.1
is established for arbitrarily small positive ν and is proved as such in 1
of Lemma 4.2. Consequently, the 2-simplices used to prove parts 1(a)
and 1(b) of Lemma 4.3 (see Fig. 3) can be taken to be as thin as required
by F .

As a result, we obtain the following generalization of Theorem 4.5.

Theorem 5.2. Assume X is a compact metric space. Then, the emergent H1

spectrum and the emergent π1 spectrum arising from filtration F are both
contained in LocMin(d).

We are now in a position to prove the main result of this section: each
member c ∈ LocMin(d) can be detected by persistence via selective Rips
complexes if Mc is finite. In case Mc is infinite Example 6.2 shows that c
may not be detected even by selective Rips complexes.

Theorem 5.3. Assume X is a compact metric space, c ∈ LocMin(d), and Mc

is finite. There exists a filtration F with function r2, such that c is either a
critical value of H0 or an emergent critical value of H1 arising from filtration
F .

The following proof shares some of the setup with the proof of (b) of
Theorem 4.21. The general idea is inspired by the proof of the main result of
[25].

Proof. Choose (x, y) ∈ Mc. Without loss of generality, we can assume c is not
in the H0 spectrum. Thus c > 0 and there exists a finite strictly c-sequence
x = x0, x1, . . . , xm = y in X. Let α be the simplicial cycle corresponding to
the finite c-loop x = x0, x1, . . . , xm = y, x. We claim that there exists function
r2 such that [α] ∈ H1

(
sRips(Y ; r, 1, r2(r))

)
is nontrivial for r ∈ (c, c + ε) for

some ε > 0.
Choose R < c/4 such that d(x′, y′) > c, ∀x′ ∈ B(x,R)\{x},∀y′ ∈

B(y,R)\{y}. Define compact sets Ax = B(x,R)\B(x,R/2) and Ay = B(y,R)\
B(y,R/2). Note that by compactness and finiteness of Mc, there exist real
numbers w1 < w2 such that d(Ax × B(y,R) ∪ B(x,R) × Ay) ⊆ [w1, w2] ⊂
(c,∞). Choose ε > 0 so that for each x′ ∈ B(x,R) and y′ ∈ B(y,R) with
d(x′, y′) ∈ (c, c + ε) we have x′ ∈ B(x,R/2) and y′ ∈ B(y,R/2).

Choose r2 so that r2(c+ε) < R/2. This is the only additional condition
that will be imposed on r2.

Let r ∈ (c, c+ε). For each 1-chain β =
∑k

j=1 μj , σj in sRips(X; r, 1, r2(r))
(i.e., μj ∈ G and σj is an oriented 1-simplex in sRips(X; r, 1, r2(r))) we define
the invariant Nr(β) as follows. Define Fr as the collection of those indices
j ∈ {1, 2, . . . , k} for which the first vertex of σj is in B(x,R/2) and the
second is in B(y,R/2). Similarly, let Lr be the collection of those indices
j ∈ {1, 2, . . . , k} for which the second vertex of σj is in B(x,R/2) and the
first is in B(y,R/2). Define

Nr(β) =
∑

j∈Fr

μj −
∑

j∈Lr

μj ∈ G.



MJOM Critical Edges in Rips Complexes and Persistence Page 21 of 25 326

Fix a scale r ∈ (c, c + ε). We will now demonstrate that the boundary
of a 2-cycle in sRips(X; r, 1, r2(r)) has even Nr. By additivity, it suffices to
consider a single 2-simplex. A simple case analysis shows that a 2-simplex in
sRips(X; r, 1, r2(r)) has an odd Nr if:

• One vertex, say ar, in B(x,R/2).
• One vertex, say br, in B(y,R/2).
• One vertex, say zr, in X\

(
B(x,R/2) ∪ B(y,R/2)

)
. By (2) this implies

zr ∈ X\
(
B(x,R) ∪ B(y,R)

)
.

This would mean all three pairwise distances in such a simplex would be
larger that R/2, a contradiction with previously established r2(c+ ε) < R/2.
Hence, such 2-simplex does not exist.

Observe that Nr(α) = 1 and thus α can not be expressed as a boundary
of a 2-chain in sRips(X; r, 1, r2(r)) by (6). This proves our claim that [α] ∈
H1

(
sRips(Y ; r, 1, r2(r))

)
is nontrivial for r ∈ (c, c + ε). As for each r′ < c

every 1-chain in sRips(Y ; r′, 1, r2(r′)) has trivial Nr, we also conclude [α]
emerges at c. This concludes the proof. �

The following theorem states that if the distance function d attains a
positive local minimum in at most finitely many pairs of points in X, then
all local minima of d can be detected using persistence with a single selective
Rips filtration F .

Theorem 5.4. Assume X is a compact metric space, LocMin(d) is finite, and
for each positive c ∈ LocMin(d) the set Mc is finite. Then there exists a
filtration F with function r2, such that each element of LocMin(d) is either a
critical value of H0 or an emergent critical value of H1 arising from filtration
F . In particular, LocMin(d) is the union of the H0 spectrum and the emergent
H1 spectrum of X via filtration F .

Proof. Assume scale c ∈ LocMin(d) is not in the H0 spectrum. By Theo-
rem 5.3 scale c is in the emergent H1 spectrum via F if condition (4) of
the proof of Theorem 5.3 holds. As it is easy to satisfy finitely many such
conditions simultaneously, there exists r2 such that the theorem holds. �

6. Counter Examples

In this section, we present three examples that demonstrate the necessity of
some of the assumptions in our results.

Example 6.1. Closed Rips filtrations may induced critical values not in
LocMin(d). The left part of Fig. 4 shows space A as a solid curve. The dashed
circular arcs are parts of circles with centers at points a and b. Note that the
pair (a, b) is not a local minimum of d, neither is it in LocMin(d). However,
the closed Rips filtration of A still has d(a, b) as an emergent H1 value as
Rips(A, d(a, b)) contains the edge 〈a, b〉 as a maximal simplex. This demon-
strates that Theorem 4.5 does not hold for closed Rips filtrations. This ex-
ample appeared first in [23].
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A Ba

b

a

b

Figure 4. Spaces of examples 6.1 (left) and 6.2 (right), both
are subspaces of the Euclidean plane

The non-trivial class H1(Rips(A, d(a, b))) emerging at d(a, b) is trivial
in H1(Rips(A, r)) for all r > d(a, b), which means its lifespan is zero. As open
and closed Rips filtrations are 0-interleaved, the zero-lifespan elements (also
referred to as ephemeral summands) are the only way in which the spectrum
of a closed Rips filtration can be larger than the spectrum of the open Rips
filtration, see [8,9] for details and definitions of the mentioned terms.
Example 6.2. A local minimum c of d may not be detectable if Mc is infinite.
The right part of Fig. 4 shows space B. It consists of three line segments, two
of which are parallel. The distance function d attains a local minimum at
pair (a, b), yet for each selective Rips filtration of B the scale d(a, b) is not
in the spectrum of B. This demonstrates that the requirement |Mc| < ∞ in
Theorem 5.4 is necessary.

Example 6.3. H1(Rips(X, r)) may have infinite rank even if X is compact.
Choose r > 0. Example Z = U � L is sketched on the left of Fig. 5. As a set
it consists of lower points L and upper points U in the plane, defined as

L =
{
xj | j ∈ {∞, 1, 2, . . .}}, U =

{
yj | j ∈ {∞, 1, 2, . . .}},

where x∞ = (0,−r/2), y∞ = (0, r/2), and for finite indices n we define

xn =
(
2−n+1,−(r − 2−n)/2

)
, yn =

(
2−n+1, (r − 2−n)/2

)
.

The metric used is the Manhattan metric denoted by d = d1, i.e.,

d((a1, a2), (b1, b2)) = |a1 − b1| + |a2 − b2|.
The details on local distances are indicated on the right side of Fig. 5. Note
that limj→∞ xj = x∞ and limj→∞ yj = y∞. As

∑∞
j=1 2−j = 1 we see that

d(x1, x∞) = d(y1, y∞) = 5/4. Also note that:

(1) d(xj , xk) ≤ 5/4,∀j, k ∈ {∞, 1, 2, . . .}.
(2) d(x1, y1) = r − 1/2 and also d(xj , yj) < r, ∀j < ∞.
(3) d(xj , yj+1) = d(yj , xj+1) = r + 2−(j+2) > r, ∀j < ∞.
(4) Observations (2) and (3) imply d(xj , yk) < r iff j = k.

Fixing r ≥ 5/4 we make the following observations for Rips(Z, r):

• Rips(Z, r) contains the full simplex on L as Diam(L) = 5/4 by (1). On
a similar note, Rips(Z, r) contains the full simplex on U .

• Observations (2), (3), and (4) imply that the only simplices connecting
U and L in Rips(Z, r) are the “vertical” edges 〈xj , yj〉 for all j < ∞.
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x1
x2

x∞

y1
y2

y∞

r − 2−(n+1)

2−n

2−n−2

xn

yn

xn+1

yn+1

Figure 5. Space Z of example 6.3 on the left, and details of
tis local configuration on the right. The metric used is d1

As a result H1(Rips(Z, r),Z) ∼= ⊕
j=1,2,... Z is the countable direct sum of

integer groups, which is not finitely generated.
This example complements analogue examples on closed Rips complexes

in [9]. It also shows that finiteness of LocMin(d) is required in Corollary 4.20.
On a different note, observe that r = 5/4 is an emergent critical scale of H1

despite not being a local minimum of d.

Example 6.4. The results of this paper imply that a local minimum of d
can “contribute” two potential changes to persistence (as a critical edge): an
increase in H1 or a decrease in H0. However, it turns out that when Mc is
infinite, it can actually affect persistent homology in any way, i.e., terminating
or giving rise to homology in any dimension. Hence a general theory of critical
edges is much more complicated and not at all analogous to persistence on
finite metric spaces.

For example, let A be a planar circle of radius 10 and x ∈ A. Define
B = A × {0, 1} ∪ {x} × [0, 1] ⊂ R

3

as two parallel circles connected by a line segment. Observe that B is a con-
nected space with the first Betti number 2. By Theorem 4.14, H1(Rips(B, r))
is also of rank 2 for r < 1. However, for ∈ (1, 2) the local minima attained at
the uncountably many pairs {y} × {0, 1} for y ∈ A\{x} “stack up” in circle
to terminate a one-dimensional homology class and result in a decrease in
the rank H1(Rips(B, r)) to 1 at r = 1.
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