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Abstract. The well-known Fibonacci sequence has several generaliza-
tions, among them, the k-generalized Fibonacci sequence denoted by
F (k). The first k terms of this generalization are 0, . . . , 0, 1 and each
one afterward corresponds to the sum of the preceding k terms. For
the Fibonacci sequence the formula F 2

n+1 − F 2
n−1 = F2n holds for every

n ≥ 1. In this paper, we study the above identity on the k-generalized
Fibonacci sequence terms, completing the work done by Bensella et al.

(On the exponential Diophantine equation (F
(k)
m+1)

x − (F
(k)
m−1)

x = F
(k)
n ,

2022. arxiv:2205.13168).
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1. Introduction

Let {Fn}n≥0 be the classical Fibonacci sequence given by F0 = 0, F1 = 1
and Fn+2 = Fn+1 + Fn for all n ≥ 0. A familiar identity related to these
numbers is given by the formula

F 2
n+1 − F 2

n−1 = F2n, (1)

which holds for all integers n if we extend the Fibonacci sequence to all
integer indices using its recurrence formula.

Patel and Chaves [18] investigated an analogue of (1) in higher powers,
namely the Diophantine equation

F x
n+1 − F x

n−1 = Fm, (2)

obtaining the following result.
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Theorem 1. The Eq. (2) on (n,m, x) has only the non-negative integral so-
lutions (n, 2n, 2), (1, 1, x), (1, 2, x), (n, 0, 0).

Let k ≥ 2 be an integer. A generalization of the Fibonacci sequence,
called the k-generalized Fibonacci sequence, denoted by F (k) := {F (k)

n }n≥−(k−2),
is given by the linear recurrence

F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · · + F

(k)
n−k, for all n ≥ 2, (3)

with the initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We refer to each F
(k)
n as the nth k-generalized Fibonacci number. Note that

for k = 2, we have F
(2)
n = Fn, the usual nth Fibonacci number.

Recently, Bensella et al. [1] studied an analogue of Diophantine equation
(2) in k-generalized Fibonacci numbers, showing that

(
F

(k)
n+1

)x

−
(
F

(k)
n−1

)x

= F (k)
m , (4)

has no positive integral solutions (k, n,m, x) with x ≥ 2 under the restriction
that 3 ≤ k ≤ min{n, log x}. In this paper, we revisit the above Diophan-
tine equation, remove the restriction from [1] and find parametric families of
solutions. Namely, we establish the following result.
Main Theorem The only solutions (k, n,m, x) of the Diophantine equation
(4) with k ≥ 3, n ≥ 4, m ≥ 2 and x ≥ 2 are

(2�+1 + 3� − 7, 4, 3 · 2� + 3� − 7, 2� + � − 3), � ≥ 2;

(2� + 2� − 4, 5, 2�+1 + 2� − 4, 2�−1 + (� − 3)/2), � ≥ 3, � odd.

Solutions with at least one small index or exponent (so, which do not
satisfy the inequalities from the hypothesis of our Main Theorem) are called
trivial and appear in Theorem 3.

Before we move into details, let us do a brief description of the method.
First, we use lower bounds for linear forms in logarithms of algebraic numbers
to get a polynomial bound for n, m and x in terms of k. When k is small, we
use a variation of a result due to Dujella and Pethő on continued fractions to
lower the bounds into a computationally feasible range. When k is large, we
use the fact that the dominant root of the k-generalized Fibonacci sequence
is exponentially close to 2 and substitute it into our calculations, this way
we get a simpler linear form in logarithms which allows us to bound k and
complete our calculations.

The calculations were done with Mathematica and the running time was
about one hour on 25 computers.

2. Preliminary Results

2.1. On k-Fibonacci Numbers

The k-generalized Fibonacci sequence and its terms have an extensive list
of properties. Here, we only present some of them, namely those strictly
necessary to address our problem. For more related data, we invite the reader
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to consult [1,10], where one finds some background for this paper, as well as
[2,3,5,7,9,11,13,16,17,19].

Lemma 1. Let α1, α2, . . . , αk be all the zeroes of the characteristic polynomial
Ψk(z) = zk − zk−1 − · · · − z − 1 for the sequence F (k).
(i) Ψk is irreducible over Q[z] with one real zero outside the unit circle,

named α := α1 (sometimes denoted by α(k) to emphasize its dependence
on k), which satisfies 2(1 − 2−k) < α < 2.

(ii) The first k + 1 non-zero terms in F (k) are powers of two, namely

F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1.

Also, F
(k)
k+2 = 2k − 1 and, moreover,

F (k)
n < 2n−2 for all n ≥ k + 2. (5)

(iii) Let fk(z) := (z − 1)/(2 + (k + 1)(z − 2)). For all n ≥ 1 and k ≥ 2,

F (k)
n =

k∑
i=1

fk(αi)αi
n−1 = fk(α)αn−1 + ek(n) (6)

with |ek(n)| < 1/2.
(iv) For all k ≥ 2 and i = 2, . . . , k

fk(α) ∈ [1/2, 3/4] and |fk(αi)| < 1. (7)

Thus, fk(α) is not an algebraic integer, for any k ≥ 2.
(v) For all k ≥ 19,

fk(α) >
1
2

+
k − 1
2k+2

and fk(α)α > 1 +
k

2k+2
.

(vi) For all n ≥ 1 and k ≥ 2,

αn−2 ≤ F (k)
n ≤ αn−1. (8)

(vii) The sequences (F (k)
n )n≥1, (F (k)

n )k≥2 and (α(k))k≥2 are non decreasing.
(viii) For all n ≥ 3 and k ≥ 3, we have F

(k)
n−1/F

(k)
n+1 ≤ 3/7.

Since our equation involves the powers (F (k)
r )x for r = n ± 1, we need

the following lemma.

Lemma 2. Let k ≥ 2, x, r positive integers. Then

(F (k)
r )x = fk(α)xα(r−1)x(1 + ηr), with |ηr| <

xex/αr−1

αr−1
.

Proof. By Binet’s formula (6) and inequalities (7), it follows that

(F (k)
r )x = fk(α)xα(r−1)x

(
1 +

ek(r)
fk(α)αr−1

)x

.

Then, if we take

ηr :=
(

1 +
ek(r)

fk(α)αr−1

)x

− 1 =
x∑

j=1

(
x

j

)(
ek(r)

fk(α)αr−1

)j

;
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we get

|ηr| <

x∑
j=1

(x/αr−1)j

j!
<

x

αr−1

∑
j≥1

(x/αr−1)j−1

(j − 1)!
≤ xex/αr−1

αr−1
,

where we have used the fact that (7) implies |ek(r)| ≤ 1/2 ≤ fk(α). �

The following identity is due to Cooper and Howard (see [6]).

Lemma 3. For k ≥ 2 and n ≥ k + 2, we have

F (k)
n = 2n−2 +

�−1∑
j=1

Cn,j 2n−(k+1)j−2,

where

� :=
⌊

n + k

k + 1

⌋
and Cn,j := C

(k)
n,j = (−1)j

[(
n − jk

j

)
−

(
n − jk − 2

j − 2

)]

with the classical convention that
(

a

b

)
= 0 if either a < b or if one of a or b

is negative and �x� denotes the greatest integer less than or equal to x.

The following lemmas are consequences of the previous one and will be
essential to effectively solve the Diophantine equation (4).

Lemma 4. If k+2 ≤ r < 2ck for some c ∈ (0, 1), then the following estimates
hold:

(i) F
(k)
r = 2r−2

(
1 − r−k

2k+1 + f(r,k)
22k+3 + ζ(r, k)

)
, with |ζ(r, k)| < 4 r3

23k+3 , where
f(r, k) := δ(r − 2k + 1)(r − 2k − 2) and

δ :=

{
0, if r ≤ 2k + 2,

1, if r > 2k + 2.

Even more,

(ii) F (k)
r = 2r−2 (1 + ζ ′), with |ζ ′| <

2r

2k
<

2
2k(1−c)

.

(iii) F (k)
r = 2r−2

(
1 − r − k

2k+1
+ ζ

′′
)
, with |ζ ′′| <

4r2

22k+2
<

1
22k(1−c)

.

Proof. By Cooper and Howard’s identity in Lemma 3, we can write

F (k)
r = 2r−2

(
1 − Cr,1

2k+1
+

δCr,2

22k+2
+ ζ(r, k)

)
,

where Cr,1 = r − k, Cr,2 = (r − 2k + 1)(r − 2k − 2)/2 and

|ζ(r, k)| ≤
� r+k
k+1 �−1∑
j=3

|Cr,j |
2(k+1)j

<
∑
j≥3

2 rj

2(k+1)jj!

<
2 r3

23k+3

∑
j≥3

(r/2k+1)j−3

(j − 3)!
<

2 r3

23k+3
er/2k+1

.
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Since r < 2ck with c ∈ (0, 1), then er/2k+1
< 2. Thus, we get

|ζ(r, k)| <
4 r3

23k+3
,

which corresponds to (i). Further, since we have

r − k

2k+1
<

r

2k+1
and

f(r, k)
22k+3

<
r2

22k+3
<

r

2k+3
,

we can conclude (ii) and (iii). �

As a consequence of the previous lemma, we have the following result.

Lemma 5. For integers x ≥ 1, k ≥ 2, i ∈ {−1, 1}, n + i ≥ k + 2 and
max{n + i, x} < 2ck for some c ∈ (0, 1/2), the estimate

(
F

(k)
n+i

)x

= 2(n+i−2)x

(
1 − x(n + i − k)

2k+1
+ ξi

)

holds with

|ξi| <
24(nx)2

22k+2
<

6
22k(1−2c)

.

Proof. By item (iii) of Lemma 4 with r = n + i and c ∈ (0, 1/2), we have

F
(k)
n+i = 2n+i−2

(
1 − n + i − k

2k+1
+ ζ ′′

i

)
, with |ζ ′′

i | <
4(n + i)2

22k+2
<

1
22k(1−c)

.

Hence,

(
F

(k)
n+i

)x

= 2(n+i−2)x

(
1 − n + i − k

2k+1
+ ζ ′′

i

)x

.

We now use the binomial theorem to analyze
(

1 − n + i − k

2k+1
+ ζ ′′

i

)x

.

We put Ai := −(n + i − k)/2k+1, so |Ai| < (n + i)/2k+1. Since n + i < 2ck,
we get that

|ζ ′′
i | <

2
2(1−c)k

(
n + i

2k+1

)
.

Further, let

ξi := (1 + Ai + ζ ′′
i )x − 1 − xAi.
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Thus,

|ξi| ≤ x|ζ ′′
i | +

x∑
j=2

(
x

j

)
|Ai + ζ ′′

i |j

<
4x(n + i)2

22k+2
+

x∑
j=2

(x (|Ai| + |ζ ′′
i |))j

<
4x(n + i)2

22k+2
+

(
1.5x(n + i)

2k+1

)2 ∑
j≥0

(
1.5x(n + i)

2k+1

)j

<
x2(n + i)2

22k+2

(
4
x

+ 9
)

=
13x2(n + i)2

22k+2
<

24(nx)2

22k+2
.

In the above, we used that

x(|Ai| + |ζ ′′
i |) <

x(n + i)
2k+1

(
1 +

1
2(1−c)k

)
<

1.5x(n + i)
2k+1

.

Furthermore, since the above number is smaller than 1.5
2(1−2c)k+1 < 3

4 it follows
that the sum of the geometrical progression is at most

∑
j≥0

(
1.01x(n + i)

2k+1

)j

<
1

1 − 1.01x(n+i)
2k+1

< 4.

In addition to this, we used for the last inequality that n ≥ 3, i ≤ 1, so

(n + i)2 ≤ (n + 1)2 ≤ (4/3)2n2 and 13 × (4/3)3 < 24.

�

Finally, we present some relations between the variables in the Eq. (4).

Lemma 6. Let (n,m, x, k) be a solution of the Diophantine equation (4) with
n,m ≥ k + 1, x ≥ 1 and k ≥ 2 and assume that

k > 2 log2(m + k).

Then, one of the following holds:
(i) n − 1 ≡ −1, 0, 1 or 2 (mod k + 1). Thus, m ≡ 1 or 2 (mod k + 1).

(ii) Letting r1 be the residue of n by division with k+1, with 3 ≤ r1 ≤ k−1,
we have (r1 − 2)x ≤ 2 log2(m + k) + k − 1.

Proof. Let us take

u :=
m + k

k + 1
+ k − 2, v := k + 1; w :=

2(m + k)
k + 1

+ k − 1.

By relation (3), we have the identity F
(k)
n = 2F

(k)
n−1−F

(k)
n−k−1 for all n ≥ k+1.

Reducing modulo 2 we get that F
(k)
n ≡ F

(k)
n−k−1 (mod 2), so F (k) is periodic

modulo 2 with period k + 1. Since F
(k)
1 = F

(k)
2 = 1 and F

(k)
j = 2j−2 ≡

0 (mod 2) for j = 3, . . . , k + 1 it follows that F
(k)
n is even except when

n ≡ 1, 2 (mod k + 1). So, assuming F
(k)
n+1 and F

(k)
n−1 are both even, we get

that n − 1 �≡ −1, 0, 1, 2, (mod k + 1)). We write n − 1 = (k + 1)s1 + r1
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with r1 ∈ {3, . . . , k − 1}. Then n − 1 + k = (k + 1)(s1 + 1) + r1 − 1 and
�(n − 1 + k)/(k + 1)� − 1 = s1. We recall that by Cooper and Howard’s
formula (Lemma 3),

F
(k)
n−1 = 2n−3 +

s1∑
j=1

Cn−1,j2n−(k+1)j−3.

Note that, the exponent of 2 in the last term above is n−(k+1)s1−3 = r1−2.
Thus, 2r1−2 | F

(k)
n−1. Similarly, since n + 1 = (k + 1)s1 + r1 + 2, we have that

(n + 1) + k = (k + 1)(s1 + 1) + r1 + 1, so, we have that 2r1 | F
(k)
n+1. Hence,

2(r1−2)x |
(
F

(k)
n+1

)x

−
(
F

(k)
n−1

)x

= F (k)
m . (9)

We now use Cooper and Howard’s formula

F (k)
m = 2m−2 +

s−1∑
j=1

Cm,j2m−(k+1)j−2,

where s = �(m+k)/(k+1)�(≥ 2). Write m+k = s(k+1)+r, where 0 ≤ r ≤ k.
Then the last term of the above sum has exponent of 2 equal to

m − (s − 1)(k + 1) − 2 = s(k + 1) + r − k − (s − 1)(k + 1) − 2
= (k + 1) − k + r − 2
= r − 1.

Therefore, we have

2k+r−1 | 2m−2 +
s−2∑
j=1

Cm,j2m−(k+1)j−2,

so

F (k)
m = 2k+r−1M + 2r−1Cm,s−1

with some integer M . We proceed to calculate an upper bound for ν2(Cm,s−1).
We have

Cm,s−1 = (−1)s−1

((
m − (s − 1)k

s

)
−

(
m − (s − 1)k − 2

s − 2

))

= (−1)s−1

((
s + r

s − 1

)
−

(
s + r − 2

s − 3

))
.

Then,

Cm,s−1 =
(

s + r − 2
s − 3

)
((s + r)(s + r − 1) − (s − 1)(s − 2))

(s − 2)(s − 1)

=
(

s + r − 2
s − 3

)
(r + 1)(2s + r − 2)

(s − 1)(s − 2)

=
(

s + r − 2
r + 1

)
(r + 1)(2s + r − 2)

(s − 2)(s − 1)

|
(

s + r − 2
r

)
(2s + r − 2)
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where | denote the symbol of divisibility.
Thus, we have

ν2(Cm,s−1) ≤ ν2

(
s + r − 2

r

)
+ ν2(2s + r − 2)

≤ log2(s + r − 2) + log2(2s + r − 2).

In the first inequality we have used Kummer’s inequality (see [14]), which
states that the 2-adic valuation1 of

(
v
w

)
, is equal to the number of carries in

the sum between w and v − w in base 2, in particular

ν2

(
v

w

)
=

∞∑
i=1

(⌊ v

2i

⌋
−

⌊w

2i

⌋
−

⌊
v − w

2i

⌋)
≤ log2 v,

as the above sum contains at most �log2 v� nonzero terms and each nonzero
term is equal to 1.

Since

s + r − 2 ≤ 2s + r − 2 < s(k + 1) + r < m + k,

we get that ν2(Cm,s−1) ≤ 2 log2 (m + k) . Thus, if k > 2 log2 (m + k), then

ν2(F (k)
m ) = ν2(2k+r−1M + Cm,s−12r−1) = ν2(Cm,s−12r−1)

≤ 2 log2(m + k) + r − 1.

Since ν2(F
(k)
m ) ≥ (r1 − 2)x according to (9) and r ≤ k, we get (ii). �

3. Tools

3.1. Linear Forms in Logarithms

Since we use a Baker-type lower bound for a nonzero linear form in logarithms
of algebraic numbers, in this section we present the necessary concepts and
results.

Let η be an algebraic number of degree d over Q with minimal primitive
polynomial over the integers m(z) := a0

∏d
i=1(z − ηi) ∈ Z[z], where the

leading coefficient a0 is positive and the ηi’s are the conjugates of η. The
logarithmic height of η is given by

h(η) :=
1
d

(
log a0 +

d∑
i=1

log max{|ηi|, 1}
)

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0,
we then have h(η) = log max{|p|, q}.

For example, since Ψk(z) is the minimal primitive polynomial of α, we
have Q(α) = Q(fk(α)). Besides, by (7), we have that |fk(αi)| ≤ 1 for all
i = 1, . . . , k and k ≥ 2. Thus,

h(α) = (log α)/k and h(fk(α)) < 2 log k, for all k ≥ 2. (10)

See [5] for further details concerning the proof of (10).

1ν2(m) is the exponent of 2 in the factorizatión of m �= 0 in primes factors.



MJOM The Complete Solution of the Diophantine Equation Page 9 of 25 13

The following properties of h(·) will be used in the following sections:

h(η ± γ) ≤ h(η) + h(γ) + log 2, h(ηγ±1) ≤ h(η) + h(γ),

h(η) = h(η(i)), h(ηs) = |s|h(η) (s ∈ Z).

Our main tool is a lower bound for a non-zero linear form in logarithms
of algebraic numbers due to Matveev [15]:

Theorem 2. (Matveev’s theorem) Let K be a number field of degree D over
Q, γ1, . . . , γt be positive real numbers of K, and b1, . . . , bt rational integers.
Put

Λ := γb1
1 · · · γbt

t − 1 and B ≥ max{|b1|, . . . , |bt|}.

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} for i = 1, . . . , t. If Λ �= 0, then

|Λ| > exp(−1.4 × 30t+3 × t4.5 × D2(1 + log D)(1 + log B)A1 · · · At).

3.2. Analytical Arguments

Note that, for γ1, . . . , γt real algebraic numbers,

Λ := γb1
1 · · · γbt

t − 1 and Γ := b1 log η1 + · · · + bt log ηt,

are such that Λ = eΓ − 1. Therefore, it is a straight-forward exercise to show
that |Γ| < (1 − c)−1|Λ|, when |Λ| < c, for all constant c in (0, 1). We use this
argument several times without mentioning it.

On the other hand, in some specific parts of our work, we need the
following analytic result, which correspond to Lemma 7 from [12].

Lemma 7. If r ≥ 1 and T > (4r2)r, then
y

(log y)r
< T, implies y < 2rT (log T )r.

3.3. Reduction by Continued Fractions

The application of the results from the previous subsections give us some
large bounds on the integers variables of the Diophantine equation (4). Since
these bounds are very large, we use some results from the theory of continued
fractions and geometry of numbers to reduce them. Here, we present these
reduction techniques.

For the treatment of homogeneous linear forms in two integer variables
we use a classical theorem of Legendre.

Lemma 8. Let M be a positive integer and P1/Q1, P2/Q2, . . . the convergents
of the continued fraction [a0, a1, . . .] for τ . Let N be a positive integer such
that M < QN+1. If aM := max {a� : 0 ≤ � ≤ N + 1}, then the inequality

∣∣∣τ − v

u

∣∣∣ >
1

(aM + 2)u2
,

holds for all pairs (u, v) of integers with 0 < u < M .

Next, we present a slight variation of the result of Dujella and Pethő
(Lemma 5a in [8]). For a real number X, we use

||X|| := min{|X − n| : n ∈ Z}
to denote the distance from X to its nearest integer.
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Lemma 9. Let M and Q be positive integers such that Q > 6M , and A,B, τ, μ
be real numbers with A > 0 and B > 1. Let ε := ||μQ|| − M ||τQ||. If ε > 0,
then there is no solution to the inequality

0 < |uτ − v + μ| < A · B−w,

in positive integers u, v and w with

u ≤ M and w ≥ log(AQ/ε)
log B

.

In practical applications, Q is the denominator of a continued fraction
convergent for τ .

4. Some Considerations

Recall that we are working with integers k ≥ 2, n ≥ 1, m ≥ 2 and x ≥ 1.
First, we present some trivial solutions of Eq. (4).

Theorem 3. The trivial solutions (k, n,m, x) of Diophantine equation (4) are

(2, n, n, 1), (2, n, 2n, 2) for all n ≥ 1;
(k, 1, 2, x), (k, 2, 2, 1), (k, 2, k + 2, k), for all k ≥ 2 and x ≥ 1;

and

(2x, 3, 2x + 2, x), for all x ≥ 2.

Proof. When k = 2, according to Theorem 1, the Diophantine equation (2)
only has the solutions (n,m, x) = (n, n, 1) or (n, 2n, 2), for all n ≥ 1 or
(1, 2, x) for all x ≥ 1.

Now, let us consider some particular values of n:

• If n = 1, then (4) corresponds to F
(k)
m = 1, which has the solution m = 2

for all k ≥ 2 and x ≥ 1.
• If n = 2, then (4) corresponds to F

(k)
m = 2x − 1, which has only the

solutions (m,x) = (2, 1) and (k + 2, k) for all k ≥ 3 by the results from
[4].

• If n = 3, then, when k ≥ 3, we have that Eq. (4) corresponds to F
(k)
m =

22x − 1, which has only the solutions (k,m, x) = (x, 2x + 2, x) for all
x ≥ 2, again by the results from [4].

Hence, from now on we may assume that k ≥ 3 and n ≥ 4. Note that
by inequalities (8), we have that

αm−2 ≤ F (k)
m =

(
F

(k)
n+1

)x

−
(
F

(k)
n−1

)x

<
(
F

(k)
n+1

)x

≤ αnx,

and

α(n−1)x−1 < α(n−1)x − α(n−2)x ≤
(
F

(k)
n+1

)x

−
(
F

(k)
n−1

)x

= F (k)
m ≤ αm−1.

Thus, we can conclude that

(n − 1)x < m < nx + 2. (11)

So, if we take x = 1, the previous inequality implies that m = n or n + 1,
which do not provide solutions for Eq. (4). �



MJOM The Complete Solution of the Diophantine Equation Page 11 of 25 13

The previous arguments reduce our problem to find the solutions (k, n,
m, x) of the Diophantine equation(

F
(k)
n+1

)x

−
(
F

(k)
n−1

)x

= F (k)
m ,

with k ≥ 3, n ≥ 4, m ≥ 2 and x ≥ 2.

4.1. Non-zero Linear Forms in Logarithms

In this section, we show that the linear forms in logarithms of algebraic
numbers, to which we apply Theorem 2, are non-zero. Let us take

Λ1 := fk(α)αm−12−(n−1)x − 1;

Λ2 := (fk(α))−1α−(m−1)2(n−3)x(22x − 1) − 1;

Λ3 := fk(α)αm−1
(
F

(k)
n+1

)−x

− 1;

Λ4 := fk(α)1−xαm−1−nx − 1;

Λ5 := fk(α)x−1αnx−(m−1)(1 − α−2x) − 1,

K = Q(α) and D = [K : Q] = k. With the previous notation, we prove the
following result.

Lemma 10. Λi �= 0 for all i ∈ {1, 2, 3, 4, 5}.
Proof. For i = 1, 2, 3, 4 and 5, if Λi = 0, then

fk(α) ∈
{

α1−m2(n−1)x, α1−m2(n−3)x(22x − 1), α1−m
(
F

(k)
n+1

)x}

and

fk(α)x−1 ∈
{

αm−1−nx, αnx−(m−1)(1 − α−2x)
}

.

All these cases imply that fk(α) would be an algebraic integer since α is a
unit in OK, which contradicts (iv) from Lemma 1. �

5. The Case n ≤ k

By (ii) in Lemma 1, the equation is

F (k)
m = 2(n−1)x − 2(n−3)x. (12)

Since n ≥ 4 and

(n − 1)x − (n − 3)x = 2x > 1,

it is clear that F
(k)
m cannot be a power of 2. Thus, by (ii) of Lemma 1,

m ≥ k + 2. Using inequalities (5) and (8) in (12), we have

2(n−1)x−0.2 < F (k)
m < 2m−2 and 2(m−2)/2 < αm−2 < F (k)

m < 2(n−1)x,

which gives

(n − 1)x + 1.8 ≤ m ≤ 2(n − 1)x + 2. (13)

We next establish some additional relations between the variables in the
Diophantine equation (12).
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Lemma 11. Let 4 ≤ n ≤ k. If (k, n,m, x) is a solution of (12) with x ≥ 2,
then

x < 3.2 × 1011k4(log k)2 log m. (14)

and

m < 3.4 × 1029k9(log k)6. (15)

Proof. The Binet formula (6) implies that

|Λ1| =
∣∣∣fk(α)αm−12−(n−1)x − 1

∣∣∣ <
2

22x
. (16)

We apply Theorem 2 on inequality (16) with t := 3, K := Q(α), D := k,
B := m and

(γ1, b1) := (fk(α), 1), (γ2, b2) := (α,m − 1), (γ3, b3) := (2,−(n − 1)x);
A1 := 2k log k, A2 := 0.7, A3 := 0.7k.

We have

exp
(−4.4 × 1011 × k4(log k)2 log m

)
< |Λ1| < 2−(2x−1).

We conclude that

x < 3.2 × 1011k4(log k)2 log m,

as we wanted to prove.
Returning to Eq. (12), we also include 2(n−3)x into the above linear form

in logarithms, getting

|Λ2| =
∣∣∣(fk(α))−1α−(m−1)2(n−3)x(22x − 1) − 1

∣∣∣ <
2

αm
. (17)

We apply again Theorem 2 with t := 4, the same K, D and B, and

(γ1, b1, A1) := (fk(α),−1, 2k log k), (γ2, b2, A2) := (α,−(m − 1), 0.7),
(γ3, b3, A3) := (2, (n − 2)x, 0.7k), (γ4, b4, A4) := (22x − 1, 1, 1.4kx).

The conclusion of Theorem 2 together with the above inequality (17) yield

m < 6.7 × 1013k4(kx)(log k)2(log m)
< 2.2 × 1025k9(log k)4(log m)2,

where we have used inequality (14). Hence, by Lemma 7 with (y, r) := (m, 2)
and T := 2.2 × 1025k9(log k)4, we have

m < 3.4 × 1029k9(log k)6,

which corresponds to inequality (15). �
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5.1. When k ≤ 600

We start by looking for an upper bound on x. So, we take

Γ1 := (m − 1) log α − (n − 1)x log 2 + log(fk(α)).

Since x ≥ 2, by inequality (16) we have that

0 < |(m − 1) log α − (n − 1)x log 2 + log(fk(α))| <
3

22x
.

So, if we set

τk := (log α)/ log 2, μk := log(fk(α))/ log 2, A := 5, B := 2,

we then get

0 < |(m − 1)τk − (n − 1)x + μk| < AB−2x. (18)

For each k ∈ [4, 600], we consider M := 3.4×1029k9(log k)6, which is an upper
bound to m−1, according to inequality (15). A computer search shows that

max
k∈[4,600]

{
�log

(
AQ(k)/εk

)
/ log B�

}
≤ 1190.

Hence, by Lemma 9, we can conclude that x ≤ 595.
Now that we have bounded x, let us fix it in [2, 595] and consider

Γ2 := (m − 1) log α − (n − 3)x log 2 − log
(

22x − 1
fk(α)

)
.

Using inequality (17) in its logarithmic form, we obtain a similar inequality
to (18), namely

0 < |(m − 1)τk − (n − 3)x + μk,x| < AB−m
k , (19)

where we put

τk :=
log α

log 2
, μk,x := − log((22x − 1)/fk(α))

log 2
, A := 5 and Bk := α.

Therefore, for k ∈ [4, 600] and x ∈ [2, 595], we apply Lemma 9 to inequality
(19) using M := 3.4×1029k9(log k)6. With computational support, we obtain

max
k∈[4,600], x∈[2,595]

{
�log

(
AQ(k,x)/εk,x

)
/ log Bk�

}
≤ 1520.

Thus, by Lemma 9, we have that m ≤ 1520.
In summary, for n ≤ k, the integer solutions (k, n,m, x) of (12) must

satisfy k ∈ [4, 600], x ∈ [2, 595], m ∈ [k + 2, 1520] and, by (13)

n ∈ [4, N ] with N := min{k, 1 + �(m − 1)/x�}.

However, a computational search in the above range for solutions of the Dio-
phantine equation (12) gave us only those that we indicated in the statement
of the Main Theorem (the first family for � ∈ [2, 8] and the second family for
� ∈ [3, 9] and odd).
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5.2. When k > 600
Given that

m < 3.4 × 1029k9(log k)6 < 2k/2,

by equality (12) and Lemma 4, (ii) with c = 1/2 for r = m, we get

|2(n−1)x − 2(n−3)x − 2m−2| <
2m−1

2k/2
.

Thus, dividing by 2m−2, we get

|1 + 2(n−3)x−(m−2) − 2(n−1)x−(m−2)| <
2

2k/2
.

By (13), we have (n − 1)x − (m − 2) ≤ 0. If (n − 1)x − (m − 2) ≤ −1, then in
the above inequality the left-hand side is larger than 1/2, which contradicts
the fact that k > 600. So, m − 2 = (n − 1)x.

Now, by equality (12) and Lemma 4, (iii) with c = 1/2 for r = m, we
have ∣∣∣∣

m − k

2k+1
− 1

22x

∣∣∣∣ <
4m2

22k+2
.

Assume that the left-hand side is non-zero. Then∣∣∣∣
m − k

2k+1
− 1

22x

∣∣∣∣ ≥ 1
2max{2x,k+1} .

If 2x ≤ k + 1, the left-hand side above is ≥ 1/2k+1. If 2x ≥ k + 2, then

m − k

2k+1
− 1

22x
≥ 1

2k+1
− 1

2k+2
=

1
2k+2

.

Hence, the inequality ∣∣∣∣
m − k

2k+1
− 1

22x

∣∣∣∣ ≥ 1
2k+2

holds in all cases. Thus, we get

1
2k+2

≤ 4m2

22k+2
,

which leads to

2k/2 < 2m < 6.8 × 1029k9(log k)6.

However, this implies k < 400, a contradiction. In summary, we have

2m−2 = 2(n−1)x and 22x(m − k) = 2k+1.

Now, if m > 2k + 2 then by Lemma 4, (i) with c = 1/2 for r = m, we
obtain∣∣∣∣

f(m, k)
22k+3

∣∣∣∣ <
4m3

23k+3
, with f(m, k) = (m − 2k + 1)(m − 2k − 2),

which lead us to a contradiction on k > 600. Hence, m ≤ 2k + 2. Thus, by
Lemma 3, our equation becomes

2(n−1)x − 2(n−3)x = F (k)
m = 2m−2 − 2m−k−3(m − k).
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We get 2m−k−3(m−k) = 2(n−3)x. But also m−k = 2k+1−2x. Since m ≤ 2k+2,
we have that

k + 1 − 2x = log2(m − k) ≤ log2(k + 2),

so

x ≥ k + 1 − log2(k + 2)
2

.

However,

n − 1 =
m − 2

x
≤ 2k

(k + 1 − log2(k + 2))/2
< 5 for k > 600,

showing that n ≤ 5. Hence, n ∈ {4, 5}. Further, let � := k + 1 − 2x. Then
m = k + 2� so � ≥ 1. Next, we have

x =
m − 2
n − 1

=
k + 2� − 2

n − 1
.

Finally, since also m − k = 2(n−3)x−(m−k−3), we get that

� = (n − 3)x − (m − k − 3) =
(n − 3)
(n − 1)

(k + 2� − 2) − 2� + 3

=
(n − 3)
(n − 1)

k − 2�+1

n − 1
+

n + 3
n − 1

.

This gives

k =
2�+1 − (n + 3) + (n − 1)�

n − 3
=

{
2�+1 − 7 + 3� if n = 4;
2� − 4 + 2� if n = 5.

Since m ≤ 2k + 2, we have 2� = m − k ≤ k + 2. When n = 4, we get
2� ≤ k +2 = 2�+1 +3�− 5, and the above inequality holds when � ≥ 1. When
n = 5, we get 2� ≤ k + 2 = 2� + 2� − 2, and again the above inequality holds
for all � ≥ 1. So, we have

m = k + 2� and x =
k + 1 − �

2
,

which give us the parametric families of solutions

(k, n,m, x) = (2�+1 + 3� − 7, 4, 3 · 2� + 3� − 7, 2� + � − 3),

(2� + 2� − 4, 5, 2�+1 + 2� − 4, 2�−1 + (� − 3)/2)

indicated in the statement of the Main Theorem. In the first case � ≥ 9 (to
insure k > 600), while in the second case � ≥ 10 (again, to insure k > 600)
and � must be odd to insure that x is an integer.

6. The Case n > k

Here, as before, we need to establish some relations between the variables in
our equation. The following result gives us an inequality for x in terms of k
and n.
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Lemma 12. Let (k, n,m, x) be an integral solution of (4) with n > k ≥ 3 and
x ≥ 2, then

x < 7.2 × 1015nk4(log k)2 log n. (20)

Proof. Equation (4) can be rewritten as

fk(α)αm−1 −
(
F

(k)
n+1

)x

= −
(
F

(k)
n−1

)x

− ek(m). (21)

Dividing both sides of equation (21) by (F (k)
n+1)

x and taking absolute values,
we get

|Λ3| =
∣∣∣∣fk(α)αm−1

(
F

(k)
n+1

)−x

− 1
∣∣∣∣ < 2

(
F

(k)
n−1

F
(k)
n+1

)x

<
2

2.3x
, (22)

where we used Lemma 1, (viii).
We apply Theorem 2 with the parameters t := 3,

(γ1, b1, A1) := (fk(α), 1, 2k log k), (γ2, b2, A2) := (α,m − 1, 0.7),

(γ3, b3, A3) := (F (k)
n+1,−x, 0.7nk)

and K,D,B as for Λ1.
Now, Theorem 2 combined with inequality (22) yields

x < 1.15 × 1014nk4(log k)2 log m

< 1.2 × 1014nk4(log k)2 log(nx), (23)

where we used the fact that m < nx + 2, which follows from (11).
We next extract from (23) an upper bound for x depending on n and

k. Multiplying by n both sides of the inequality (23) we obtain

nx < 1.2 × 1014n2k4(log k)2 log(nx),

Taking y := nx and T := 1.2 × 1014n2k4(log k)2, by Lemma 7 and the fact
that n > k,

nx < 7.2 × 1015n2k4(log k)2 log n.

It remains to divide by n both sides of the previous inequality. �

We now work under the assumption that n > 700 to find an upper
bound for n,m and x in terms of k only.

Lemma 13. Let (k, n,m, x) be an integral solution of (4) with n > max{k, 700}.
Then the following inequalities

n < 8.6 × 1024k6(log k)6, x < 1.8 × 1030k7(log k)6,
m < 1.5 × 1043k10(log k)9 (24)

hold.

Proof. Given that n > k, from (20), we have that

x < 7.2 × 1015n5(log n)3. (25)
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Thus, for i = ±1,

x

αn+i−1
<

7.2 × 1015n5(log n)3

αn−2
<

1
α0.8n

, since n > 700.

Then, by Lemma 2, we can write
(
F

(k)
n+i

)x

= fk(α)xα(n+i−1)x(1 + ηn), with |ηn| <
2

α0.8n
. (26)

We now use (26) to rewrite the Eq. (4) as
∣∣fk(α)αm−1 − fk(α)xαnx(1 − α−2x)

∣∣ < 2|ηn|fk(α)xαnx(1 − α−2x) +
1
2
.

(27)

Dividing both sides of the previous inequality by fk(α)xαnx, we conclude
that

∣∣fk(α)1−xαm−1−nx − (1 − α−2x)
∣∣ < 2|ηn|(1 − α−2x) +

1
2fk(α)xαnx

< |ηn| +
1
2

(
1

αn−2

)x

<
2

α0.8n
,

where we have used the fact that 1 − α−2x < 1/2, fk(α)αn > αn−2 and
(n − 2)x + 1 ≥ 0.8n for all n > 700, k ≥ 3 and x ≥ 2. Hence,

|Λ4| =
∣∣fk(α)1−xαm−1−nx − 1

∣∣ <
2

α0.8n
+

1
α2x

<
3
ακ

, (28)

with κ := min{0.8n, 2x}.
We apply again Theorem 2 with the parameters t := 2,

(γ1, b1, A1) := (fk(α), 1 − x, 2k log k), (γ2, b2, A2) := (α,m − 1 − nx, 0.7),

and K and D as before. Moreover, we can take B := x, since |m−1−nx| ≤ x
by inequality (11).

The conclusion of Theorem 2 and the inequality (28) yield, after taking
logarithms, the following upper bound for κ:

κ < 9 × 109 k3(log k)2 log x. (29)

If κ = 0.8n, then from (29),

n < 1.2 × 1010k3(log k)2 log x,

and using the inequality (25), we obtain that

n < 1.2 × 1010k3(log k)2
(
log(7.2 × 1015) + 5 log n + 3 log log n

)

< 1010k3(log k)2(12 log n)

< 1.5 × 1011k3(log k)2 log n,

since n > 700. Hence, we apply Lemma 7 with T := 1.5 × 101k3(log k)2

and (y, r) := (n, 1) to obtain an upper bound on n depending only on k.
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Further, inserting the resulting bound on n in terms of k in (20) and using
the inequality (11), we have that

n < 8.1 × 1012k3(log k)3, x < 1.8 × 1030k7(log k)6,
m < 1.5 × 1043k10(log k)9. (30)

If κ = 2x, then by (29) and Lemma 7 with T := 4.5× 109k3(log k)2 and
(y, r) := (x, 1), we get

x < 2.2 × 1011k3(log k)3. (31)

Furthermore, given that x ≤ 0.45n we have by Lemma 2, that for i = ±1
x/αn+i−1 < 0.45n/αn−2 < 1/α0.98n since n > 700. Thus,

(
F

(k)
n+i

)x

= fk(α)xα(n+i−1)x(1 + ηn), with |ηn| <
1

α0.98n
.

We return to the inequality (27) and dividing both sides by fk(α)αm−1,
we obtain

|fk(α)x−1αnx−(m−1)(1 − α−2x) − 1| < 2|ηn|fk(α)x−1αnx−(m−1)(1 − α−2x)

+
1

2fk(α)αm−1

<
2α(fk(α)α)x−1

α0.98n
(1 − α−2x) +

1
αm−1

< 4
(

(3/2)0.8n

α0.98n

)
+

1
α0.38n

<
2

α0.38n
,

where we used the inequalities:

x ≤ 0.8n, nx − (m − 1) ≤ x, m − 1 > 0.38n,

fk(α)α < 3/2, 4(3/2)0.8n/α0.98n < 1/α0.38n and 1 − α−2x < 1,

valid for n > 700, x ≥ 2 and k ≥ 3. In conclusion, we have shown that

|Λ5| = |fk(α)x−1αnx−(m−1)(1 − α−2x) − 1| <
2

α0.38n
. (32)

Here, we apply again Theorem 2 with the parameters t := 3,

(γ1, b1, A1) := (fk(α), x − 1, 2k log k), (γ2, b2, A2) := (α, nx − (m − 1), 0.7),
(γ3, b3, A3) := (1 − α−2x, 1, 2x)

and K and D as before. Moreover, again we can take B := x. Combining the
conclusion of Theorem 2 with inequality (32), we get

n < 1.3 × 1012 × k3(log k)2x log x. (33)

By (31), we have x < 2.2 × 1011k3(log k)3, therefore

log x < log(2.2 × 1011) + 3 log k + 3 log log k < 30 log k
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since k ≥ 3. Hence, returning to inequality (33) and taking into account that
m < nx + 2, we have in summary

n < 8.6 × 1024k6(log k)6, x < 2.2 × 1011k3(log k)3,
m < 2 × 1036k9(log k)9. (34)

Comparing inequalities (30) and (34), we get that

n < 8.6 × 1024k6(log k)6, x < 1.8 × 1030k7(log k)6,
m < 1.5 × 1043k10(log k)9,

as we wanted to show. �

The inequalities in Lemma 13 were obtained under the assumptions that
n > 700. However, when n ≤ 700 the inequalities (11) and (25) yield smaller
upper bounds for x and m in terms of k.

6.1. When k ≤ 700
Here, we prove the following result where we establish some computational
ranges to search for the integral solutions of equation (4).

Lemma 14. Let (k, n,m, x) be an integral solution of Diophantine equation
(4) with n > k, k ≤ 700 and x ≥ 2. Then m ∈ [M0,M1] with

M0 := 	(n − 1)x + 1.8
 and M1 := 2(n − 1)x + 2. (35)

Furthermore, if n > 700, then n ≤ 1810 and x ≤ 1260, otherwise x ≤ 1150.

Proof. Note that the range for m is given by inequality (13). Now, let us
start assuming n > 700, which allows us to use the inequalities of Lemma 13
in order to obtain upper bounds on n, x and m. Taking into account the
inequality (28), we take

Γ4 := (x − 1) log(fk(α)−1) + (m − 1 − nx) log α.

Then, using the analytic argument of Sect. 3.2, we get

|Γ4| <
6
ακ

, with κ = min{0.8n, 2x}.

Dividing the above inequality by (x − 1) log α, we obtain∣∣∣∣
log(fk(α)−1)

log α
− nx + 1 − m

x − 1

∣∣∣∣ <
6

ακ(x − 1) log α
<

10
ακ(x − 1)

. (36)

Now, we need to distinguish two cases:
• Case m = 1 + nx. Here, the inequality (36) correspond to∣∣∣∣

log(fk(α)−1)
log α

∣∣∣∣ <
10

ακ(x − 1)
.

A quick computational search shows that the left-hand side of the previ-
ous inequality is greater than 0.7 for all k ∈ [3, 700]. Thus, since x ≥ 2,
we get

0.7 <
10
ακ

. (37)
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Now, since κ = min{0.8n, 2x}, if we assume that κ = 0.8n, then, by
inequality (37), we get n ≤ 6, a contradiction with our assumption
about n. Therefore, we have κ = 2x, which together with inequality
(37) implies x = 2. Now, by inequality (32) with m = 1 + nx and using
k ∈ [3, 700], we get

0.5 < | log(fk(α)) + log
(
1 − α−4

) | < 4/α0.38n,

where the left-hand side was found using computations. However, this
inequality implies n ≤ 11, again a contradiction.

• Case m �= 1 + nx: Here we apply Lemma 8 to inequality (36) using
k ∈ [3, 700]. To do it, let us take τk := log(fk(α)−1)/ log α. So, by
inequality (24), we look for the integer tk such that

Q
(k)
tk

> 1.8 × 1030k7(log k)6 > x − 1,

and take aM := max{a
(k)
i : 0 ≤ i ≤ tk, 3 ≤ k ≤ 700}. Then, by

Lemma 8, we have that
∣∣∣∣τk − nx − (m − 1)

x − 1

∣∣∣∣ >
1

(aM + 2)(x − 1)2
. (38)

Hence, combining the inequalities (36) and (38), and taking into account
that aM + 2 < 1.1 × 10208 (confirmed by computations), we obtain

ακ < 1.1 × 10209x.

If κ = 0.8n, since n > 700 ≥ k, by inequality (25) we have

α0.8n < 8.6 × 10224n5(log n)3,

which implies

n ≤ 1010. (39)

Thus, let us consider

Γ3 := log fk(α) + (m − 1) log α − x log F
(k)
n+1, (40)

with k ∈ [3, 700] and n ∈ [701, 1010]. Note that, by inequality (22), we
have

|Γ3| <
4

2.3x
.

Dividing both sides by log F
(k)
n+1, we get

∣∣∣∣∣(m − 1)

(
log α

log F
(k)
n+1

)
− x +

log fk(α)

log F
(k)
n+1

∣∣∣∣∣ <
3

2.3x
(41)

where we used that log F
(k)
n+1 ≥ log F

(3)
5 = log 7. In order to apply

Lemma 9, we take

γk,n :=
log α

log F
(k)
n+1

, μk,n :=
log fk(α)

log F
(k)
n+1

A := 3 and B := 2.3,
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for k ∈ [3, 700] and n ∈ [701, 1010] with M := 3.7 × 1033k7(log k)6,
thanks to inequalities (13) and (24). We obtain

max
k∈[3,700], n∈[701,1010]

{
�log

(
AQ(k,n)/εk,n

)
/ log B�

}
≤ 1260,

which, by Lemma 9, implies

x ≤ 1260. (42)

Now, if κ = 2x, then α2x < 1.1 × 10209x, which implies

x ≤ 360. (43)

So, we go back to inequality (32) and take

Γ5 := (x − 1) log(fk(α)) + (nx − (m − 1)) log α + log
(
1 − α−2x

)
.

Since |Γ5| < 4/α0.38n, dividing by log α, we obtain∣∣∣∣∣(x − 1)
log(fk(α))

log α
+

log
(
1 − α−2x

)
log α

− (m − 1 − nx)

∣∣∣∣∣ <
7

α0.38n
.

We take

τk,x := (x − 1)
log(fk(α))

log α
+

log
(
1 − α−2x

)
log α

.

We have that

min
k∈[3,700], x∈[2,360]

‖τk,x‖ < |τk,x − (m − 1 − nx)| <
7

α0.38n
.

Computationally, we found that the minimum on the left-hand of the
previous inequality is at least 7 × 10−207. Therefore, we get

n ≤ 1810. (44)

To sum up, if n > 700, then by inequalities (39), (42), (43) and (44),
all the positive integral solutions (k, n,m, x) of Eq. (4) satisfy n ≤ 1810 and
x ≤ 1260.

Finally, let us consider n ≤ 700. Since in this section we are working with
k ≤ 700 and n > k, it is clear that k ≤ 699. So, let us use Γ3 as we defined
it in (40) to proceed as we did with (41). This time we take k ∈ [3, 699] and
n ∈ [k +1, 700] with M := 2.6×1033k7(log k)6, which is given by inequalities
(13) and (24). We get

max
k∈[3,699], n∈[k+1,700]

{
�log

(
AQ(k,x)/εk,x

)
/ log Bk�

}
≤ 1150,

which, by Lemma 9, implies x ≤ 1150. �

In conclusion, our problem is now reduced to a computational search
for integral solutions of the Diophantine equation (4) in the ranges indicated
by Lemma 14; i.e., in the ranges k ∈ [3, 700], m ∈ [M0,M1] (with the limits
given by (35)),

n ∈ [701, 1810] and x ∈ [2, 1260],



13 Page 22 of 25 C. A. Gómez et al. MJOM

or

n ∈ [k + 1, 700] and x ∈ [2, 1150].

A computer search using Lemma 6 allow us to conclude that there are no
integral solutions for Eq. (4) in these ranges.

6.2. When k > 700

From now on, we assume that k > 700. We show that there are no such
solutions. We have, from (24), that

n + i < 8.7 × 1024k6(log k)6 < 20.24k, m < 1.5 × 1043k10(log k)9 < 20.48k.

We recall that n ≥ k + 1, so m > k + 1 according to (11). By item (iii) of
Lemma 4 (for m with c := 0.48) and Lemma 5 (for n + i with i ∈ {±1} and
c := 0.24), we conclude that

F (k)
m = 2m−2

(
1 − m − k

2k+1
+ ζ ′′

)
, |ζ ′′| <

1
21.04k

;

(
F

(k)
n+i

)x

= 2(n+i−2)x

(
1 − δi

x(n + i − k)
2k+1

+ δiξi

)
, |ξi| <

6
21.04k

,

where δ1 = 1 for all n ≥ k + 1 and

δ−1 =
{

1, for n ≥ k + 3;
0, for n ∈ {k + 1, k + 2}.

Now, let us take M = max{(n − 1)x,m − 2} and N = min{(n − 1)x,m − 2},
so, we get

|2(n−1)x − 2(n−3)x − 2m−2| ≤ 2M

(
6(1 + δi)

21.04k
+

1
21.04k

+
1 + δi

20.52k+1
+

1
20.52k+1

)

<
2M+2

20.52k
.

In the above, we used that x(n+ i−k) < x(n−1) < m < 20.48k for i ∈ {±1},
where the second inequality follows from (11), in addition to k > 700. After
dividing by 2M becomes

1 − 1
2M−N

− 1
22x

<
1

2M

∣∣∣2(n−1)x − 2(n−3)x − 2m−2
∣∣∣ <

4
20.52k

.

If M > N , then the left-hand side is at least 1/4, so 20.52k < 16, a contra-
diction since k > 700. Thus, M = N , or, equivalently, (n − 1)x = m − 2. We
next get

∣∣∣∣
x(n − k + 1)

2k+1
− m − k

2k+1
− 1

22x

∣∣∣∣ <
8

21.04k
,

or ∣∣∣∣
x(n − k + 1) − (m − k)

2k+1
− 1

22x

∣∣∣∣ <
8

21.04k
.
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But

x(n − k + 1) − (m − k) = x(n − k + 1) − (m − 2) + (k − 2)
= x(n − k + 1 − (n − 1)) + k − 2
= (k − 2)(1 − x) < 0.

Thus, ∣∣∣∣
x(n − k + 1) − (m − k)

2k+1
− 1

22x

∣∣∣∣ >
(k − 2)(x − 1)

2k+1
>

1
2k+1

,

and we get
1

2k+1
<

8
21.04k

,

or 20.04k < 16, a contradiction with k > 700. Thus, we showed that our
Diophantine equation has no solution in the range n > k > 700.
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