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Abstract. Many special functions and analytic constants allow for a prob-
abilistic representation in terms of inverse moments of [0, 1]-valued ran-
dom variables. Under this assumption, we give fast computations of
them with an explicit upper bound for the remainder term. One of the
main features of the method is that the coefficients of the main term of
the approximation always contain negative binomial probabilities which,
in turn, can be precomputed and stored. Applications to the arctangent
function, Dirichlet functions and their nth derivatives, and the Catalan,
Gompertz, and Stieltjes constants are provided.
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1. Introduction

Series acceleration is a widely investigated problem in the literature which
dates back to the times of Euler and Stirling. Many different methods to
accelerate the speed of convergence of a series have been given; a few of them
will be discussed in Sect. 3 when considering particular examples.

In this paper, we propose a new method close in spirit to the linear
acceleration methods for alternating series developed by Cohen et al. [1],
Borwein [2], and Coffey [3], among other authors. Such a method is based
on the fact that many special functions and analytic constants allow for a
probabilistic representation in terms of quantities of the form

E
g(U)

(1 + tU)α
, t > 0, α > 0, (1.1)

where E stands for mathematical expectation, U is a random variable tak-
ing values in [0, 1], and g is a bounded measurable function defined in this
interval.
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As we will see in Theorem 2.2 in Sect. 2, the proposed method computes
(1.1) by means of a sum of k terms with an explicitly bounded remainder
term of the order of (t/(t+2))k. From a computational point of view, it may
be of interest to point out that given a series of the form

∞∑

n=0

f(n)rn, 0 < r < 1;

it is not only important that the geometric rate r be as small as possible,
but also that the coefficients f(n) be easy to compute, since such a series can
also be written as

∞∑

n=0

(f(2n) + rf(2n + 1)) r2n,

thus improving the geometric rate from r to r2, but at the price of compli-
cating the coefficients. Of course, this procedure can be successively applied.
Regarding this kind of considerations, one of the main features of our method
is that the coefficients of the main term of the approximation always involve
point or tail negative binomial probabilities which, in turn, can be precom-
puted and stored, as done in many statistical packages. Another interesting
feature is that we can give simple sufficient conditions to obtain rational
approximations (see the comments following Theorem 2.2).

The paper is organized as follows. In Sect. 2, we consider the negative
binomial process and give a geometric bound for its tail probabilities to state
our main result (Theorem 2.2), which consists of the computation of (1.1).
Section 3 is devoted to applications. Actually, we give fast computations of
the arctangent function, Dirichlet functions and their nth derivatives, and the
Catalan, Gompertz and Stieltjes constants. In each case, a brief comparative
discussion with other methods and results in the literature is provided.

2. The Main Result

Denote by N the set of positive integers and by N0 = N∪{0}. Let t > 0. Recall
(cf. Çinlar [4, pp. 279–282]) that the negative binomial process (Xα(t))α≥0

is a stochastic process starting at the origin, having independent stationary
increments and right-continuous nondecreasing paths, and such that, for any
α > 0, the random variable Xα(t) has the negative binomial distribution with
parameters α and success probability 1/(t + 1), that is

P (Xα(t) = j) =
(

α − 1 + j

j

)(
t

t + 1

)j 1
(t + 1)α

=
(−α

j

) (
− t

t + 1

)j 1
(t + 1)α

, j ∈ N0.

(2.1)

Note that, for any v ∈ R with |v| < (t + 1)/t, we have

EvXα(t) =
∞∑

j=0

(−α

j

)(
− tv

t + 1

)j 1
(t + 1)α

=
1

(1 + t(1 − v))α
. (2.2)
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The following estimate of the tail probabilities of Xα(t) will be needed.

Lemma 2.1. Let α, t > 0. For any k ∈ N, we have

P (Xα(t) ≥ k) ≤ Cα(t, k)
(

t

t + 1

)k

,

where

Cα(t, k) =

⎧
⎪⎪⎨

⎪⎪⎩

(t + 1)1−αe−(1−α)Hk , 0 < α ≤ 1

(
ke1+α/2k

α(t + 1)

)α

, 1 < α,

(2.3)

and Hk is the kth harmonic number.

Proof. Suppose first that 0 < α ≤ 1. Using the inequality 1 − x ≤ e−x,
0 ≤ x ≤ 1, we have from (2.1)

P (Xα(t) = j) ≤ e−(1−α)Hj

(
t

t + 1

)j 1
(t + 1)α

, j ∈ N.

This readily implies the result in this case. Suppose now that α > 1. Let
θ > 0 be such that

eθ <
t + 1

t
. (2.4)

Using (2.2) and Chebyshev’s inequality (cf. Petrov [5, p. 54–58 ], we have

P (Xα(t) ≥ k) ≤ EeθXα(t)

eθk
= e−α log(1−t(eθ−1))−kθ. (2.5)

Choose in (2.5) the value of θ minimizing the exponent, that is,

1 − t(eθ − 1) =
αteθ

k
⇔ θ = log

k

α + k
+ log

t + 1
t

. (2.6)

Observe that this value satisfies (2.4). We, therefore, have from (2.5) and
(2.6)

P (Xα(t) ≥ k)

≤ exp
(

α log
k

αt
− (α + k) log

(
1 − α

α + k

)
− (α + k) log

t + 1
t

)
.

(2.7)

Note that

− (α + k) log
(

1 − α

α + k

)
=

∞∑

l=1

1
l

αl

(α + k)l−1

= α + α

∞∑

j=1

1
j + 1

(
α

α + k

)j

≤ α +
α

2

∞∑

j=1

(
α

α + k

)j

= α
(
1 +

α

2k

)
.

(2.8)
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We finally obtain from (2.3), (2.7), and (2.8)

P (Xα(t) ≥ k) ≤ eα(1+α/2k)

(
k

αt

)α (
t

t + 1

)α+k

= Cα(t, k)
(

t

t + 1

)k

.

This completes the proof. �

Let g : [0, 1] → [−1, 1] be a measurable function. Having in mind the
constants defined in (2.3), we state our main result.

Theorem 2.2. Let U be a random variable taking values in [0, 1] and α, t > 0.
For any k ∈ N, we have

∣∣∣∣E
g(U)

(1 + tU)α
− Mα(t, k)

∣∣∣∣ ≤ Cα(t/2, k)
(

t

t + 2

)k

, (2.9)

where

Mα(t, k) =
k−1∑

j=0

P (Xα(t/2) = j)Eg(U)(1 − 2U)j

=
k−1∑

j=0

(−α

j

)
tjP (Xα+j(t/2) + j ≤ k − 1)Eg(U)U j .

(2.10)

Proof. Let u ∈ [0, 1]. Replacing v by 1 − 2u and t by t/2 in (2.2), we get

g(u)
(1 + tu)α

= g(u)E(1 − 2u)Xα(t/2). (2.11)

Denote by

Mk(u) =
k−1∑

n=0

P (Xα(t/2) = n)g(u)(1 − 2u)n, k ∈ N. (2.12)

Since max(|g(u)|, |1 − 2u|) ≤ 1, we have from (2.11) and (2.12)

∣∣∣∣
g(u)

(1 + tu)α
− Mk(u)

∣∣∣∣ ≤ P (Xα(t/2) ≥ k) ≤ Cα(t/2, k)
(

t

t + 2

)k

, (2.13)

where the last inequality follows from Lemma 2.1. On the other hand, using
the combinatorial identity

(
n

j

)(−α

n

)
=

(−α

j

)(−(α + j)
n − j

)
, n ∈ N0, j = 0, 1, . . . , n,
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we can rewrite (2.12) as

Mk(u)
g(u)

=
k−1∑

n=0

P (Xα(t/2) = n)
n∑

j=0

(
n

j

)
(−2u)j

=
k−1∑

j=0

(−α

j

)
(−2u)j

k−1∑

n=j

(−(α + j)
n − j

) (
− t/2

t/2 + 1

)n 1
(t/2 + 1)α

=
k−1∑

j=0

(−α

j

)
(tu)j

k−1−j∑

l=0

(−(α + j)
l

)(
t/2

t/2 + 1

)l 1
(t/2 + 1)α+j

=
k−1∑

j=0

(−α

j

)
(tu)jP (Xα+j(t/2) ≤ k − 1 − j). (2.14)

Hence, the conclusion follows by replacing u by the random variable U in
(2.12), (2.13), and (2.14), and then taking expectations. �

With respect to Theorem 2.2, some remarks are in order. First, the
negative binomial probabilities in (2.10) do not depend upon the random
variable U , and therefore can be precomputed to evaluate any special function
or analytic constant of form (1.1). Second, in may usual cases, we find g(U) =
Um, for some m ∈ N0. This implies that the approximants in (2.10) are
rational, whenever α, t and the moments EU j , j ∈ N, are rational, too.
Third, formula (2.10) gives us two alternative ways to compute the main
term of the approximation. In each particular example, we are free to choose
that providing us the simplest expression.

Finally, the binomial expansion

E
g(U)

(1 + tU)α
=

∞∑

j=0

(−α

j

)
tjEg(U)U j (2.15)

is only a formal power series, unless 0 < t ≤ 1. In many of the examples
considered in the following section, we find t = 1. In such a case, the series in
(2.15) has a poor rate of convergence. By the second expression in (2.10), if we
multiply the jth term in (2.15) by the probability P (Xα+j(1/2)+ j ≤ k −1),
j = 0, 1, . . . , k −1, we obtain an approximation at the geometric rate 1/3. As
follows from (2.1), such probabilities decrease from P (Xα(1/2) ≤ k − 1) to

P (Xα+k−1(1/2) = 0) = (2/3)α+k−1.

This decreasing property follows from the general fact that the negative bi-
nomial process has nondecreasing paths, which implies that

Xα+j(t) + j ≤ Xα+j+1(t) + j + 1, α, t > 0, j ∈ N0,

and therefore

P (Xα+j+1(t) + j + 1 ≤ k) ≤ P (Xα+j(t) + j ≤ k).
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3. Applications

In this section, we apply Theorem 2.2 to obtain fast computations of various
different analytic functions and constants. In each case, we use the simplest
expression of the approximant in (2.10).

3.1. The Arctangent Function

This function can be represented as

arctan(t)
t

= E
1

1 + t2U2
, t ∈ R, (3.1)

where U is a random variable uniformly distributed on [0, 1].

Corollary 3.1. Let t ∈ R. For any k ∈ N, we have
∣∣∣∣∣∣
arctan(t)

t
− 2

k−1∑

j=0

Aj
t2j

(t2 + 2)j+1

∣∣∣∣∣∣
≤

(
t2

t2 + 2

)k

,

where

Aj =
j∑

l=0

(
j

l

)
(−2)l

2l + 1
.

Proof. In view of (3.1), it suffices to apply Theorem 2.2 with α = 1, g(x) = 1,
0 ≤ x ≤ 1, replacing tU by (tU)2, and using the first expression in (2.10). In
this last respect, note that

E(1 − 2U2)j =
j∑

l=0

(
j

l

)
(−2)lEU2l = Aj , j = 0, 1, . . . , k − 1.

�

Euler’s classical formula for the arctangent function (see Chien-Lih [6]
for a short proof of it) reads as

arctan(t)
t

=
∞∑

j=0

22j(j!)2

(2j + 1)!
t2j

(t2 + 1)j+1
, t ∈ R. (3.2)

Observe that the geometric rate of convergence given in Corollary 3.1 is
slightly better than that in (3.2). As a counterpart, the coefficients of the
main term of the approximation in Corollary 3.1 are slightly more involved
than those in (3.2).

3.2. Dirichlet Functions

For any a > 0, we consider the Dirichlet function

ηa(s) =
∞∑

j=0

(−1)j

(aj + 1)s
, s > 0.

For any s > 0, let Xs be a random variable having the gamma density

ρs(θ) =
1

Γ(s)
θs−1e−θ, θ > 0. (3.3)
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Observe that the Laplace transform of Xs is given by

Ee−λXs =
1

(λ + 1)s
, λ ≥ 0. (3.4)

We can therefore represent the Dirichlet function as

ηa(s) =
∞∑

j=0

(−1)jEe−ajXs = E

⎛

⎝
∞∑

j=0

(−e−aXs)j

⎞

⎠ = E
1

1 + e−aXs
, s > 0.

(3.5)

Since Xs → 0, a.s., as s → 0, this representation readily implies that ηa(0) =
1/2.

Corollary 3.2. Let a > 0 and s ≥ 0. For any k ∈ N, we have
∣∣∣∣∣∣
ηa(s) −

k−1∑

j=0

(−1)j

(aj + 1)s
P (X1+j(1/2) + j ≤ k − 1)

∣∣∣∣∣∣
≤ 1

3k
.

Proof. Starting from (3.5), it is enough to apply Theorem 2.2 with α =
t = 1, g(x) = 1, 0 ≤ x ≤ 1, and U = e−aXs . The result follows using the
second representation of the main term in (2.10) and taking into account that
C1(1/2, k) = 1 and

EU j =
1

(aj + 1)s
, j ∈ N0,

as follows from (3.4). �

Note that Corollary 3.2 gives us a uniform approximation in s ≥ 0 of the
Dirichlet function at the geometric rate 1/3. On the other hand, this result
also provides a fast computation of the Catalan constant κ = η2(2).

Integral representations for the Lerch transcendent function, which in-
cludes η1(s) and η2(s) as particular cases, were obtained by Guillera and
Sondow [7]. Borwein [2] gave various efficient algorithms to compute η1(s)
for complex numbers s with R(s) > c, for some c ∈ R, at geometric rates
1/(3 +

√
8) or 1/4, depending on the algorithm. Using the Markov–Wilf–

Zeilberger method, Hessami Pilehrood and Hessami Pilehrood [8] produced
fast convergent series for η2(2n + 1), η2(2n + 2), and η2(2n + 3), n ∈ N0. In
particular, these authors showed that the Catalan constant can be computed
by the following convergent series at the geometric rate 2−10:

κ =
1
64

∞∑

n=1

(−1)n−1256nq(n)(
8n
4n

)(
2n
n

)
n3(2n − 1)(4n − 1)2(4n − 3)2

,

q(n) being a polynomial of degree 6.

3.3. Derivatives of Dirichlet Functions

The nth derivative of ηa(s) is given by

η(n)
a (s) =

∞∑

j=0

(−1)j logn(aj + 1)
(aj + 1)s

, s > 0, n ∈ N. (3.6)
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To give a probabilistic representation of such derivatives, we will need the
following two ingredients. In the first place, recall that the Stirling numbers
of the second kind S(n,m) are defined by

xn =
n∑

m=1

S(n,m)(x)m, n ∈ N, x ∈ R, (3.7)

where (x)m is the falling factorial, i.e., (x)m = x(x−1) · · · (x−m+1), m ∈ N

((x)0 = 1).

Lemma 3.3. Let 0 ≤ r < 1. For any n ∈ N, we have
∞∑

j=0

(−1)jjnrj =
n∑

m=1

(−1)mS(n,m)m!
rm

(1 + r)m+1
.

Proof. From (3.7), we see that
∞∑

j=0

(−1)jjnrj =
∞∑

j=0

(−1)jrj
n∑

m=1

S(n,m)(j)m =
n∑

m=1

S(n,m)
∞∑

j=m

(−1)j(j)mrj

=
n∑

m=1

(−1)mS(n,m)m!
rm

(1 − r)m+1

∞∑

l=0

(
m + l

l

)
(−1)lrl(1 − r)m+1

=
n∑

m=1

(−1)mS(n,m)m!
rm

(1 + r)m+1
,

where the last equality follows by choosing in (2.2) v = −1, α = m + 1, and
r = t/(t + 1). �

In the second place, let U and T be two independent random variables,
such that U is uniformly distributed on [0, 1] and T has the exponential den-
sity ρ1(θ) defined in (3.3). Denote by (Uk)k≥1 and (Tk)k≥1 two sequences of
independent copies of U and T , respectively, both of them mutually indepen-
dent. Set

Wn = U1T1 + · · · + UnTn, n ∈ N (W0 = 0).

Since U and T are independent, we have from (3.4)

Ee−λUT = E
1

1 + λU
=

log(λ + 1)
λ

, λ ≥ 0, (3.8)

thus implying that

Ee−λWn = (Ee−λUT )n =
logn(λ + 1)

λn
, n ∈ N0, λ ≥ 0. (3.9)

Assume that Wn and Xs, as defined in (3.3), are independent and define the
(0, 1)-valued random variable

V := Va(n, s) = e−a(Wn+Xs), a, s > 0, n ∈ N. (3.10)

The following auxiliary result provides a probabilistic representation of
η
(n)
a (s).
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Lemma 3.4. Let a, s > 0. For any n ∈ N, we have

η(n)
a (s) = an

n∑

m=1

(−1)mS(n,m)m!E
V m

(1 + V )m+1
.

Proof. Using (3.4), (3.9), (3.10), and the independence of the random vari-
ables involved, we have

η
(n)
a (s)
an

=
∞∑

j=0

(−1)j logn(aj + 1)
an

Ee−ajXs =
∞∑

j=0

(−1)jjnEV j

= E

⎛

⎝
∞∑

j=0

(−1)jjnV j

⎞

⎠ = E

(
n∑

m=1

(−1)mS(n,m)m!
V m

(1 + V )m+1

)
,

where, in the last equality, we have applied Lemma 3.3 with r = V . �
As in the preceding example, by setting s = 0 in Lemma 3.4, we obtain

a closed form expression for η
(n)
a (0). For instance, it follows from (3.10) that:

η′
a(0) = −aE

e−aUT

(1 + e−aUT )2
.

We are in a position to give fast computations of η
(n)
a (s).

Corollary 3.5. Let a > 0, s ≥ 0, and n ∈ N. For any k ∈ N, we have
∣∣∣∣∣η

(n)
a (s) −

n∑

m=1

(−1)mS(n,m)m!
k−1∑

j=0

(−(m + 1)
j

)
logn(a(m + j) + 1)

(m + j)n(a(m + j) + 1)s

× P (Xm+1+j(1/2) + j ≤ k − 1)

∣∣∣∣∣ ≤ Da(n, k)
1
3k

,

where

Da(n, k) = an
n∑

m=1

S(n,m)m!
(

2ke1+(m+1)/2k

3(m + 1)

)m+1

. (3.11)

Proof. We apply Theorem 2.2 with t = 1, α = m + 1, and g(x) = xm, and
use the second expression in (2.10) for the main term of the approximation
to obtain

∣∣∣∣∣∣
E

V m

(1 + V )m+1
−

k−1∑

j=0

(−(m + 1)
j

)
P (Xm+1+j(1/2) + j ≤ k − 1)EV m+j

∣∣∣∣∣∣

≤ Cm+1(1/2, k)
1
3k

=
(

2ke1+(m+1)/2k

3(m + 1)

)m+1
1
3k

,

(3.12)

where the last equality follows from (2.3). By (3.4), (3.9), and the indepen-
dence of the random variables involved, we have

EV m+j = Ee−a(m+j)WnEe−a(m+j)Xs =
logn(a(m + j) + 1)

(a(m + j))n

1
(a(m + j) + 1)s

.
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This, together with (3.12) and Lemma 3.4, shows the result. �

As in Corollary 3.2, Corollary 3.5 gives a uniform approximation in
s ≥ 0 of η

(n)
a (s) at the geometric rate 1/3. For large values of k, the bound

Da(n, k) in (3.11) grows as a polynomial in k of degree n+1. We finally point
out that fast computations of η

(n)
a (s) at the geometric rate 1/3, with more

involved coefficients in the main term of the approximation, were obtained
in [9] using some differentiation formulas for the gamma process..

3.4. The Gompertz Constant

This constant is the value of several improper integrals, such as

G =
∫ ∞

0

log(x + 1)e−x dx =
∫ ∞

0

e−x

x + 1
dx = 1 − e

∫ ∞

0

e−(x+1)

(x + 1)2
dx.

(3.13)

A series representation of G is given by (cf. Mezö [10])

G = e

∞∑

n=1

(−1)n+1

n!n
− eγ = 0.596347 · · · ,

(3.14)

where γ is Euler’s constant. It turns out that the integral on the right-hand
side in (3.13) can be written as

I :=
∫ ∞

0

e−(x+1)

(x + 1)2
dx =

m∑

i=0

1
λi

∫ 1

0

e−λi(x+1)

(x + 1)2
dx +

1
λm

∫ ∞

1

e−λm(x+1)

(x + 1)2
dx,

(3.15)

where m ∈ N0 and λi = 2i, i ∈ N0. Formula (3.15) follows by induction after
noting that, with the change x = 2u + 1, we have for any λ > 0

1
λ

∫ ∞

1

e−λ(x+1)

(x + 1)2
dx =

1
2λ

(∫ 1

0

e−2λ(u+1)

(u + 1)2
du +

∫ ∞

1

e−2λ(u+1)

(u + 1)2
du

)
.

In view of (3.15), denote

Iλ =
∫ 1

0

e−λx

(x + 1)2
dx, λ > 0. (3.16)

The Poisson–Gamma relation (cf. Johnson et al. [11, p. 164]) states that

qj(λ) := 1 −
j∑

l=0

λle−λ

l!
=

∫ λ

0

xje−x

j!
dx, λ > 0, j ∈ N0. (3.17)

The following auxiliary result gives a fast computation of Iλ.

Lemma 3.6. Let λ > 0. For any k ∈ N, we have
∣∣∣∣∣∣
Iλ −

k−1∑

j=0

(−1)j (j + 1)!
λj+1

qj(λ)P (X2+j(1/2) + j ≤ k − 1)

∣∣∣∣∣∣
≤ e4

9λ

k2

3k
.
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Proof. Let Tλ be a random variable having the truncated exponential density

ρλ(θ) =
λe−λθ

1 − e−λ
, 0 ≤ θ ≤ 1. (3.18)

By (3.16), we see that

Iλ =
1 − e−λ

λ

∫ 1

0

1
(1 + θ)2

ρλ(θ) dθ =
1 − e−λ

λ
E

1
(1 + Tλ)2

. (3.19)

On the other hand, by (3.17) and (3.18), we have for any j ∈ N0

ET j
λ =

λ

1 − e−λ

∫ 1

0

θje−λθ dθ =
j!

(1 − e−λ)λj

∫ λ

0

xje−x

j!
dx

=
j!

(1 − e−λ)λj
qj(λ).

(3.20)

Finally, applying Theorem 2.2 with t = 1, α = 2, and g(x) = 1, 0 ≤ x ≤ 1,
and using the second expression in (2.10), we get

∣∣∣∣∣∣
E

1
(1 + Tλ)2

−
k−1∑

j=0

(−2
j

)
P (X2+j(1/2) + j ≤ k − 1)ET j

λ

∣∣∣∣∣∣

≤ C2(1/2, k)
1
3k

≤ e4

9
k2

3k
,

(3.21)

where the last inequality follows from (2.3). The conclusion follows from
(3.19)–(3.21) and some simple computations. �

In the following result, we give a fast computation of I, as defined in
(3.15). By (3.13), this is tantamount to compute G in a fast way.

Corollary 3.7. Let qj(λ) be as in (3.17) and λj = 2j, j ∈ N0. For any k,m ∈
N, such that 2m+1 ≥ k log 3 − 2 log k, we have

∣∣∣∣∣∣
I −

k−1∑

j=0

(−1)j(j + 1)!P (X2+j(1/2) + j ≤ k − 1)
m∑

i=0

1
λj+2

i eλi

qj(λi)

∣∣∣∣∣∣

≤
(

e4

9

m∑

i=0

1
λ2

i eλi
+

1
2m+1

)
k2

3k
.

(3.22)

Proof. From (3.15) and (3.16), we have
∣∣∣∣∣I −

m∑

i=0

1
λieλi

Iλi

∣∣∣∣∣ ≤ e−2λm

2λm
=

1
2m+1 exp(2m+1)

. (3.23)

Applying Lemma 3.6 to each one of the terms Iλi
, we see from (3.23) that

the left-hand side in (3.22) is bounded above by

e4

9
k2

3k

m∑

i=0

1
λ2

i eλi
+

1
2m+1 exp(2m+1)

≤
(

e4

9

m∑

i=0

1
λ2

i eλi
+

1
2m+1

)
k2

3k
,
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since, by assumption, exp(2m+1) ≥ 3k/k2. This, together with (3.23), shows
(3.22) and completes the proof. �

Note that, for a fixed k, the number m of terms on the left-hand side in
(3.22) has the order of log k, as k → ∞. We point out that Mezö [10] proved
the identity

G =
∞∑

n=0

log(n + 1)
n!

−
∞∑

n=0

Cn+1 {en!} − 1
2
,

where Cn is the nth Gregory coefficient and {x} stands for the fractional part
of x.

Using (3.14), we can obtain from Corollary 3.7 a fast, but not rational,
approximation of Euler’s constant γ. Rational approximations of γ are avail-
able in the literature. For instance, Hessami Pilehrood and Hessami Pilehrood
[12] provided a continued fraction expansion converging subexponentially to
γ and Prévost and Rivoal [13] used Padé approximation methods to obtain
sequences approximating γ at a geometric rate (see also [14] for a fast rational
approximation to γ using the standard Poisson process).

3.5. Stieltjes Constants

These constants are the coefficients (γm)m≥0 in the Laurent expansion of the
Riemann zeta function ζ(z) about its simple pole at z = 1, that is

(z − 1)ζ(z) = 1 +
∞∑

m=0

(−1)mγm

m!
(z − 1)m+1, z ∈ C,

γ0 = γ being Euler’s constant. Nan Yue and Williams [15] (see also Coffey
[3]) showed that each γm can be written as a finite sum

γm = − 1
m + 1

m∑

n=0

(
m + 1

n

)
Bm+1−n(log 2)m−nη

(n)
1 (1), m ∈ N0, (3.24)

where Bn is the nth Bernoulli number and η
(n)
1 (1) is the nth derivative of

the Dirichlet function η1(s) at s = 1, as defined in (3.6).
In view of (3.24), to evaluate γm, it suffices to compute η

(n)
1 (1), n =

0, 1, . . . , m. This is done in Corollaries 3.2 and 3.5.
We finally mention that computations of generalized Stieltjes constants

at a geometric rate of convergence have been obtained by using different
methods. For instance, Johansson [16] gave efficient algorithms based on the
Euler–Maclaurin summation formula, Johansson and Blagouchine [17] used
complex integration, and Prévost and Rivoal [18] presented approximating se-
quences obtained by generalizing the remainder Padé approximants method.
See also [19] for computations based on a differential calculus for the gamma
process.
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