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Lipschitz-Free Spaces over Cantor Sets and
Approximation Properties

Filip Talimdjioski

Abstract. Let K = 2N be the Cantor set, let M be the set of all metrics
d on K that give its usual (product) topology, and equip M with the
topology of uniform convergence, where the metrics are regarded as
functions on K2. We prove that the set of metrics d ∈ M for which the
Lipschitz-free space F(K, d) has the metric approximation property is
a residual Fσδ set in M, and that the set of metrics d ∈ M for which
F(K, d) fails the approximation property is a dense meager set in M.
This answers a question posed by G. Godefroy.
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1. Introduction

Lipschitz-free spaces have become an active research area in Banach space
theory in recent years. For a metric space (M,d) and a point x0 ∈ M , we
define the Banach space Lip0(M,x0) consisting of all real-valued Lipschitz
functions f on M that vanish at x0, equipped with the norm

||f || := sup
x,y∈M,x �=y

|f(x) − f(y)|
d(x, y)

.

For any x ∈ M , we define the bounded linear functional δx ∈ Lip0(M,x0)∗ by
δx(f) = f(x), f ∈ Lip0(M,x0). The closed linear span of the set {δx : x ∈ M}
is called the Lipschitz-free space F(M,x0). It is well known that Lip0(M,x0)
is isometric to the dual space of F(M,x0) and that the Banach space structure
of both spaces does not depend on the choice of the base point x0. We will
hereafter write Lip0(M) and F(M) without specifying the base point, and
call F(M) simply the free space over M . In the book [20], Weaver provides a
comprehensive introduction to Lipschitz and Lipschitz-free spaces. In it, the
latter are called Arens-Eells spaces and are denoted by Æ(M).

One direction of research in this area has been the approximation prop-
erties of free spaces. Results involving the approximation property (AP)
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appear in [12–14]. Results involving the bounded approximation property
(BAP) appear in [8,11,15], and metric approximation property (MAP) re-
sults appear in [3–5,7,11,12,17,19]. More details can be found in the intro-
duction to [19] and in [10].

In particular, we mention that if M is a sufficiently ‘thin’ totally dis-
connected metric space then F(M) has the MAP. For example, if M is a
countable proper metric space (i.e. where all closed balls are compact), then
F(M) has the MAP [4]. Also, as a corollary of [20, Corollary 4.39], F(M)
has the MAP when M is compact and uniformly disconnected (this notion is
defined at the beginning of Sect. 2). Moreover, as a corollary of [15, Proposi-
tion 2.3] and [1, Theorem B], F(M) has the MAP when M is a subset of a
finite-dimensional normed space and is purely 1-unrectifiable, which is equiv-
alent to the condition that M contains no bi-Lipschitz image of a compact
subset of R of positive measure. On the other hand, in [12], G. Godefroy
and N. Ozawa constructed a compact convex subset C of a separable Banach
space such that F(C) fails the AP. Also, by a result in [13], there exists a
metric space M homeomorphic to the Cantor space such that F(M) fails the
AP.

Given a compact metric space M with metric d and a Lipschitz function
f : M → R, we say that f is locally flat [20, Definition 4.1] if for every x ∈ M ,

lim
ε→0

Lip(f |Bε(x)) = 0,

where Bε(x) = {y ∈ M : d(y, x) < ε}. The Little Lipschitz space lip0(M)
is the subspace of Lip0(M) consisting of all locally flat Lipschitz functions.
By [20, Corollary 4.5], lip0(M) is a Banach space. It often happens that
lip0(M) = {0}, for example when M is a connected smooth submanifold of
R

N . We say that lip0(M) separates points uniformly [20, Definition 4.10] if
there exists a ∈ (0, 1] such that for every x, y ∈ M there is f ∈ lip0(M) such
that Lip(f) ≤ 1 and |f(x) − f(y)| = ad(x, y). By [1, Theorem A, Theorem
B], lip0(M) separates points uniformly if and only if lip0(M) is an isometric
predual to F(M), which holds if and only if M is purely 1-unrectifiable. If M
is compact and purely 1-unrectifiable, then by [2, Proposition 3.5], if F(M)
has the MAP then lip0(M) has the MAP. But also, by the remarks after [9,
Problem 6.5], if lip0(M) has the MAP then F(M) has the MAP as well.

In [9], G. Godefroy surveys various aspects of the theory of free spaces,
including the lifting property for separable Banach spaces, approximation
properties of free spaces, and norm attainment of Lipschitz functions and
operators. Regarding the bounded approximation property of the free space
over a compact set M , he states a very useful criterion (see the end of Sect. 2)
in terms of ‘almost-extension’ operators from Lipschitz spaces over finite
subsets of M to Lip0(M). In the last section he states a number of open
problems, several of which concern approximation properties of free spaces.

Let K = 2N be the Cantor set, equipped with the usual (product) topol-
ogy. Define M ⊆ C(K2) to be the space of all metrics d on K compatible with
its topology. We equip M with the metric induced by the usual (supremum)
norm of C(K2). The set M is a Gδ subset of C(K2) (a proof is provided at
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the beginning of Sect. 2), and is therefore a Polish (i.e. separable and com-
pletely metrisable) space. For d ∈ M we write Lip0(K, d) and F(K, d) for
the Lipschitz space and free space over the metric space (K, d), respectively.
We define the following subsets of M:

Aλ = {d ∈ M : F(K, d) has the λ-BAP}, for λ ∈ [1,∞),

Af = {d ∈ M : F(K, d) fails the AP},

P = {d ∈ M : (K, d) is purely 1-unrectifiable}.

In [9, Problem 6.6], Godefroy asks what the topological nature of the set
Af is (it is nonempty by [13, Corollary 2.2]). Also, more precisely, he asks
whether the set Af is residual in M.

In this paper, we investigate the topological properties the subsets of
M defined above. The main results are the following.

Theorem 1.1. The set A1 is a residual Fσδ set in M.

Proposition 1.2. The set Af is a dense meager set in M.

In particular, these results indicate that it might be difficult to use a
Baire category argument to show that Af is nonempty (note that the proof
of this fact in [13] uses other techniques).

The paper is organised as follows. Section 2 concerns notation and pre-
liminary results. In Sect. 3 we give the proofs of Theorem 1.1 and Proposition
1.2. Furthermore, we prove that P is a dense Gδ set and M\P is dense. As a
corollary, we obtain that the set of metrics d for which F(M) is a dual space
to lip0(M) and both F(M) and lip0(M) have the MAP is residual. Finally,
in Sect. 4, we construct a family (dα) of metrics on K of size continuum, such
that there is no algebra isomorphism between Lip0(K, dα) and Lip0(K, dβ)
whenever α �= β. This should be compared with [13, Corollary 2.3], wherein
it is shown that there exists an family (dα) of metrics on K of size ℵ1, such
that F(K, dα) is not isomorphic to F(K, dβ) for α �= β.

2. Notation and Preliminary Results

For a metric space (A, d), x ∈ A and r > 0 we write Bd
r (x) = {y ∈ A :

d(x, y) < r}. If C ⊆ A then write Bd
r (C) = {y ∈ A : d(y, C) < r}, where

d(y, C) = inf{d(y, x) : x ∈ C}. For a real-valued Lipschitz function f on
(A, d), Lipd(f) denotes the Lipschitz constant of f with respect to d. If (B, e)
is another metric space and f : A → B then the Lipschitz constant of f is
denoted by Lipd,e(f). We call (A, d) and (B, e) proportional if there exists
a surjection f : A → B and c > 0 such that d(x, y) = ce(f(x), f(y)) for all
x, y ∈ A. The space (A, d) is called uniformly disconnected [20, Proposition
4.12] if there exists r ∈ (0, 1] such that for any distinct x, y ∈ A there are
complementary clopen sets C,D ⊆ A such that x ∈ C, y ∈ D and d(C,D) ≥
rd(x, y), where d(C,D) = inf{d(z, t) : z ∈ C, t ∈ D}.

For d ∈ M, K1,K2 ⊆ K, and x ∈ K we put D(K1,K2) = sup{d(x, y) :
x ∈ K1, y ∈ K2}, and D(x,K1) = D({x},K1). We write D(K1) or diamd(K1)
for D(K1,K1). If S is a nonempty set then we call a finite family {S1, . . . , Sn}



302 Page 4 of 16 F. Talimdjioski MJOM

of nonempty subsets of S a partition of S if Si ∩ Sj = ∅ whenever i �= j and⋃n
i=1 Si = S. If X is a Banach space then BX denotes the closed unit ball of

X. If Y is another Banach space then X � Y means that X is isomorphic to
Y .

We will first provide a short proof of the fact that M is a Gδ set in
C(K2). Let μ be the canonical metric on K:

μ(x, y) =

{
0 if x = y,

2−n if x �= y and n ∈ N is minimal, such that x(n) �= y(n).

Define

A = {f ∈ C(K2) : f(x, x) = f(x, y) − f(y, x) = 0 ≤ f(x, y) + f(y, z) − f(x, z)

for all x, y, z ∈ K},

and for n ∈ N, define

Bn = {f ∈ C(K2) : f(x, y) > 0 whenever μ(x, y) ≥ 2−n}.

The set A is clearly closed and hence Gδ in C(K2), and the sets Bn are
open by compactness. Therefore, the set A ∩

⋂∞
n=1 Bn is Gδ. Pick any d ∈

A∩
⋂∞

n=1 Bn and observe that d is a metric on K. Let Td be the topology on
K induced by d. Since for any x ∈ K, the function d(x, ·) is continuous on
K, Bd

r (x) is open in the topology of K for any r > 0. Thus, Td is a coarser
topology than the one on K. Therefore, any closed subset C of K is compact
in Td, and is, therefore, closed, because Td is Hausdorff. Thus, Td agrees with
the topology on K, so d ∈ M. As d was arbitrary, M = A ∩

⋂∞
n=1 Bn, and

so M is Gδ.
The following is a crucial lemma that allows us to make a small change

to a given metric on K in a very flexible way.

Lemma 2.1. Suppose that d ∈ M, ε > 0, δ ∈ (0, 1] and K ′ is a nonempty
clopen subset of K. Let {K ′

1, . . . , K
′
n} be an arbitrary partition of K ′ into

clopen sets satisfying D(K ′
i) < ε

2 , and let e1, . . . , en ∈ M be arbitrary. Then,
there exists

∼
d ∈ M such that ||d −

∼
d||∞ < ε, d and

∼
d agree on K\K ′, (K ′

i,
∼
d)

is proportional to (K, ei), and
∼
D(K ′

i) ≤ δ for i = 1, . . . , n.

Proof. Let d ∈ M, ε > 0, and K ′ ⊆ K be given. Suppose that {K ′
1, . . . , K

′
n}

is a partition of K ′ satisfying

D(K ′
i) <

ε

2
, for i = 1, . . . , n,(2.1)

and let e1, . . . , en ∈ M be arbitrary. As each K ′
i is homeomorphic to K, we

can find a metric di on K ′
i compatible with its topology such that (K ′

i, di) is
isometric to

(
K,

min(δ,D(K′
i))

Ei(K) ei

)
. Hence,

Di(K ′
i) = min(δ,D(K ′

i)).(2.2)
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Now, define
∼
d : K2 → [0,∞) by

∼
d(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d(x, y), if x, y ∈ K \ K ′,
D(x,K ′

i), if x ∈ K \ K ′ and y ∈ K ′
i,

D(y,K ′
i), if x ∈ K ′

i and y ∈ K \ K ′,
di(x, y), if x, y ∈ K ′

i for some i,

D(K ′
i,K

′
j) if x ∈ K ′

i, y ∈ K ′
j for i and j such that i �= j.

We will now show that
∼
d is a metric on K. It is clearly symmetric and

satisfies
∼
d(x, y) = 0 if and only if x = y. To show the triangle inequality,

pick x, y, z ∈ K. If x, y, z ∈ K\K ′ or x, y, z ∈ K ′
i for some i then the tri-

angle inequality follows from the triangle inequality for the metric d or di,
respectively. We now consider the remaining cases:

Case 1: x, y ∈ K\K ′ and z ∈ K ′
i for some i.

We have
∼
d(x, y) = d(x, y) ≤ d(x, z) + d(z, y) ≤

∼
d(x, z) +

∼
d(z, y).

By compactness, there exists z′ ∈ K ′
i such that

∼
d(x, z) = d(x, z′). Thus,

∼
d(x, z) = d(x, z′) ≤ d(x, y) + d(y, z′) ≤

∼
d(x, y) +

∼
d(y, z).

We can similarly show
∼
d(y, z) ≤

∼
d(y, x) +

∼
d(x, z).

Case 2: x ∈ K\K ′ and y, z ∈ K ′
i for some i.

As
∼
d(x, y) =

∼
d(x, z), we have

∼
d(x, y) ≤

∼
d(x, z) +

∼
d(z, y) and

∼
d(x, z) ≤

∼
d(x, y) +

∼
d(y, z). Now let y′, z′ ∈ K ′

i be such that D(K ′
i) = d(y′, z′). We have

d̃(y, z) = di(y, z) ≤ D(K ′
i) by (2.2)

= d(y′, z′) ≤ d(x, y′) + d(z′, x) ≤ d̃(x, y) + d̃(z, x).

Case 3: x ∈ K\K ′, y ∈ K ′
i and z ∈ K ′

j with i �= j.
Let y′ ∈ K ′

i be such that
∼
d(x, y) = d(x, y′). We have

∼
d(x, y) = d(x, y′) ≤ d(x, z) + d(z, y′) ≤

∼
d(x, z) +

∼
d(z, y).

Similarly,
∼
d(x, z) ≤

∼
d(x, y) +

∼
d(y, z). Now let y1 ∈ K ′

i and z1 ∈ K ′
j be such

that
∼
d(y, z) = d(y1, z1). We have

∼
d(y, z) = d(y1, z1) ≤ d(y1, x) + d(x, z1) ≤

∼
d(y, x) +

∼
d(x, z).

Case 4: x, y ∈ K ′
i and z ∈ K ′

j , where i �= j.
Let x′, y′ ∈ K ′

i be such that d(x′, y′) = D(K ′
i). We have

d̃(x, y) = di(x, y) ≤ D(K ′
i) by (2.2)

= d(x′, y′) ≤ d(x′, z) + d(z, y′) ≤ d̃(x, z) + d̃(z, y).

Also
∼
d(x, z) =

∼
d(y, z) ≤

∼
d(x, y) +

∼
d(y, z),

and similarly
∼
d(y, z) ≤

∼
d(y, x) +

∼
d(x, z).

Case 5: x ∈ K ′
i, y ∈ K ′

j , z ∈ K ′
l and i, j and l are distinct.
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Let x′ ∈ K ′
i and y′ ∈ K ′

j be such that
∼
d(x, y) = d(x′, y′). We have

∼
d(x, y) = d(x′, y′) ≤ d(x′, z) + d(z, y′) ≤

∼
d(x, z) +

∼
d(z, y).

Therefore,
∼
d is a metric on K. Also,

∼
d is continuous on K2 because it is

continuous on each set of the form K ′
i ×K ′

j , K ′
i × (K\K ′) and (K\K ′)×K ′

j .
Therefore, similarly as in the proof that M is Gδ, we conclude that

∼
d ∈ M.

To show ||
∼
d − d||∞ < ε, pick x, y ∈ K. If x, y ∈ K\K ′ then

∼
d(x, y) = d(x, y).

If x ∈ K\K ′ and y ∈ K ′
i for some i, then let y′ ∈ K ′

i be such that
∼
d(x, y) =

d(x, y′). Then

|
∼
d(x, y) − d(x, y)| = |d(x, y′) − d(x, y)| ≤ d(y, y′) <

ε

2
,

by (2.1). If x, y ∈ K ′
i for some i then

|
∼
d(x, y) − d(x, y)| ≤

∼
d(x, y) + d(x, y) = di(x, y) + d(x, y) < ε,

by (2.1) and (2.2). Finally, if x ∈ K ′
i, y ∈ K ′

j for i �= j then let x′ ∈ K ′
i, y

′ ∈ K ′
j

be such that
∼
d(x, y) = d(x′, y′). We have

|
∼
d(x, y) − d(x, y)| = |d(x′, y′) − d(x, y)| ≤ d(x, x′) + d(y, y′) < ε,

by (2.1). The last assertion of the lemma follows from (2.2). �

Remark 2.2. Note that the metric
∼
d satisfies

∼
d(x, y) ≥ d(x, y) whenever x, y ∈

K and x, y do not both belong to K ′
i for any i = 1, . . . , n.

Corollary 2.3. Let d ∈ M, ε > 0, and K ′ ⊆ K be a clopen subset. Then,
there exists a partition {K1, . . . , Kn} of K ′ consisting of clopen sets such
that, for any arbitrary e1, . . . , en ∈ M, there exists a metric

∼
d ∈ M such that

||
∼
d− d||∞ < ε,

∼
d and d agree on K \K ′, and (Ki,

∼
d) is proportional to (K, ei)

for each i = 1, . . . , n.

Proof. Let d ∈ M, ε > 0 and K ′ be given. Using the compactness of K ′

and the fact that each point in K ′ has a local base for its topology con-
sisting of clopen neighbourhoods, we can find a cover C1, . . . , Cp of K ′ such
that Ci is clopen and D(Ci) < ε

2 for each i = 1, . . . , p. Now inductively de-
fine K ′

1 = C1 and K ′
i+1 = Ci+1\

⋃i
j=1 K ′

j . By dismissing any empty K ′
i we

obtain a partition {K ′
1, . . . , K

′
n} of K ′ (where n ≤ p), consisting of clopen

sets satisfying D(K ′
i) < ε

2 for each i = 1, . . . , n. Now, if e1, . . . , en ∈ M
are arbitrary, the corollary follows from an application of Lemma 2.1 with
δ = 1. �

We will also need the following results.

Lemma 2.4. Suppose that d ∈ M and (dn)n ⊆ M are such that dn → d
uniformly. Let (M,ρ) be a compact metric space, L > 0 and hn : K → M
be functions such that Lipdn,ρ(hn) ≤ L for each n ∈ N. Then there exists a
subsequence (hni

)i of (hn)n and a function h : K → M such that Lipd,ρ(h) ≤
L and hni

→ h uniformly on K as i → ∞. Furthermore,
(1) if J > 0 and hn is bilipschitz with Lipρ,dn

(h−1
n ) ≤ J for all n, then h is

bilipschitz with Lipρ,d(h−1) ≤ J ,
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(2) if hn is surjective for all n, then h is surjective.

Proof. We will show that the functions (hn)n are d-ρ-equicontinuous. Pick
ε > 0, and pick n ∈ N such that ||dk − d||∞ < ε

2L for k ≥ n. Then, for k ≥ n
and x, y ∈ K such that d(x, y) < ε

2L ,

ρ
(
hk(x), hk(y)

)
≤ Ldk(x, y) ≤ L

( ε

2L
+ d(x, y)

)
< ε.

Therefore, (hn)n is equicontiuous on (K, d). By the Arzelà-Ascoli theorem,
there exists a continuous h : K → M and a subsequence (hni

)i of (hn)n such
that hni

→ h uniformly. For x, y ∈ K,

ρ
(
h(x), h(y)

)
= lim

i→∞
ρ
(
hni

(x), hni
(y)

)
≤ lim

i→∞
Ldni

(x, y) = Ld(x, y).

Hence, Lipd,ρ(h) ≤ L.
If J > 0 and hn is bilipschitz with Lipρ,dn

(h−1
n ) ≤ J for all n ∈ N, then,

similarly as previously we can show that h is bilipschitz with Lipρ,d(h−1) ≤ J .
Now assume the hn are surjective. Pick y ∈ M , and let ε > 0. Choose

i ∈ N such that ||h − hki
||∞ < ε. If hki

(x) = y, then |h(x) − y| < ε. As ε was
arbitrary, y is a limit point of h(K). Since h(K) is compact, y ∈ h(K) and h
is surjective. �

Proposition 2.5. Let d ∈ M, x0 be the base point of (K, d) and {K1, . . . , Kn}
be a partition of K consisting of clopen sets. If K ′

i = Ki∪{x0} for i = 1, . . . , n
then

F(K, d) � F(K ′
1, d) ⊕1 . . . ⊕1 F(K ′

n, d).

Proof. Let x0 be the base point of each K ′
i as well. We define the bounded

linear operator T : Lip0(K,
∼
d) → Lip0(K ′

1, d) ⊕∞ . . . ⊕∞ Lip0(K ′
n, d) by

T (f) = (f |K′
1
, . . . , f |K′

n
).

It is easy to see that T is surjective. Pick x, y ∈ K,x �= y. If x, y ∈ Ki for
some i then clearly |f(x)−f(y)|

d(x,y) ≤ ||T (f)|| for each f ∈ Lip0(K, d). Otherwise,
d(x, y) > mini�=j d(Ki,Kj) =: b, so

|f(x) − f(y)|
d(x, y)

≤ b−1
(
|f(x)| + |f(y)|

)
≤ 2b−1D(K)||T (f)||.

Therefore, ||f || ≤ max
(
1, 2b−1D(K)

)
||T (f)|| for each f ∈ Lip0(K, d), which

shows that T is an isomorphism. It is not hard to see that T is the adjoint
of the operator T∗ : F(K ′

1, d) ⊕1 . . . ⊕1 F(K ′
n, d) → F(K, d),

T∗(ν1, . . . , νn) = ν1 + . . . + νn,

(the spaces F(K ′
i, d)) are seen as subspaces of F(K, d), by [20, Theorem 3.7]).

Therefore, T∗ is the required isomorphism. �

Theorem 2.6. (Grothendieck) If X is a separable dual Banach space with the
AP then X has the MAP.
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A proof of the previous theorem can be found in e.g. [16, Theorem
1.e.15]. Finally, in this section, we give a useful criterion, due to Godefroy,
for the λ-BAP of free spaces over compact metric spaces in terms of ‘almost-
extension’ operators [9, Theorem 3.2] (also [8, Theorem 1]). We will need one
of the several equivalent conditions for the λ-BAP stated in [9, Theorem 3.2].
For a finite subset M ′ ⊆ M of a compact metric space M , and ε > 0, we
say that M ′ is ε-dense in M if for every y ∈ M there is an x ∈ M ′ such
that d(y, x) < ε. Note that if (Mn)n is an increasing sequence (with respect
to inclusion) of finite subsets of M such that

⋃∞
n=1 Mn is dense in M , then

there exists a sequence (εn)n of positive numbers tending to 0 such that Mn

is εn-dense in M for all n ∈ N.

Theorem 2.7. Let M be a compact metric space and (Mn)n be a sequence of
finite εn-dense subsets of M with limn→∞ εn = 0. Then, F(M) has the λ-BAP
if and only if there is a sequence (Tn)n of operators Tn : Lip0(Mn) → Lip0(M)
such that ||Tn|| ≤ λ for all n and

lim
n→∞ sup

f∈BLip0(Mn)

||Tn(f)|Mn
− f ||∞ = 0.

3. Topological Properties of Aλ , Af and P
In this section we give our main results. We will first prove that Aλ is an Fσδ

set in M for any λ ≥ 1. Fix a dense sequence of distinct elements (xn)∞
n=1

in K. For n ∈ N, define An = {x1, . . . , xn}, and for n ∈ N, λ ≥ 1 and ε > 0,
define

Bλ
n,ε = {d ∈ M : there exists T : Lip0(An, d) → Lip0(K, d) such that

||T || ≤ λ and supf∈BLip0(An,d)
||(Tf)|An

− f ||∞ ≤ ε}.

Proposition 3.1. The set Bλ
n,ε is closed in M for each n ∈ N, ε > 0 and λ ≥ 1.

Proof. Fix some n ∈ N, ε > 0 and λ ≥ 1. Let (dk)k be a sequence in Bλ
n,ε con-

verging to d ∈ M. For each k ∈ N, pick some Tk : Lip0(An, dk) → Lip0(K, dk)
such that ||Tk|| ≤ λ and

sup
f∈BLip0(An,dk)

||(Tkf)|An
− f ||∞ ≤ ε.

Fix an m ∈ N,m > n. We consider the sequence of operators (Sk)∞
k=1,

where Sk : Lip0(An, d) → Lip0(Am, d) is defined by Sk(f) = Tk(f)|Am
. As

dk → d uniformly and Am is finite, it is not hard to see that (||Sk||)∞
k=1 is

a bounded sequence. Therefore, by compactness, (Sk)k has a subsequence
(Skj

)j which converges to an operator Pm : Lip0(An, d) → Lip0(Am, d). For
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any f ∈ Lip0(An, d), we have Lipd(f) = limj→∞ Lipdkj
(f) and for x, y ∈ Am,

|Pm(f)(x) − Pm(f)(y)|
= lim

j→∞
|Skj

(f)(x) − Skj
(f)(y)| = lim

j→∞
|Tkj

(f)(x) − Tkj
(f)(y)|

≤ lim sup
j→∞

Lip dkj
(Tkj

(f))dkj
(x, y) ≤ lim sup

j→∞
||Tkj

||Lip dkj
(f)dkj

(x, y)

≤ λ Lip d(f)d(x, y).

Therefore, ||Pm|| ≤ λ. It is also clear that

sup
f∈BLip0(An,d)

||(Pm(f))|An
− f ||∞ ≤ ε.

Now, fix a basis f1, . . . , fn−1 of Lip0(An, d) with ||fi|| = 1 for all i ∈
{1, . . . , n − 1}. For each i and m > n extend the function Pm(fi) to (K, d)
without increasing its Lipschitz constant, by McShane’s extension theorem
[20, Theorem 1.33]. Now for i ∈ {1, . . . , n − 1}, consider the sequence
(Pm(fi))∞

m=n+1 ⊆ λBLip0(K,d). By the Arzelà-Ascoli theorem, we can obtain a
subsequence (Pmj

)∞
j=1 of (Pm)∞

m=n+1 such that Pmj
(fi) converges uniformly

to some continuous function T (fi) on K, for all i ∈ {1, . . . , n − 1}. Since for
x, y ∈ K,

|T (fi)(x) − T (fi)(y)| = lim
j→∞

|Pmj
(fi)(x) − Pmj

(fi)(y)| ≤ λd(x, y),

we conclude that T (fi) ∈ λBLip0(K,d) for all i ∈ {1, . . . , n − 1}. We extend T
by linearity to Lip0(An, d).

For each p ∈ N and each i = {1, . . . , n − 1}, we have

T (fi)(xp) = lim
j→∞

Pmj
(fi)(xp).

Therefore, by linearity, T (f)(xp) = limj→∞ Pmj
(f)(xp) for each

f ∈ Lip0(An, d). Now, let p, l ∈ N, p < l. Then xp, xl ∈ Amj
whenever

mj ≥ l, hence

|(Tf)(xp) − (Tf)(xl)| = lim
j→∞

|(Pmj
f)(xp) − (Pmj

f)(xl)|

≤ λ Lip d(f)d(xp, xl).

From the fact that (xp)∞
p=1 is dense in K follows that Lipd(T (f)) ≤ λ Lipd(f),

and so ||T || ≤ λ. Also, it is not hard to see that

sup
f∈BLip0(An,d)

||(T (f))|An
− f ||∞ ≤ ε.

Therefore, d ∈ Bλ
n,ε and Bλ

n,ε is closed. �

Remark 3.2. In the second part of the previous proof, extending Pm(fi) by
McShane’s extension theorem is done for convenience rather than necessity.
Alternatively, we can define Tf only on the set {xn : n ∈ N} and then extend
to K using the density of {xn : n ∈ N}.

Proposition 3.3. The set Aλ is Fσδ in M for any λ ≥ 1.
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Proof. According to Theorem 2.7 with M = K, Mn = An, n ∈ N, F(K, d)
has the λ-BAP if and only if there exists a sequence (αn)n of positive real
numbers converging to 0 such that d ∈ Bλ

n,αn
for all n ∈ N. This is

equivalent to

∀k ∈ N ∃n0 ∈ N ∀n > n0, d ∈ Bλ
n,k−1 ,

or

d ∈
⋂

k∈N

⋃

n0∈N

⋂

n>n0

Bλ
n,k−1 .

Now the statement follows from Proposition 3.1. �

For a ∈ 2<N (that is, a is a finite sequence of 0 s and 1 s) and n ∈ N,
let l(a) denote the length of a, and define Rn = {a ∈ 2<N : l(a) = n}, and
Ca = {x ∈ K : x|{1,2,...,l(a)} = a}. Each Ca is a clopen subset of K with
diamμ(Ca) = 2−l(a)−1, and, for each n ∈ N, K is the disjoint union of the sets
{Ca : a ∈ Rn}. For each a ∈ 2<N, let ra = (a(1), . . . , a(l(a)), 0, 0, . . .) ∈ K.
For d ∈ M and n ∈ N, we define T d

n : Lip0({ra : a ∈ Rn}, d) → Lip0(K, d) by
T d

n(f)(x) = f(rx|{1,2,...,n}). Also define

χd
n := max

a,b∈Rn,a�=b

D(Ca, Cb)
d(Ca, Cb)

.

Lemma 3.4. The operator T d
n satisfies ||T d

n || ≤ χd
n.

Proof. Let f ∈ Lip0({ra : a ∈ Rn}, d), Lip(f) ≤ 1, and x, y ∈ K. If x, y ∈ Ca

for some a ∈ Rn then T d
n(f)(x) = T d

n(f)(y). If x ∈ Ca, y ∈ Cb where a, b ∈
Rn, a �= b, then

|T d
n(f)(x) − T d

n(f)(y)|
d(x, y)

=
|f(ra) − f(rb)|

d(x, y)
≤ d(ra, rb)

d(x, y)
≤ D(Ca, Cb)

d(Ca, Cb)
.

Therefore ||T d
n || ≤ χd

n. �

Define Un = {d ∈ M : χd
n < 1 + 1

n} for each n ∈ N. It is clear that Un

is open in M.

Proposition 3.5. For each n0 ∈ N,
⋃∞

n=n0
Un is dense and open in M.

Proof. Let n0 ∈ N. Obviously
⋃∞

n=n0
Un is open. Pick d ∈ M and ε > 0.

By compactness of K, we can find n ≥ n0 such that d(x, y) < ε
2 whenever

μ(x, y) < 2−n, x, y ∈ K. We then have D(Ca) < ε
2 for all a ∈ Rn (strict

inequality holds by compactness of Ca). Apply Lemma 2.1 to d, ε, δ = 1,
K ′ = K, the partition {Ca : a ∈ Rn} of K ′, and ei = μ for all i. We obtain
a metric

∼
d such that ||

∼
d − d||∞ < ε. By the definition of

∼
d in Lemma 2.1, for

a, b ∈ Rn, a �= b,
∼
D(Ca, Cb) = D(Ca, Cb) =

∼
d(Ca, Cb).

Hence χ
∼
d
n = 1, and so

∼
d ∈ Un. �

We are now ready to prove the main results.
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Proof of Theorem 1.1. By Proposition 3.3, it suffices to prove that A1 is
residual, and by Proposition 3.5, it suffices to prove

∞⋂

n0=1

∞⋃

n=n0

Un ⊆ A1.

If d is in the set on the left-hand side, then there exists an increasing sequence
of natural numbers n1 < n2 < . . . such that d ∈ Uni

for all i. Then, ||T d
ni

|| <

1 + 1
ni

for all i, by Lemma 3.4. It is easy to see that the last condition of
Theorem 2.7 holds for M = K, the subsets Mi = {ra : a ∈ Rni

}, and the

operators
T d

ni

||T d
ni

|| for i ∈ N, since (T d
ni

(f))|Mi
= f for all f ∈ Lip0(Mi, d), and

||T d
ni

|| → 1. As
⋃∞

i=1 Mi is dense in K, by Theorem 2.7 we obtain d ∈ A1. �

Proof of Proposition 1.2. The fact that Af is meager follows from Theorem
1.1. To show it is dense, let d ∈ M and ε > 0. By [13, Corollary 2.2] there
exists d′ ∈ Af . According to Corollary 2.3 with K ′ = K and ei = d′ for all i,
there exists

∼
d ∈ M and a partition {K1, . . . , Kn} of K consisting of clopen

sets such that ||
∼
d − d||∞ < ε and (Ki,

∼
d) is proportional to (K, d′). According

to Proposition 2.5,

F(K,
∼
d) � F(K ′

1,
∼
d) ⊕1 . . . ⊕1 F(K ′

n,
∼
d),

where K ′
i = Ki ∪ {x0} and x0 is the base point of K. Since proportional

metric spaces have isometrically isomorphic free spaces, F(K1,
∼
d) fails the

AP. As F(K1,
∼
d) has codimension 1 in F(K ′

1,
∼
d), we have that F(K ′

1,
∼
d) fails

the AP as well. Hence, F(K,
∼
d) fails the AP. �

We now state and prove some properties of the set P of metrics d for
which (K, d) is purely 1-unrectifiable. Denote by Δ the Lebesgue measure
on R.

Proposition 3.6. The set P is Gδ in M.

Proof. For m, k ∈ N define

Vm,k =
{

d ∈ M : there exists a compact K ′ ⊆ K and h : K ′ → R,

such that m−1d(x, y) ≤ |h(x) − h(y)| ≤ md(x, y)

for all x, y ∈ K ′, and Δ(h(K ′)) ≥ k−1
}

.

We will prove that Vm,k is closed. Let (dn)n∈N ⊆ Vm,k converge uniformly to
d ∈ M, and let K ′

n and hn : K ′
n → R be the compact set and bilipschitz func-

tion, respectively, associated to dn for each n ∈ N. By taking a subsequence,
we can assume that the K ′

n converge to a compact set K ′ ⊆ K (in the Vietoris
topology of R). We extend each function hn to a function (again denoted by
hn) on K by [20, Theorem 1.33], while preserving its Lipschitz constant with
respect to dn. We can assume, by translation, that hn(0, 0, . . .) = 0 for each
n. As the diameters of (K, dn) are uniformly bounded, the sets hn(K) are
all contained in some fixed bounded interval. By Lemma 2.4, there exists
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a subsequence (hni
)i converging uniformly to a function h : K → R with

Lipd(h) ≤ m.
Now, let x, y ∈ K ′ be arbitrary and let (xi)i, (yi)i ⊆ K converge to x

and y, respectively, and be such that xi, yi ∈ K ′
ni

for each i ∈ N. Let ε > 0
and pick i such that

d(x, xi), d(y, yi), ||h − hni
||∞, ||d − dni

||∞ < ε.

Then

|h(x) − h(y)| ≥ |h(xi) − h(yi)| − |h(x) − h(xi)| − |h(y) − h(yi)|
≥ |h(xi) − h(yi)| − 2mε ≥ |hni

(xi) − hni
(yi)| − (2 + 2m)ε

≥ m−1dni
(xi, yi) − (2 + 2m)ε

≥ m−1d(xi, yi) −
(

2 + 2m + m−1

)

ε

≥ m−1(d(x, y) − d(x, xi) − d(y, yi)) −
(

2 + 2m + m−1

)

ε

≥ m−1d(x, y) −
(

2 + 2m + 3m−1

)

ε.

As ε was arbitrary, we get |h(x) − h(y)| ≥ m−1d(x, y). This means that h
satisfies the bilipschitz condition in the definition of Vm,k on the set K ′.

To show that Δ(h(K ′)) ≥ k−1, pick ε > 0 and set U = B
|·|
ε (h(K ′)).

We have that h−1(U) is an open set in K containing K ′. Choose i such that
K ′

ni
⊆ h−1(U) and ||h − hni

||∞ < ε. Then

hni
(K ′

ni
) ⊆ B|·|

ε (h(K ′
ni

)) ⊆ B|·|
ε (U) ⊆ B

|·|
2ε(h(K ′)).

Hence, Δ(B|·|
2ε(h(K ′))) ≥ Δ(hni

(K ′
ni

)) ≥ k−1. As ε was arbitrary, we get
that Δ(h(K ′)) ≥ k−1. Therefore, d ∈ Vm,k and so Vm,k is closed. As M\P =⋃

m,k∈N
Vm,k, we have that M\P is Fσ, and so P is Gδ. �

Proposition 3.7. The set P is dense in M.

Proof. Let d ∈ M and ε > 0 be arbitrary. It is not hard to see that (K,μ)
is uniformly disconnected. By [20, Corollary 4.39 (ii)], F(K,μ) is a dual
space. Then by [1, Theorem B], (K,μ) is purely 1-unrectifiable. According
to Corollary 2.3 applied to d, ε, K ′ = K and ei = μ for all i, there exists a
partition {K1, . . . , Kn} of K consisting of clopen sets, and a metric

∼
d ∈ M,

such that ||
∼
d−d||∞ < ε and (Ki,

∼
d) is proportional to (K,μ) for all i. Therefore,

each (Ki,
∼
d) is purely 1-unrectifiable. Hence, it is not hard to see that (K,

∼
d)

is also purely 1-unrectifiable. �

Proposition 3.8. The set M \ P is dense in M.

Proof. Let d ∈ M and ε > 0 be arbitrary. Let d′ ∈ M be such that (K, d′) is
isometric to a Cantor subset of R of positive measure. Then, clearly (K, d′)
is not purely 1-unrectifiable. According to Corollary 2.3 with K = K ′ and
ei = d′ for all i, there exists

∼
d ∈ M such that ||d −

∼
d||∞ < ε and (K,

∼
d)
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contains a clopen subset proportional to (K, d′). Then, (K,
∼
d) is not purely

1-unrectifiable. �
Corollary 3.9. The set of metrics d for which F(K, d) is the dual space of
lip0(K, d) and both lip0(M) and F(M) have the MAP is residual in M.

Proof. Let G be the set of metrics in question. Clearly, G ⊆ A1, and by
[1, Theorem B], G ⊆ P. Also, if d ∈ P ∩ A1 then by [2, Proposition 3.5],
lip0(K, d) has the MAP, so d ∈ G. Therefore, G = P ∩ A1 and the corollary
follows from Proposition 3.6, Proposition 3.7, and Theorem 1.1. �

4. Lipschitz Equivalence Classes

In this section, we consider subsets of M consisting of Lipschitz-equivalent
metrics, and describe some of their basic topological properties. For any d ∈
M, we consider the ‘Lipschitz equivalence class’ of metrics

Ed = {d′ ∈ M : there exists a surjection h : K → K and n > 0

such that n−1d(x, y) ≤ d′(h(x), h(y)) ≤ nd(x, y)

for all x, y ∈ K}.

Proposition 4.1. There is a family (dα) ⊆ M of size continuum such that
Edα

∩ Edβ
= ∅ whenever α �= β.

Proof. For each λ ∈ (0, 1), let dλ ∈ M be such that (K, dλ) is isometric to
the λ-middle-thirds Cantor subset of R. By [6, Exercise 2.14], the Hausdorff
dimension of (K, dλ) for each λ ∈ (0, 1) is log 2

log 2
1−λ

. By [6, Corollary 2.4], there

is no bilipschitz surjection from (K, dλ) to (K, dλ′) for different λ and λ′, and
the statement follows. �
Proposition 4.2. For each d ∈ M, Ed is a dense meager Fσ set in M.

Proof. Fix d ∈ M. If d̂ ∈ M and ε > 0 are arbitrary, we will show that there
exists a metric

∼
d ∈ Ed which is ε-close to d̂. We apply Corollary 2.3 to d̂,

K ′ = K, and ε, to get a partition K1, . . . , Kn of K consisting of clopen sets.
Now if ei ∈ M is such that (K, ei) is isometric to (Ki, d) for i = 1, . . . , n, then
by the same corollary, we obtain a metric

∼
d ∈ M, such that ||d̂ −

∼
d||∞ < ε,

and (Ki,
∼
d) is proportional to (K, ei), and hence to (Ki, d), for all i. It is not

hard to see that then
∼
d ∈ Ed. Therefore, Ed is dense in M.

Now for n ∈ N, consider the set

En
d = {d′ ∈ M : there exists a surjection h : K → K such that

n−1d(x, y) ≤ d′(h(x), h(y)) ≤ nd(x, y) for all x, y ∈ K}.

Suppose that (dk)∞
k=1 is a sequence in En

d converging to d0 ∈ M. Let hk : K →
K be the surjection associated with dk, for each k ∈ N. By Lemma 2.4,
there exists a surjective function h : K → K satisfying the condition in the
definition of En

d with d0 for d′. This shows that d0 ∈ En
d and so En

d is closed.
Since Ed =

⋃
n∈N

En
d , Ed is Fσ. Moreover, En

d is nowhere dense because if
e �∈ Ed then Ee is dense in M and Ee ∩Ed = ∅. Therefore Ed is meager. �
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For a bounded metric space M , we define Lip(M) (resp. Lip(M,C))
to be the space of all real (resp. complex)-valued Lipschitz functions on M
equipped with the norm ||f || = Lip(f) + ||f ||∞ (the Lipschitz constant of
a complex-valued function is defined by the same supremum as for a real-
valued function). Under pointwise multiplication of functions, Lip(M) and
Lip(M,C) are Banach algebras. Note that by [20, Lemma 1.28], Lip(M,C)
is isomorphic to Lip(M) ⊕ Lip(M) as a Banach space. We can also view
Lip0(M) as an algebra under pointwise multiplication, however the Lipschitz
constant is not submultiplicative. Instead, it satisfies Lip(fg) ≤ ||f ||∞Lip(g)+
||g||∞Lip(f), which implies ||fg|| ≤ 2diam(M)||f ||||g||. Therefore the product
is continuous, which implies that there is an equivalent norm which is sub-
multiplicative. If X and Y are two algebras over the same field (R or C), then
we call a map h : X → Y an algebra isomorphism if h is linear, bijective, and
respects multiplication, i.e. h(xy) = h(x)h(y) for all x, y ∈ X.

Corollary 4.3. There exists a family (dα) ⊆ M of size continuum such that
there is no algebra isomorphism between Lip0(K, dα) and Lip0(K, dβ) when-
ever dα �= dβ.

Proof. Suppose that d1, d2 ∈ M are such that there exists an algebra isomor-
phism h : Lip0(K, d1) → Lip0(K, d2). The map

∼
h : Lip(K, d1) → Lip(K, d2),

given by
∼
h(λ1K + f) = λ1K + h(f), is an algebra isomorphism, where λ ∈ R,

1K is the constant function on K equal to 1, and f ∈ Lip0(K, d1). Then the
map ĥ : Lip((K, d1),C) → Lip((K, d2),C), given by ĥ(f + ig) =

∼
h(f)+ i

∼
h(g),

is again an algebra isomorphism. Finally, by [18, Theorem 5.1], there exists a
bilipschitz surjection from (K, d1) to (K, d2), and the corollary follows from
Proposition 4.1. �

We do not know (in ZFC) whether there exists a family (dα) ⊆ M of
size continuum such that F(K, dα) is not linearly isomorphic to F(K, dβ) for
α �= β.
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