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Theoretical Aspects in Penalty
Hyperparameters Optimization
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Abstract. Learning processes play an important role in enhancing under-
standing and analyzing real phenomena. Most of these methodologies
revolve around solving penalized optimization problems. A significant
challenge arises in the choice of the penalty hyperparameter, which is
typically user-specified or determined through Grid search approaches.
There is a lack of automated tuning procedures for the estimation of
these hyperparameters, particularly in unsupervised learning scenarios.
In this paper, we focus on the unsupervised context and propose a bi-
level strategy to address the issue of tuning the penalty hyperparameter.
We establish suitable conditions for the existence of a minimizer in an
infinite-dimensional Hilbert space, along with presenting some theoret-
ical considerations. These results can be applied in situations where
obtaining an exact minimizer is unfeasible. Working on the estimation
of the hyperparameter with the gradient-based method, we also intro-
duce a modified version of Ekeland’s principle as a stopping criterion
for these methods. Our approach distinguishes from conventional tech-
niques by reducing reliance on random or black-box strategies, resulting
in stronger mathematical generalization.
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1. Introduction

Learning models are important approaches successfully applied in real-life ap-
plications. These processes often require the specification of several variables
by the users, namely hyperparameters, which must be set before the learning
procedure starts. Hyperparameters govern the whole learning process and
play a crucial role in guaranteeing good model performances. They are often
manually specified, and the lack of an automatic tuning procedure makes
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the field of hyperparameter optimization (HPO) an ever-evolving topic. The
literature offers various solutions for hyperparameters tuning, from gradient-
based to black-box or Bayesian approaches, besides some naive but daily
used methods such as Grid and Random search. A brief overview of existing
methods can be found in Ref. [6]. Hyperparameters can be of different types
(discrete, continuous, categorical), and in most cases, the number of their
configurations to explore is infinite. This paves the way for a mathematical
formalization of the HPO in learning contexts with abstract spaces, such as
Hilbert spaces.

A learning algorithm may be represented as a map A that takes a
configuration of hyperparameters, λ ∈ Λ, and a dataset D, and returns a
hypothesis h ∈ H:

A : Λ × D → H; A(λ,D) = h, (1.1)

where Λ is a hyperparameter space, and H is a hypothesis space [11]. A
quite standard claim for the hypotheses set is to be a linear function space,
endowed with a suitable norm (more binding arising from an inner product):
two requirements satisfied when H is a Hilbert space of functions over the
input space X.1 Assuming a Hilbert space structure on the hypothesis space
has some advantages: (i) practical computations reduced to ordinary linear
algebra operations and (ii) self-duality; that is for any x ∈ X a representative
of x can be found, i.e., kx ∈ H exists such that

h(x) = 〈kx, h〉 for all h ∈ H, (1.2)

where kx is a suitable positive definite “kernel”. This construction gives the
chance to connect the abstract structure of H and what its elements actually
are, flipping the construction of the hypotheses set from the kernel. Providing
a suitable positive function k on X, H can be set as the minimal complete
space of functions involving all {kx}x∈X equipped with the scalar product in
(1.2). Thus, H is outlined in a unique way, and it is named the Representing
Kernel Hilbert Space mapped to the kernel k.

Starting from this abstract scenario, HPO can be formulated as the
problem of minimizing the goodness of the solution given by the algorithm A

that, implicitly or explicitly, depends on the hyperparameter λ. In particular,
for supervised learning contexts, the optimal hyperparameter λ∗ can be found
in the literature as the solution for the following optimization task:

λ∗ = argmin
λ∈Λ

V (A(λ,Dtr),Dval), (1.3)

where V : H × X → R evaluates the goodness of A measuring discrepancy
between A on a given training dataset Dtr, and a validation dataset Dval

[10].
In this study, we will focus on HPO in unsupervised context, by using

bi-level programming formalization. Bi-level approaches solve an outer opti-
mization problem subject to the optimality of an inner optimization problem
[1,3,5,11]. In particular, we will consider as a hyperparameter the penalty

1If X is an infinite-dimensional space the boundedness is needed, too.



MJOM Theoretical Aspects in Penalty Hyperparameters Optimization Page 3 of 13 300

coefficient in penalized optimization problems. It is important to note that pe-
nalization functions are essential tools in optimization and learning problems.
They are used to introduce a bias towards simpler or more general solutions.
In particular, they can help to prevent overfitting or enforce feature selection
operations while controlling the sparsity, to stabilize the solution and prevent
noise amplification in inverse problems with regularization conditions, deal
with multicollinearity in regression models, or to improve visualization tasks
with orthogonality constraints. We already treat this aspect and solve the
problem in the specific case of the Nonnegative Matrix Factorization task
[7]. By the way, some generalizations are needed to overcome theoretical re-
strictions and made the strategy broadly and cross-sectional applicable to
other learning approaches. In particular, this work extends the existence and
uniqueness theorems for the solution of the hyperparameters bi-level problem
to the more general framework of infinite-dimensional Hilbert space. This lat-
ter also allows the application of Ekeland’s variational principle to state that
whenever a functional is not guaranteed to have a minimum, under suitable
assumptions, a “good” substitute can be found, namely the best one can get
as an approximate minimum. One of the purposes of this paper is to use this
theoretical tool as a stopping criterion for the update of the hyperparameters
as we will see later.

The outline of the paper is as follows. Section 2 introduces the classical
bi-level formalization of HPO and some preliminary notions in a supervised
context. Section 3 illustrates our proposal, an extension of the unsupervised
context. A general framework addressing HPO in Hilbert space is also set, and
some general abstract tools are stated in Sect. 4. Finally, Sect. 5 summarizes
the obtained results and draws some conclusions and future works.

2. Previous Works and Preliminaries

As briefly mentioned in the introduction, in a supervised learning scenario,
HPO can be addressed through a bi-level formulation. This approach looks
for the hyperparameters λ such that the minimization of the regularized
training leads to the best performance of the trained data-driven model on
a validation set. Accordingly, to the ideas introduced in [12,20], the best
hyperparameters for a data learning task can be selected as the solution to
the following bi-level problem:

min
λ∈Λ

J(λ) J(λ) = inf{E(wλ, λ) : wλ ∈ argmin
u∈Rr

Lλ(u)}, (2.1)

where w ∈ R
r are r parameters, J : Λ → R is the so-called Response

Function of the outer problem with objective function E : R
r × Λ → R,

and for every λ ∈ Λ ⊂ R
p, Lλ : Rr → R is the inner objective function.

One way to solve the reformulation of HPO as a bi-level optimization problem
is the adoption of gradient-based (GB) methods. In particular, in GB meth-
ods, HPO is addressed with classical procedure for continuous optimization,
in which the sequence is generated by the following rule:

λt+1 = λt − αht(λ), (2.2)
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where ht is an approximation of the gradient of the function J and α is a
step size, that converges to the optimal hyperparameter. In this context, it
is known that the main challenge is the computation of ht, called hypergra-
dient. In several cases, this numerical approximation can be calculated for
real-valued hyperparameters with iterative algorithms. There are two main
strategies for computing the hypergradient: iterative differentiation [12,13,17]
and implicit differentiation [16,18]. The former requires calculating the exact
gradient of an approximate objective. This is defined through the recursive
application of optimization dynamics that aims to replace and approximate
the learning algorithm A. The latter involves the numerical application of the
implicit function theorem to the solution mapping A when it is expressible
through an appropriate equation [11].

In this study, we follow the iterative strategy, so that problem in (2.1)
can be addressed through a dynamical system type approach.

If the following hypothesis hold:

Hypothesis 1. 1. the set Λ is a compact subset of R;
2. the Error Function E : Rr × Λ → R is jointly continuous;
3. the map (w, λ) → Lλ(w) is jointly continuous, and then the problem

argminLλ is a singleton for every λ ∈ Λ;
4. wλ = argmin

u∈Rr

Lλ(u) remains bounded as λ varies in Λ;

the problem in (2.1) becomes:

min
λ∈Λ

J(λ) = E(wλ∗ , λ∗), wλ = argmin
u∈Rr

Lλ(u). (2.3)

It can be proved that the optimal solution (wλ∗ , λ∗) of problem (2.3)
exists [13].
Considering the optimization problem in which hyperparameter is the penalty
coefficient λ ∈ R+, the Inner Problem is associated with the penalized em-
pirical error represented by L, defined as

Lλ(w) =
∑

(x,y)∈Dtr

�(gw(x), y) + λr(w), (2.4)

where � is a loss function, gw : X → Y, is a parameterized model from the
input to the output space, Dtr ⊂ X ×Y the training set, and r : Rr → R

is a penalty function. While the Outer Problem is related to the generalized
error of gw represented by E:

E(w, λ) =
∑

(x,y)∈Dval

�(gw(x), y), (2.5)

where Dval ⊂ X ×Y is the validation set. Note that E does not explicitly
depend on λ.

This work will allow us to extend these issues to the unsupervised con-
text overcoming some assumptions of Hypothesis 1 (such as compactness)
that are difficult to satisfy in real data learning contexts, and also to use
some theoretical results as Ekeland’s variational principle, stated in the fol-
lowing section.
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3. Our Proposal

The bi-level HPO framework can be modified to include unsupervised learn-
ing paradigms, generally designed to detect some useful latent structure em-
bedded in data. Tuning hyperparameters for unsupervised learning models
is more complex than the supervised case due to the lack of output space,
which defines the ground truth collected in the validation set.

This section describes a general framework to address HPO in Hilbert
spaces for the unsupervised case and a corollary of Ekeland’s variational
principle used to derive a useful stopping criterion for iterative algorithms
solving the HPO problem.
Let X ∈ R

n×m be a data matrix, with reference to the problem (2.1), where
now J : Λ → R is a suitable functional and Λ a Hilbert space equipped
with the scalar product (·, ·). With these presumptions, the outer problem is
defined by the following function:

E : Rr × Λ → R E(w, λ) =
∑

x∈X

�(gw(x)), (3.1)

and for every λ ∈ Λ, the inner relate problem is

Lλ : Rr → R Lλ(w) =
∑

x∈X

�(gw(x)) + R(λ,w), (3.2)

where R : Λ × R
r → R is a penalty function. We want to emphasize that

in this new formulation, all optimization is performed on the data matrix
X, and the penalty hyperparameter has been included as a variable in the
penalty function R. With this new formulation, the process of optimizing the
hyperparameters is integrated directly into the broader optimization problem.
This integration may streamline the optimization process and improve the
overall efficiency of finding the best hyperparameters for the given problem.
Furthermore, by partitioning the reference matrix X, it becomes possible to
penalize each partition of the matrix with different magnitudes, potentially
leading to better model performance or more refined results.
The bi-level problem associated with (3.1)–(3.2) can be solved with a dynami-
cal system approach in which a numerical approximation of the hypergradient
is computed. Once the hypergradient is achieved a GB approach can be used
to find the optimum λ∗.

Ekeland’s variational principle can be used to construct an appropri-
ate stopping criterion for iterative algorithms, with the aim of justifying and
setting the hyperparameters related to the stopping criterion more appropri-
ately.

Theorem 3.1. (Ekeland’s variational principle) [9] Let (Λ, d) be a complete
metric space and J : Λ → R̄ be a lower semi-continuous function which is
bounded from below. Suppose that ε > 0 and λ̃ ∈ Λ exist such that

J(λ̃) ≤ inf
Λ

J + ε.

Then, given any ρ > 0, λρ ∈ Λ exists such that

J(λρ) ≤ J(λ̃), d(λρ, λ̃) ≤ ε

ρ
,
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and

J(λρ) < J(λ) + ρ d(λρ, λ) ∀ λ 	= λρ.

Roughly speaking, this variational principle asserts that, under assump-
tions of lower semi-continuity and boundedness from below, if a point λ̃ is an
“almost minimum point” for a function J , hence a small perturbation of J
exists which attains its minimum at a point “near” to λ̃. It is important to
note that a variation of the Theorem 3.1 can be used to reduce the number
of user-dependent factors for the stopping criterion. In particular, a fruitful
selection of ρ (for ρ =

√
ε) restricts the number of hyperparameters to the

precision error only, allowing us to use the following corollary.

Corollary 3.2. Let (Λ, d) be a complete metric space and J : Λ → R̄ be a
lower semi-continuous function which is bounded from below. Suppose that
ε > 0 and λ̃ ∈ Λ exist such that

J(λ̃) ≤ inf
Λ

J + ε.

Then, z̃ ∈ Λ exists such that

J(z̃) ≤ J(λ̃), d(z̃, λ̃) ≤ √
ε

and

J(z̃) < J(λ) +
√

ε d(z̃, λ) ∀ λ 	= z̃.

4. Main Abstract Results

In this section, we are ready t o weaken the assumptions we discussed earlier
and provide results related to the use of Ekeland’s principle as a stopping
criterion. We mention an abstract result of the existence of a minimizer in
Hilbert spaces which has great importance and a wide range of applications
in several fields. Just one example is represented by Riesz’s Representation
Theorem, that, even if implicitly, makes use of the existence of a minimizer
[4]. This is a widely relevant issue about Hilbert spaces, which makes them
nicer than Banach spaces or other topological vector spaces.

4.1. Abstract Existence Theorem

It is well known that each bounded sequence in a normed space Λ has a norm
convergent subsequence if and only if it is a finite-dimensional normed space.

Thus, given a normed space Λ, as the strong topology (i.e., the one
induced by the norm) is too strong to provide any widely appropriate subse-
quential extraction procedure, one can consider other weak topologies joined
with the linear structure of the space and look for subsequential extraction
processes therein.

In Banach spaces, as well as in Hilbert spaces, the two most relevant
weaker-than-norm topologies are the weak-star topology and the weak topol-
ogy. As the former is established in dual spaces, the latter is set up in every
normed space. The notions of these topologies are not self-contained but ful-
fill a leading role in many features of the Banach space theory. In this regard,
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here we state some results we will use shortly. The next one is straightforward
(see, e.g., [4, Chapter 3]).

Proposition 4.1. If Λ is a finite-dimensional space, the strong and weak topolo-
gies coincide. In particular, it follows that the weak topology is normable, and
then clearly metrizable, too.

If Λ is an infinite-dimensional space, the weak topology is strictly con-
tained in the strong topology, namely open sets for the strong topology exist
which are not open for the weak topology. Furthermore, the weak topology
turns out to be not metrizable in this case.

Definition 4.2. A functional J : Λ → R̄ with Λ topological space, is said to
be lower semi-continuous on Λ if for each a ∈ R, the sublevel sets

J−1(] − ∞, a]) = {λ ∈ Λ : J(λ) ≤ a}
are closed subsets of Λ.

In the following, we introduce a “generalized Weierstrass Theorem”
which gives a criterion for the existence of a minimum for a functional defined
on a Hilbert space. For this reason, the incoming results will be provided for
the abstract framework of a Hilbert space although, in some cases, they apply
in the more general context of Banach spaces. Thus, throughout the remain-
ing part of this section, we denote by Λ any real infinite-dimensional Hilbert
space.

In an infinite-dimensional setting, the following definitions are strictly
related to the different notions of weak and strong topology.

Definition 4.3. A functional J : Λ → R̄ is said to be strongly (weakly, re-
spectively) lower semi-continuous if J is lower semi-continuous when Λ is
equipped with the strong (weak, respectively) topology.

Definition 4.4. A functional J : Λ → R̄ is said to be strongly (weakly, respec-
tively) sequentially lower semi-continuous if

lim inf
n→+∞ J(λn) ≥ J(λ)

for any sequence (λn)n ⊂ Λ such that λn → λ (λn ⇀ λ, respectively).

We proceed by providing some useful results.

Proposition 4.5. The following statements are equivalent:
(i) J : Λ → R is sequentially weakly lower semi-continuous functional;
(ii) the epigraph of J is weakly sequentially closed, where, by definition, it

is

epi(J) = {(λ, t) ∈ dom(J) × R : J(λ) ≤ t}.

Remark 4.6. As a further consequence of the preliminary Proposition 4.1,
we have that sequential weak lower semi-continuity and weak lower semi-
continuity do not match if Λ is infinite-dimensional since weak topology is
not metrizable. However, the weaker concept of sequential weak lower semi-
continuity meets our needs. For the proof of the next result, we refer the
interested reader to [2, Theorem 3.32].
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Proposition 4.7. Let C ⊆ Λ be a closed and convex subset. Then, C is weakly
sequentially closed, too.

Since a sequentially weakly closed set is also strongly closed, it follows
that a sequentially weakly lower semi-continuous functional is also (strongly)
lower semi-continuous. Instead, the converse holds under an additional as-
sumption. In particular, Proposition 4.7 allows us to infer the following re-
sults.

Proposition 4.8. If J : Λ → R is a strongly lower semi-continuous convex
functional; thus J is weakly sequentially lower semi-continuous, too.

Proof. Since J is lower semi-continuous, thus epi(J) is closed. On the other
hand, since J is convex, so it is epi(J), hence Proposition 4.7 ensures that
epi(J) is weakly sequentially closed, i.e., J is weakly sequentially lower semi-
continuous. �

Thus, we are able to state the main result of this section.

Theorem 4.9. Let C ⊂ Λ be a non-empty, closed, bounded, and convex subset.
Let J : Λ → R be a lower semi-continuous and convex functional. Thus J
achieves its minimum in C, i.e., λ̄ ∈ C exists such that J(λ̄) = inf

λ∈C
J(λ).

Proof. Let m := inf
λ∈C

J(λ); hence, (λn)n ⊂ C exists such that

J(λn) → m as n → +∞. (4.1)

Now, our boundness assumption on C implies that, up to subsequences, λ ∈
C exists such that λn ⇀ λ as n → +∞. Actually, since C is a closed and
convex subset of Λ, thus Proposition 4.7 applies, which guarantees that λ ∈
C.

Finally, from (4.1), Proposition 4.8 and Definition 4.4 we infer that
J(λ̄) ≤ m, which gives the desired result. �
Remark 4.10. We observe that Theorem 4.9 still holds if the subset C is not
bounded as long as we ask for an additional assumption on the functional J .
In fact, requiring J to be coercive2 (and if at least λ̄ ∈ C exists such that
J(λ̄) < +∞), then any minimizer of J on C necessarily lies in some closed
ball of radius r > 0. In fact, since J(λ̄) < +∞, any minimizer λ of J must
have J(λ) ≤ J(λ̄); furthermore, since J is coercive, a sufficient large radius
r > 0 exists such that J(λ) > J(λ̄) for all λ ∈ C with ‖λ‖ > r. Thus, any
minimizer, if exists, lies in the ball {λ ∈ C : ‖λ‖ ≤ r}.
In particular, Theorem 4.9 applies to the intersection between C and a closed
ball of suitable radius, since it turns to be convex if we formally require C to
be closed and convex.

Namely, the following result holds.

Corollary 4.11. Let C ⊂ Λ be a non-empty, closed, and convex subset. Let
J : Λ → R be a lower semi-continuous, convex, and coercive functional. Thus
J achieves its minimum, i.e., λ̄ ∈ C exists such that J(λ̄) = inf

λ∈C
J(λ).

2We say that a functional J : H → R is coercive if J(u) → ∞ as ‖u‖ → ∞, u ∈ H.
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Now we introduce a couple of results that are a direct consequence of
Ekeland’s variational principle. For the sake of completeness, here we provide
them with all the details (see [8] for the original statements).

Let Λ be a complete metric space and J : Λ → R be the lower semi-
continuous response function on Λ. Suppose that a point λ ∈ Λ exists such
that J(λ) < +∞. Thus, the following results hold.

Theorem 4.12. (Perturbation Result) Let Jλ : Λ → R̄ be a lower semi-
continuous differentiable function such that the inequality

|Jλ(γ) − J(γ)| ≤ ζ(d(γ, λ)) holds ∀γ ∈ Λ, (4.2)

where Jλ(·) denote model function,3 ζ is some growth function,4 and let λ+

be a minimizers of Jλ. If λ+ coincides with λ, then |∇J(λ)| = 0. On the other
hand, if λ and λ+ are distinct, then a point λ̂ ∈ X exists which satisfies

1. d(λ+, λ̂) ≤ 2 · ζ(d(λ+,λ))
ζ′(d(λ+,λ)) (point proximity)

2. J(λ̂) ≤ J(λ+) + ζ(d(λ+, λ)) (value proximity).

Proof. By Taylor’s theorem, it is simple to verify that |∇Jλ| (λ) = |∇J | (λ).
Now, since λ is a minimizer, we have |∇J(λ)| = 0 if λ+ = λ. On the other
hand, if λ+ 	= λ, from inequality (4.2) and the definition of λ+, it follows
that

J(γ) ≥ Jλ(λ+) − ζ(d(γ, λ)).

Let us define the new function

G(γ) := J(γ) + ζ(d(γ, λ)).

Thus, from assumption (4.2) and inequality inf G ≥ Jλ(λ+), we infer that

G(λ+) − inf G ≤ J(λ+) − Jλ(λ+) + ζ(d(λ+, λ)) ≤ 2ζ(d(λ+, λ)).

Hence, Theorem 3.1 applies and, having ε := 2ζ(d(λ+, λ)), for all ρ > 0 λρ

exists such that

G(λρ) ≤ G(λ+) and d(λ+, λρ) ≤ ε

ρ
.

The desired result follows simply by placing ρ = ζ ′(d(λ+, λ)) with λ̂ = λρ.
�

An immediate consequence of Theorem 4.12 is the following subsequence
convergence result.

Corollary 4.13. (Subsequence convergence to stationary points) Consider a
sequence of points λk and closed functions Jλk

: Λ → R̄ satisfying λk+1 =
argmin

γ
Jλk

(γ) and d(λk+1, λk) → 0. Moreover, suppose that the inequality

|Jλk
(γ) − J(γ)| ≤ ζ(d(λk, γ)) holds ∀k ∈ N and γ ∈ Λ, (4.3)

3As model function we mean the Taylor’s expansion of J in λ, stopped to the first order.
4A differentiable univariate function ζ : R+ → R+ is called a growth function if it sat-

isfies ζ(0) = ζ′(0) = 0 and ζ′ > 0 on (0, +∞). If in addition, equalities limt→0 ζ′(t) =
limt→0 ζ(t)/ζ′(t) = 0 hold, we say that ζ is a proper growth function.
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where ζ is a proper growth function. If (λ∗, J(λ∗)) is a limit point of the
sequence (λk, J(λk)), then λ∗ is stationary for J .

Two interesting consequences for convergence analysis flow from there.
Suppose that the models are chosen in such a way that the step-sizes ‖λk+1−
λk‖ tend to zero. This assumption is often enforced by ensuring that J(λk+1)
< J(λk) by at least a multiple of ‖λk+1−λk‖2 (sufficient decrease condition).
Then, assuming for simplicity that J is continuous on its domain, any limit
point λ∗ of the iterate sequence λk will be stationary for the problem (Corol-
lary 4.13).

Thus, by choosing an error ε, we can stop update (2.2) for GB algorithms
in the context of bi-level HPO for penalty hyperparameter, according to the
pseudo-code described in Algorithm 1.

Algorithm 1 Pseudo-code

Require: Tolerance ε. Some starting points λ0, λ1.
Ensure: Optimum λ∗

1: while ‖λt − λt−1‖ > ε do
2: Compute the hypergradient with iterative differentiation h(λ);
3: update λt+1 according to GB approach (2.2);
4: Increment the iteration t.
5: end while

5. Conclusions

In this paper, we studied the task of penalty HPO and we provided a mathe-
matical formulation, based on Hilbert spaces, to address this issue in an unsu-
pervised context. We want to emphasize that moving to infinite-dimensional
Hilbert spaces is not a mere abstract pretense, but it is also widely used in
supervised contexts. For example, when Support Vector Machine (SVM) is
taken into consideration, a well-known “kernel trick” permits the interpre-
tation of a Gaussian kernel as an inner product in a feature space. This is
potentially infinite-dimensional, allowing us to read the SVM classifier func-
tion as a linear function in the feature space [19]. Another example is provided
by the quantum system possible states problem, in which the state of a free
particle can be described as vectors residing in a complex separable Hilbert
space [21].

In this work, we considered as hyperparameter the penalty coefficient
of the constrained objective function and set up a bi-level strategy for its au-
tomatic tuning. Indeed, the strength of this article lies in theory. We showed
some relaxed theoretical results both to weaken the hypotheses necessary for
the existence of the solution and also proposed a variant of Ekeland’s principle
as a stopping criterion of GB methods. Our approach differs from the more
standard techniques in reducing the random or black-box strategies giving
stronger mathematical generalization suitable also when it is not possible to
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obtain an exact minimizer. Both the existence theorem and the stopping cri-
terion allow us to build an approach based on solid mathematical foundations
useful for future extensions and generalizations to other problems, too. For
example, infinite-dimensional Covariance Descriptors (CovDs) for classifica-
tion are a fertile application arena for the extensions developed here. This
finds motivation in the fact that CovDs could be mapped to Reproducing
Kernel Hilbert Space (RKHS) via the use of SPD-specific kernels [14]. Also,
the generalization of this approach related to a particular constrained matrix
factorization problem, defined with Bregman divergence on Hilbert spaces,
are subject of future works with experiments evaluating the goodness of the
novel stopping criterion [15].
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dell’Università e della Ricerca.

Data Availability Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Declarations

Conflict of Interest The authors have no relevant financial or non-financial
interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


300 Page 12 of 13 F. Esposito et al. MJOM

References

[1] Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications, vol.
30. Springer, Boston (2013)

[2] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York
(2011)

[3] Bertrand, Q., Klopfenstein, Q., Blondel, M., Vaiter, S., Gramfort, A., Salmon,
J.: Implicit differentiation of lasso-type models for hyperparameter optimiza-
tion. In: International Conference on Machine Learning, PMLR, pp. 810–821
(2020)

[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. Universitext. Springer, New York (2010)

[5] Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann.
Oper. Res. 153(1), 235–256 (2007)

[6] Del Buono, N., Esposito, F., Selicato, L.: Methods for hyperparameters op-
timization in learning approaches: An overview. In: International Conference
on Machine Learning, Optimization, and Data Science, Springer, pp. 100–112
(2020)

[7] Del Buono, N., Esposito, F., Selicato, L., Zdunek, R.: Bi-level algorithm for op-
timizing hyperparameters in penalized nonnegative matrix factorization. Appl.
Math. Comput. 457, 128184 (2023)

[8] Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Nonsmooth optimization using
Taylor-like models: error bounds, convergence, and termination criteria. Math.
Progr. (2019). https://doi.org/10.1007/s10107-019-01432-w

[9] Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47(2), 324–353
(1974)

[10] Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated Machine
Learning. Springer, Cham (2019)

[11] Franceschi, L.: A unified framework for gradient-based hyperparameter opti-
mization and meta-learning. Ph.D. thesis, University College London (2021)

[12] Franceschi, L., Donini, M., Frasconi, P., Pontil, M.: Forward and reverse
gradient-based hyperparameter optimization. In: International Conference on
Machine Learning, PMLR, pp. 1165–1173 (2017)

[13] Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel program-
ming for hyperparameter optimization and meta-learning. In: International
Conference on Machine Learning, PMLR, pp. 1568–1577 (2018)

[14] Harandi, M., Salzmann, M., Porikli, F.: Bregman divergences for infinite di-
mensional covariance matrices. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1003–1010 (2014)

[15] Kim, Kyungsup: Understanding non-negative matrix factorization in the
framework of Bregman divergence. J. Korean Soc. Ind. Appl. Math. 25(3),
107–116 (2021)

[16] Lorraine, J., Vicol, P., Duvenaud, D.: Optimizing millions of hyperparameters
by implicit differentiation. In: International Conference on Artificial Intelli-
gence and Statistics, PMLR, pp. 1540–1552 (2020)

[17] Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter op-
timization through reversible learning. In: Proc. of ICML, pp. 2113–2122 (2015)

https://doi.org/10.1007/s10107-019-01432-w


MJOM Theoretical Aspects in Penalty Hyperparameters Optimization Page 13 of 13 300

[18] Pedregosa, F.: Hyperparameter optimization with approximate gradient, pp.
737–746. PMLR, ICML (2016)

[19] Rossi, F., Villa, N.: Classification in Hilbert spaces with support vector ma-
chines. In: Proceedings of ASMDA, pp. 635–642 (2005)

[20] Vincent, D., Gelly, S., Nicolas Le, R., Bousquet, O.: Online hyper-parameter
optimization (2018)

[21] Ying, M.: Foundations of Quantum Programming. Morgan Kaufmann, San
Francisco (2016)

Flavia Esposito and Laura Selicato
Department of Mathematics
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