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Abstract. In this work, we establish sufficient conditions of the uniform
asymptotic stability (UAS) of solutions to second-order and third-order
of Volterra integro-differential equations (VIDE) with delay. Here, we
prove two new theorems on the UAS of the solutions of the considered
VIDEs. Our approach is based on Lyapunov’s second method. Our re-
sults improve and form a complement to some known recent results in
the literature. Two illustrative examples are considered to support the
results and two graphs are drawn to illustrate the asymptotic stability of
the zero solution for the considered numerical equations. The obtained
results are new and original.

Mathematics Subject Classification. 34K25, 45J99, 45M10.
Keywords. VIDEs, UAS, delay differential equations (DDESs).

1. Introduction

The integro-differential equations (IDEs), which combine differential and in-
tegral equations, have attracted more attention in recent years. Applications
in mathematics, physics, biology, and engineering all heavily rely on IDEs.
The equations known as the Volterra equations were studied in the
early years of the 20th century by Italian mathematician Vito Volterra. In the
1930's, Volterra showed that mathematical models for some seasonal diseases,
e.g., influenza, are formulated as integral and differential equations. The use
of VIDEs is widespread in the fields of biology, ecology, medicine, physics,
and other sciences. To the best of our knowledge, it has been observed in
a variety of physical applications, including the glass-forming process, heat
transfer, the diffusion process generally, neutron diffusion, the coexistence of
biological species with varying generation rates, and wind ripple in the desert.
One of the most crucial methods for researching the qualitative charac-
teristics of solutions to ordinary, functional, and IDEs is Lyapunov’s second
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method because this method is widely recognized as an excellent tool in the
study of differential equations. Theoretically, this method is quite significant,
and it is used in many different applications, see [24]. Lyapunov’s second
method is a sufficient condition to show the stability of systems, which means
the system may still be stable even if one cannot find a Lyapunov-Krasovskii
functional (LKF) candidate to conclude the system stability property.

There are many interesting results have been obtained in the literature
to study the behaviour of solutions for DDE by Lyapunov’s theory, see for
example [4,10,15,16,22,25].

Besides, it is worth mentioning, that according to our observation from
the literature, recently we found many exciting papers on the kind of VIDEs,
for example [2,3,9-13,15-22].

In 2000, Zhang [25] investigated the uniform asymptotic stability for
the linear scaler VIDE

i(t) = Ax(t) + /0 O(t — s)a(s)ds,

where A ia a constant and C : RT™ — R is a continuous function.
In 2015, Tung [14] studied the stability and the boundedness of the zero
solution of the non-linear VIDE with delay of the form

1) = — a1 ®) + [ Blt.9oa()ds +pl0)

Recently, in 2022, Appleby and Reynold [1] studied the asymptotic sta-
bility of the scalar linear VIDE

z(t) = —ax(t) —1—/0 k(t —s)x(s)ds, t >0, x(0) = xo.

Our goal for this paper is to create the sufficient conditions for the UAS
of second and third-order VIDEs with delay for the following equations

x—i—fl(:c)x—i—/ hl(t—sl)vl(x(sl))dsl =0, (11)
0
and

T+ fg(l‘)l‘ + ax + /0 hg(t — 82)7)2 (LL'(SQ)) dsy =0, (12)

where hi,hy : [0,00) — (—00,00) are continuous functions depend on the
differences t — s1,t — sq, respectively, and L(0,00), L' is the space of in-
tegrable Lebesgue functions, si,ss are time delays with si,s0 < ¢, also
there exist two functions Hy, Hy : [0,00) — [0,00) such that Hy(t — s) =
%(Hl(t—sl)) = —hl(t—sl), H2<t—82) = %(HQ(t_SQ)) = —hg(t—Sg) with
Jo° by (w)|du, [ [he(u)|du € LM0,00) and [ |Ha(u)|du, [~ [Ha(u)|du €
L'[0,00). The functions fi(x), f2(y),v1(x) and va(y) are continuous scalar
functions defined on R with f1(0) = f2(0) = v1(0) = v2(0) = 0.

Remark 1.1. We will give the following remarks:
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1. Whenever, & replaced by &, fi(x)& replaced by Axz(t), and let vy (z) =
x(t), in the integral term then (1.1) reduces to the equation that is con-
sidered in [25]. Thus, the stability and results obtained in (1.1) include
and extend the previous results.

2. In [1], If we replaced the term & by &, fi(x)& by ax(t), and let v1(z) =
x(t) in the integral term, then (1.1) reduces to the equation that consid-
ered in [1]. Then the stability results of this paper include and improve
the stability result obtained in [1]. Then (1.1) and (1.2) generalize and
improve the results obtained in [1,25].

3. As an application in physics, many models can be modeled by IDEs. For
example, first, by the Kirchhoffs second law, the net voltage drop across
a closed loop equals the voltage impressed E(t). Thus, the standard
closed electric RLC' circuit can be governed IDE [5], second, an Abel-
type Volterra integral equation describes the temperature distribution
along the surface when the heat transfer to it is balanced by radiation
from it. Finally, also, Abel-type Volterra integral equation determines
the temperature in a semi-infinite solid, whose surface can dissipate heat
by nonlinear radiation [23].

2. Main Results
Consider the general functional differential system
&= F(t,xy), (2.1)

where, z; represents a function from [, t] — R", —oo < a < t;. For any
t > to, by (X(t),].|]), we shall mean the space of continuous functions ¢ :
[a,t] = R™ o > 0, with||¢| = sup,<s<;|¢(s)], s € R and |.| is any norm
on R”. The symbol Xp(t) denotes those ¢ € X (t) with ||¢|| < H for some
H > 0.

Here, F' is a continuous function of ¢ for ty < ¢t < oo, whenever z; €
Xpu(t) for tg < t < oo, and takes closed bounded sets of R x X(t) into
bounded sets of R".

Theorem 2.1. [7] Let V(t,x) be continuous functional and locally Lipschitz
for

to <t < coand x; € Xp(t). Suppose there is a continuous function
® : [0,00) — [0,00) which is L'[0,00) and satisfies

(1) Wa(lz|) < V(t,z) < Wa(lz|) + Wg(f;@(t - S)W4(|x(s)|)ds>, where
Wi; (l =1, 273,4) are wedges;

(i) Vio.yy(t, 1) < —Ws(|z)).
Then, the zero solution of (2.1) is uniformly asymptotically stable (UAS).

The following two theorems will be our main results for (1.1) and (1.2).
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Theorem 2.2. In addition to the basic assumptions given on the functions
f1, Hi and vy for (1.1), we suppose that there are the non-negative constants
ai, as, by, ba, Ly, L, c1, B1, P2 and co, such that

(i) as < fi(z) < ay, |fi(@)| <1 and by <wvi(z) < by, |[v)(2)] < ea.

(i) fo° 1H1(u)|du =L <1 and [ |Hy(u)|du € L'[0,00).
(iv) fo |Hy(t —s1)|dst + [ |Hy(u—t)|du = L.
Then, the zero solution of (1.1) is UAS, provided that

ﬂlbgcl + 2510%L1 Z ClblL and 2a2 Z ClblL.

Theorem 2.3. Together with the fundamental conditions given on the func-
tions fo, Hy and vy for (1.2), we assume that there exist the positive constants
Qaq, e, g, 0y, di,de, L,01,05 and 05, so that the following assumptions are
true

(i) a1 < faly) < @z, |f3(y)] < di and az < va(y) < oy, [va(y)| < do.
(ii) f3¥ |[H2(u)|du =L <1 and [ |Hs(u)|du € L'[0,00).
(iv) fo |Ha(t — s2)|dsa + [ [Ha(u — t)|du < %P
Then, the zero solution of (1.2) is UAS, provided that

(1 + o+ 20[1) Z d293.

3. Proof of Theorem 2.2.
Rewrite (1.1) as the following
T =y,
d t
i =~ fi@y - B0 (@) + G [ Hile = smla(s)ds:
0

Define the LKF Vi (t, x4, y:) as

(3.1)

Vi(t, e, ye) Z(y - /Ot Hy(t - 51)111(95(51))dé>’1>2 + 4H:(0) /Om v1(§)d€
+ (’y + /OgC f1(§)d€ — /Ot Hy(t - Sl)vl(x(sl))dé‘l)Q

+2H1(0)/0/t H (u— s1)|du o2 (2(51))dss.
(3.2)

It can be written as

Vi— 2%+ z(/ot Hi(t— 51)v1(x(sl))dsl>2 4y /Ot Hi(t = s1)01 (2(51))dss

0

+4H,(0) /z v1(€))dE + (/Ox fl(g)d§>2 + 2y /O f1(§)d¢



MJOM Some New Results on the Uniform Asymptotic Page 5 of 17 280

x t

2 [ 1O [ Hilt = s a(s)ds

0 0

t o
+2H:(0) / / |Hi(u— s1)|duvf (z(s1))ds1. (3.3)

0 Jt
Using the Schwarz inequality [8], we get

(/Othrl(t—sl)m(a;(sl))dsl)2 = (/Ot |H1(t—51)|%|H1(t—51)|éul(x(sl))dsl)2
< [me=soias: [ 1 slets)s:

By using the inequality |mn| < %(m2 +n?), and the previous inequality,
we can write (3.3) as the following form

t t
Vi §2y2+2/ |H1(t—sl)|dsl/ Hy(t — 1) o2 (2(s1))ds,
+2/ H1 t—Sl)(Uf( (81))+y ( ))dSl —|—4H1(0) /x’Ul(g)df
0
</ (€ d{) +2y/ Ji(s1)dsy
_ d Hq(t — d
2/0 fi(s1) 51/0 1(t = s1)vi(2(s1))ds1
t e}
+2H1(O)/0 /t |Hy (v — s1)|du v} (2z(s1))ds;.
By the assumptions of Theorem 2.2, we have

Vi <(2B2¢2 + a1 + af + a2L)z® + (2 + 2L + a1)y’

t e}
W U {(2 Y az +2L) [ Hi(t — s1)| + 262 Hl(u)du}cgﬁ(sl)dsl} ,
0 t—sy
where W is a wedge function.
Therefore, we have
(2 +ay + 2L)c3|Hy (t — s1)| + 2¢3 55 Hy(u)du = ®(t — s1).

t—Sl

Therefore, one can conclude that

Vi < ’yl(:c2 + y2) + W</0 Dt — 51)(:52(51) + y2(51))d51>, v > 0.
(3.4)
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On the other hand
V> (y - / (- sovl(x(smdslf
+ <y+ /Ow f1(§)dg — /Ot Hy(t - 81)'01(93(81))0151)2
> (|y| -/ tH1<t—sl>||v1<x<sl>>|dsl)2
+ <y+/om f1(§)d¢| —/Ot |H1(t—81)|U1($(81))|d81)2.

Since [, |Hi(u)|du = L < 1 and by the assumption (i) of Theorem 2.2,
we conclude

2 2
Vo> (|y|—c2|x|) n (|y|+a2|x|—c2|x) . (3.5)

Thus, from (3.4) and (3.5), we conclude that the condition (i) of Theo-
rem 2.1 is satisfied.

Now, by differentiating Eq. (3.2), we obtain

Wy [ A sn(e(s))is: ) (= A~ HiOn())

" 2(y - (e / s snm(a:(sl))dsl) ( — H (0w (x>)
AL (O (2)y + 2H1(0) T / t / T H, (= s0)|du o (a(s1)ds.

From Leibnitz rule [23] Pg. 17 and the identity [23] Pg. 17 and [6] Pg.
41, we have

0(11’5/0 /too |Hy(u — s1)|du v?(2(s1))ds; z/tOO |Hy (u — t)|du v? (x(t))
- t — 81 ’1)2 T(S1 S1
| 1 = s ee)ds,

then, we get

dVi

- = —2f1(z)y? — 2H1 (0)v1 () /Om f1(6)dg + 2H1(0) /too |H1(u — t)|du vf (2(t))

—2H, (0) /Ot ‘Hl (t — 51)|U%(I(51))d81 + 4H1(0)’l}1 (ZE) /Ot Hy (t — 51)1)1 (33(31))d51

+ 2f1(90)y/0t Hi(t — s1)vi(x(s1))dss.
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From the condition (i) and the inequality [mn| < 3(m?+n?), we obtain

< 2000 = i (Opeabas® + 2H1(0) [ | = 0)]du o o)
t

e L(® 4 ) — 2H, (0) / [Hy (2 — s0)[v? (2(s1))dsy

—|—2H1(0)/0 Hy(t — 1) (03 (x(s1)) + v3(x(t)))ds1.

Therefore, we conclude

dvi 2 2 =
o < —2a9y” — H1(0)c1box” + 2H1(0) |Hy (u—t)|du
t

t
+ / |Hq(t — sl)|dsl)v%(x(t)) + e1by La® + e1by Ly?.
0

Consider the conditions (i)—(iv) and |H;(0)| > (1, we have

dV;

a < —{ (ﬁleQ + 25163141 - Clb1L> |33|2 =+ <2a2 - c1b1L> |y|2}

Therefore, we conclude for D, > 0, that

av;
dTl < =Dy (|2 + [y|?), for all D; > 0, (3.6)

where, D1 = min {S81bac1 + 261¢2 — ¢1b1 L, 2a — ¢1b1 }.

Thus, from (3.4), (3.5) and (3.6) all the assumptions of Theorem 2.1 are
satisfied. Therefore the zero solution of (1.1) is UAS. Hence, the proof of
Theorem 2.2 is now complete.

4. Proof of Theorem 2.3.

We can rewrite (1.2) as the following equivalent system

=Yy,
= 2,

L (4.1)
t=—fo(y)z — ay — Ha(0)v2(y) + E/o Hy(t — s2)va(y(s2))dss.

Define the LKF Va(t, x4, yt, 2¢) as

2

Vatt, g1, 22 :<z +az+ /0 " fa(€)ae - /0 e - S2>”2(y(52”d52>(4 2)

+H2(0) [ [ ol = so)ldu vdus2)) s
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From Eq. (4.2), we get

Vo :<z +ax + /Oy fg({)df)z + </Ot Hy(t — sz)vg(y(SQ))ds,*g)z

- 2(2 +ax + /Oy f2(§)d£> (/Ot Hy(t — 52)v2(y(32))d32)

120) [ [ ot = so)ldu cdus2))dse

Applying the condition (i) and the inequality [mn| < 3(m? + n?), we
obtain

Va<22+a®+a (m2 + 22) + 02y’ + as <y2 n zz) + aas (:c2 + y2)
([ 10— sa)vz(y(sz))dszf + [t - o) (s u(0) + 0} s
+a [ Halt— o) [0 (0(s2)) + 220 }aso
s [ B = ) [ (0(s2)) + o7 0} s

+ H>(0) /Ot /too | Ha(u — s2)|du v3 (y(s2))dss.

Since [~ Hz(u)du = L and from condition (i), then we get
Vo<(l+a+as+ L) (04:52(75) + agy?(t) + zz(t)>
t 2
([ e = sayatots)as
0
t
+d2(14+ a4+ o) / |Hy(t — s2)|y?(s2)dss
0

+H2(0)/0 /too | Ho(u — 5)|du v2 (y(s2))dso.
(4.3)

By the Schwarz inequality [8], we have

2

(/Ot Hy(t — sz)vg(x(.sz))d52> (/Ot |Ha(t — s2)|2 | Ha(t — 52)|%v2(x(52))d52)2
< /()t |Ho(t — s2)|ds2 '/Ot |Ha(t — s)2)|v§(m(52))d52.
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Applying the conditions of Theorem 2.3, we obtain
Vo<(l+a+as+ L) (axQ(t) + agy?(t) + z2(t)>
t t
+/0 ot - 32)|d52/0 Ha(t — 52)[03 (2(52))dss
+di(1+a+a) /Ot |Hy(t — s2)|y?(s2)dss
+ Ood3 /Ot /foo |Ha(u — s2)|duy?(s2)dss.
It follows that
Vo < (1—|—a+a2+L)<ax2+oz2y2+z2)
+W Uot {d2(1 + a+ on)|Ha(t — s2)| + d302 /:o HQ(u)du}yQ(SQ)dSQ} .
If we let
do(1 4+ an)| Ha(t — 52)| + d265 /tm Ho(u)du = Bt — s),
.
then, we get

Vs §(1+a+a2+L)<ax2+agy2+22>

+W(/Ot¢>(t—32)y2(32)d32).

Since 1+ a+as+ L > 0, then we have a positive constant 7,, such that

Vo <vs (a:c2 + ay? + 22>
4.4
—I—W(/Ot(b(t—sz)(xQ(sQ)—|—y2(82)+z2($2))>. o

Now, (4.2) becomes
Yy t 2
Vo > (2 + oz +/ f2(€)d¢ —/ Hy(t - 32)U2(y(52))d82>
0 0

> (Z+Oé$+/oyf2(§)d§|—/Ot|H2(t—82)02(9(52))|d82>2.

By (i), we have [;°|Hz(u)|/du = L < 1 and by the assumption (i) of
Theorem 2.3, we conclude that

2
Ve > (|Z + alz| + aily| — d2|y> . (4.5)
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Differentiating the LKF V5 (¢, x4, yt, 2¢) with respect to ¢

v :2<z+ax+ /0 " fa(e)de - /0 t H2<t—82>”2<y(52”d82)

x ( ait b g [ A Sz)vz(y(sz))dsz)

+ HQ(O)%/O /too |Hy(u — s9)|du v3(y(s2))dss.

From Leibnitz rule [23] Pg. 17 and the identity [6] Pg. 41, we get
d t [e'e) oo
G it sudots = [ Ha - du )
t t
t
= [ 1t~ sa)ledy(sa))se
0

By using the equivalent system (4.1), we obtain

v 2(2 ot /0 " pa(€)ae - /0 Hat- 32)1,2@(32))(182)

« ( W) + & / Hiy(t — s2)va(y(sz))dsz
— %/0 Hg(t — Sg)vg(y(SQ))dSQ) + HQ(O) /too ‘HZ(U - t)|du Ug(y(t))

— H,(0) / Ha(t — s2) |03 (y(52))dso.

From condition (i), we get

dV;
d7t2 < - 2H2(0)d2y2 - 205H2(0)d233y - 2H2(0)d2a1y2

+ H2(0)</Ot Hp(t — 5)|dss + /too |y (u — t)|du>d§y2.

It follows from condition (iv) and the inequality [mn| < %(m? 4 n?)
that
dVp

E < — 91{(d2 + ady + 201dy — 036@)3}2 + Oéd2$2 + dQZQ}.

Thus, one can conclude for a positive constant Dy > 0 that

dV

d—; < Do (2 + 4% +2%), (4.6)
where Dy = 61 min {ds + ada + 2a1dy — 03d3, ada, do }. From the results (4.4),
(4.5) and (4.6), we note that all assumptions of Theorem 2.1 are satisfied,
then the zero solution of (1.2) is UAS.

Thus, the proof of Theorem 2.3 is now complete.
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5. Illustrative Examples
Example 5.1. Consider the following VIDE with delay
i+ (1027 — 5sin(z))d + /t e 71 (6sin?(z(s1)) + 5sin®(z(s1)))ds; = 0.
’ (5.1)
Note that
fi(z) = 1027 —5sin(z), f1(0) =0.
So, we find
10 < 1027 — 5sin(z) < 46, so a1 = 46 and ay = 10,
and
fi(x) =5277 —5cosa, |fi(x)] <10=c.

Figure 1, shows the behaviour of fi(z) and fj(x) on the interval ¢t €
[2,20] and ¢ € [0, 90], respectively.
Moreover, we have

v (x) = 6sin?2 4 5sin® 2, so, 1 <wi(z) <5 then, we get by =5, by =1,
and
vy (x) = 12sinzcosx + 15sin® z cosx, therefore |v](x)] <12 = cy.

Figure 2, illustrates the behaviour of v1(z) and v} (z) through the inter-
val t € [0,90].
Also, we have

o0 1
/ Hy(w)du=1 =1,
0 e

[e'e] t 1
Ly :/ el=5171ds, —|—/ el g = ~.
t 0 €

and

~

105 £(x) <4

2 4 6 8 10 12 14 16 18 20 0o 10 20 30 40 50 60 70 80 90

Figure 1. Trajectories of the functions f;(z) and f(x)
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Figure 2. Trajectories of the functions v;(z) and v} (x)

1

x(t)
—vy()
0.5 1
= 0
>
£
X .05
-1
-1.5 +
0 2 4 6 8 10

t

Figure 3. Trajectories of the solutions for Example 5.1

Then, we get

and
Bibact + 2B1L1ck = 21.3 and c1b L = 18.4.
So, it is clear that
Bibact + 281 L1 > e1bi L, 2as = 20 > ¢1by L.

We can see that the behaviour of the solutions (z(t), y(t)) with the initial
values (zg = 0,yo = 1) for (5.1) by Fig. 3.

Thus, all the hypotheses of Theorem 2.2 are satisfied.
Then, the zero solution of (5.1) is UAS.

Ezample 5.2. Consider the following VIDE with delay

t
T+ 3sin(4)i + 8% + / 2e'7°271(25in %59)dsg = 0. (5.2)
0
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Figure 4. Trajectories of the functions fo(y) and f4(y)

It follows that
fo(y) = 3siny, then f2(0) = 0.
So, we get
1< foly) <3, then a3 =1, ag = 3,
and
f5(y) = 3cosy, then [3cosy| < 3 =dj.

Figured4, shows the behaviour of fa(z) and fi(x) on the interval ¢ €
[0, 50].
Moreover

va(y) = 2sin’y, then v3(0) = 0.
So, we get
0<wy(y) <2, then a3 =0, ay =2,
and
vh(y) = 4sinycosy, then |[4sinycosy| <2 = ds.
Figure 5, illustrates the path of vy () and v4(x) on the interval ¢ € [0, 50].

Also, we have
e 1
/ \Ho(u)|du = » = I,
0 e
and

o0 t 2
/ 2et=52 1, —|—/ 2¢!7%27 dg; = = = 6.
t 0 €

Also, we have

| =

and
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RUILITN IV

Figure 5. Trajectories of the functions vs(y) and v}(y)

1.5 <
—y(t)
1 z(t)
e
N 05}
=
>
é 0
>
-0.5
-1 N
0 2 4 6 8 10

t

Figure 6. Path of the solutions for Example 5.2

00 t
2 60,0
/ 2¢t7527 s, —|—/ 2t Mgy = = < =22,
t 0 e 62

So, it is clear that
14+a+ 20 > d293,

Figure 6, shows the behaviour of the solutions (z(t),y(t), z(t)) with the
initial values (zo = 0,yp = 1,20 = 1) for (5.2).

Thus, all the hypotheses of Theorem 2.3 are verified.
Then, the zero solution of (5.2) is UAS.

6. Conclusion

This work emphasizes the stability of solutions to certain nonlinear second-
order and third-order VIDE with delay.

By employing Lyapunov’s second method, a suitable LKF was con-
structed and used to establish the sufficient conditions of Theorems 2.2 and
2.3.
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Two numerical examples were given and all functions were drawn to
prove the sufficient conditions of Theorems 2.2 and 2.3, and also orbits of the
numerical solutions were drawn with assigned initial conditions to demon-
strate the effectiveness of the obtained results.

The results obtained in this paper extend many existing and exciting
results on nonlinear VIDE.
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