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Some New Results on the Uniform
Asymptotic Stability for Volterra
Integro-differential Equations with Delays
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Abstract. In this work, we establish sufficient conditions of the uniform
asymptotic stability (UAS) of solutions to second-order and third-order
of Volterra integro-differential equations (VIDE) with delay. Here, we
prove two new theorems on the UAS of the solutions of the considered
VIDEs. Our approach is based on Lyapunov’s second method. Our re-
sults improve and form a complement to some known recent results in
the literature. Two illustrative examples are considered to support the
results and two graphs are drawn to illustrate the asymptotic stability of
the zero solution for the considered numerical equations. The obtained
results are new and original.
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1. Introduction

The integro-differential equations (IDEs), which combine differential and in-
tegral equations, have attracted more attention in recent years. Applications
in mathematics, physics, biology, and engineering all heavily rely on IDEs.

The equations known as the Volterra equations were studied in the
early years of the 20th century by Italian mathematician Vito Volterra. In the
1930 s, Volterra showed that mathematical models for some seasonal diseases,
e.g., influenza, are formulated as integral and differential equations. The use
of VIDEs is widespread in the fields of biology, ecology, medicine, physics,
and other sciences. To the best of our knowledge, it has been observed in
a variety of physical applications, including the glass-forming process, heat
transfer, the diffusion process generally, neutron diffusion, the coexistence of
biological species with varying generation rates, and wind ripple in the desert.

One of the most crucial methods for researching the qualitative charac-
teristics of solutions to ordinary, functional, and IDEs is Lyapunov’s second
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method because this method is widely recognized as an excellent tool in the
study of differential equations. Theoretically, this method is quite significant,
and it is used in many different applications, see [24]. Lyapunov’s second
method is a sufficient condition to show the stability of systems, which means
the system may still be stable even if one cannot find a Lyapunov-Krasovskii
functional (LKF) candidate to conclude the system stability property.

There are many interesting results have been obtained in the literature
to study the behaviour of solutions for DDE by Lyapunov’s theory, see for
example [4,10,15,16,22,25].

Besides, it is worth mentioning, that according to our observation from
the literature, recently we found many exciting papers on the kind of VIDEs,
for example [2,3,9–13,15–22].

In 2000, Zhang [25] investigated the uniform asymptotic stability for
the linear scaler VIDE

ẋ(t) = Ax(t) +
∫ t

0

C(t − s)x(s)ds,

where A ia a constant and C : R+ → R is a continuous function.
In 2015, Tunç [14] studied the stability and the boundedness of the zero

solution of the non-linear VIDE with delay of the form

ẋ(t) = − a(t)f(x(t)) +
∫ t

t−τ

B(t, s)g(x(s))ds + p(t).

Recently, in 2022, Appleby and Reynold [1] studied the asymptotic sta-
bility of the scalar linear VIDE

ẋ(t) = − ax(t) +
∫ t

0

k(t − s)x(s)ds, t > 0, x(0) = x0.

Our goal for this paper is to create the sufficient conditions for the UAS
of second and third-order VIDEs with delay for the following equations

ẍ + f1(x)ẋ +
∫ t

0

h1(t − s1)v1(x(s1))ds1 = 0, (1.1)

and

...
x + f2(ẋ)ẍ + αẋ +

∫ t

0

h2(t − s2)v2 (ẋ(s2)) ds2 = 0, (1.2)

where h1, h2 : [0,∞) → (−∞,∞) are continuous functions depend on the
differences t − s1, t − s2, respectively, and L1(0,∞), L1 is the space of in-
tegrable Lebesgue functions, s1, s2 are time delays with s1, s2 ≤ t, also
there exist two functions H1,H2 : [0,∞) → [0,∞) such that Ḣ1(t − s1) =
d
dt (H1(t−s1)) = −h1(t−s1), Ḣ2(t−s2) = d

dt (H2(t−s2)) = −h2(t−s2) with∫ ∞
0

|h1(u)|du,
∫ ∞
0

|h2(u)|du ∈ L1[0,∞) and
∫ ∞

t
|H2(u)|du,

∫ ∞
t

|H2(u)|du ∈
L1[0,∞). The functions f1(x), f2(y), v1(x) and v2(y) are continuous scalar
functions defined on R with f1(0) = f2(0) = v1(0) = v2(0) = 0.

Remark 1.1. We will give the following remarks:
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1. Whenever, ẍ replaced by ẋ, f1(x)ẋ replaced by Ax(t), and let v1(x) =
x(t), in the integral term then (1.1) reduces to the equation that is con-
sidered in [25]. Thus, the stability and results obtained in (1.1) include
and extend the previous results.

2. In [1], If we replaced the term ẍ by ẋ, f1(x)ẋ by ax(t), and let v1(x) =
x(t) in the integral term, then (1.1) reduces to the equation that consid-
ered in [1]. Then the stability results of this paper include and improve
the stability result obtained in [1]. Then (1.1) and (1.2) generalize and
improve the results obtained in [1,25].

3. As an application in physics, many models can be modeled by IDEs. For
example, first, by the Kirchhoffs second law, the net voltage drop across
a closed loop equals the voltage impressed E(t). Thus, the standard
closed electric RLC circuit can be governed IDE [5], second, an Abel-
type Volterra integral equation describes the temperature distribution
along the surface when the heat transfer to it is balanced by radiation
from it. Finally, also, Abel-type Volterra integral equation determines
the temperature in a semi-infinite solid, whose surface can dissipate heat
by nonlinear radiation [23].

2. Main Results

Consider the general functional differential system

ẋ = F (t, xt), (2.1)

where, xt represents a function from [α, t] → R
n, −∞ ≤ α ≤ t0. For any

t ≥ t0, by (X(t), ‖.‖), we shall mean the space of continuous functions φ :
[α, t] → R

n, α > 0, with‖φ‖ = supα≤s≤t |φ(s)|, s ∈ R and |.| is any norm
on R

n. The symbol XH(t) denotes those φ ∈ X(t) with ‖φ‖ ≤ H for some
H > 0.

Here, F is a continuous function of t for t0 ≤ t ≤ ∞, whenever xt ∈
XH(t) for t0 ≤ t ≤ ∞, and takes closed bounded sets of R × X(t) into
bounded sets of Rn.

Theorem 2.1. [7] Let V (t, xt) be continuous functional and locally Lipschitz
for

t0 ≤ t < ∞and xt ∈ XH(t). Suppose there is a continuous function
Φ : [0,∞) → [0,∞) which is L1[0,∞) and satisfies

(i) W1(|x|) ≤ V (t, xt) ≤ W2(|x|) + W3

(∫ t

α
Φ(t − s)W4(|x(s)|)ds

)
, where

Wi;
(
i = 1, 2, 3, 4

)
are wedges;

(ii) V̇(2.1)(t, xt) ≤ −W5(|x|).
Then, the zero solution of (2.1) is uniformly asymptotically stable (UAS).

The following two theorems will be our main results for (1.1) and (1.2).
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Theorem 2.2. In addition to the basic assumptions given on the functions
f1, H1 and v1 for (1.1), we suppose that there are the non-negative constants
a1, a2, b1, b2, L1, L, c1, β1, β2 and c2, such that

(i) a2 ≤ f1(x) ≤ a1, |f ′
1(x)| ≤ c1 and b2 ≤ v1(x) ≤ b1, |v′

1(x)| ≤ c2.
(ii)

∫ ∞
0

|H1(u)|du = L < 1 and
∫ ∞

t
|H1(u)|du ∈ L1[0,∞).

(iii) 0 < β1 ≤ |H1(0)| ≤ β2.

(iv)
∫ t

0
|H1(t − s1)|ds1 +

∫ ∞
t

|H1(u − t)|du = L1.

Then, the zero solution of (1.1) is UAS, provided that

β1b2c1 + 2β1c
2
2L1 ≥ c1b1L and 2a2 ≥ c1b1L.

Theorem 2.3. Together with the fundamental conditions given on the func-
tions f2,H2 and v2 for (1.2), we assume that there exist the positive constants
α1, α2, α3, α4, d1, d2, L, θ1, θ2 and θ3, so that the following assumptions are
true

(i) α1 ≤ f2(y) ≤ α2, |f ′
2(y)| ≤ d1 and α3 ≤ v2(y) ≤ α4, |v′

2(y)| ≤ d2.
(ii)

∫ ∞
0

|H2(u)|du = L < 1 and
∫ ∞

t
|H2(u)|du ∈ L1[0,∞).

(iii) 0 < θ1 ≤ |H2(0)| ≤ θ2.

(iv)
∫ t

0
|H2(t − s2)|ds2 +

∫ ∞
t

|H2(u − t)|du ≤ θ1θ3
θ2

.

Then, the zero solution of (1.2) is UAS, provided that

(1 + α + 2α1) ≥ d2θ3.

3. Proof of Theorem 2.2.

Rewrite (1.1) as the following

ẋ = y,

ẏ = −f1(x)y − H1(0)v1(x) +
d
dt

∫ t

0

H1(t − s1)v1(x(s1))ds1.
(3.1)

Define the LKF V1(t, xt, yt) as

V1(t, xt, yt) =
(

y −
∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

+ 4H1(0)
∫ x

0

v1(ξ)dξ

+
(

y +
∫ x

0

f1(ξ)dξ −
∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

+ 2H1(0)
∫ t

0

∫ ∞

t

|H1(u − s1)|du v2
1(x(s1))ds1.

(3.2)

It can be written as

V1 = 2y2 + 2

( ∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

− 4y

∫ t

0

H1(t − s1)v1(x(s1))ds1

+4H1(0)

∫ x

0

v1(ξ))dξ +

( ∫ x

0

f1(ξ)dξ

)2

+ 2y

∫ x

0

f1(ξ)dξ
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−2

∫ x

0

f1(ξ)dξ

∫ t

0

H1(t − s1)v1(x(s1))ds1

+2H1(0)

∫ t

0

∫ ∞

t

|H1(u − s1)|du v2
1(x(s1))ds1. (3.3)

Using the Schwarz inequality [8], we get

( ∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

=

( ∫ t

0

|H1(t − s1)| 12 |H1(t − s1)| 12 v1(x(s1))ds1

)2

≤
∫ t

0

|H1(t − s1)|ds1

∫ t

0

|H1(t − s1)|v2
1(x(s1))ds1.

By using the inequality |mn| ≤ 1
2 (m2+n2), and the previous inequality,

we can write (3.3) as the following form

V1 ≤ 2y2 + 2
∫ t

0

|H1(t − s1)|ds1

∫ t

0

|H1(t − s1)|v2
1(x(s1))ds1

+ 2
∫ t

0

H1(t − s1)
(
v2
1(x(s1)) + y2(t)

)
ds1 + 4H1(0)

∫ x

0

v1(ξ)dξ

+
(∫ x

0

f1(ξ)dξ

)2

+ 2y

∫ x

0

f1(s1)ds1

− 2
∫ x

0

f1(s1)ds1

∫ t

0

H1(t − s1)v1(x(s1))ds1

+ 2H1(0)
∫ t

0

∫ ∞

t

|H1(u − s1)|du v2
1(x(s1))ds1.

By the assumptions of Theorem 2.2, we have

V1 ≤(2β2c2 + a1 + a2
1 + a2L)x2 + (2 + 2L + a1)y

2

+ W

[ ∫ t

0

{
(2 + a2 + 2L)|H1(t − s1)| + 2β2

∫ ∞

t−s1

H1(u)du

}
c22x

2(s1)ds1

]
,

where W is a wedge function.
Therefore, we have

(2 + a2 + 2L)c22|H1(t − s1)| + 2c22β2

∫ ∞

t−s1

H1(u)du = Φ(t − s1).

Therefore, one can conclude that

V1 ≤ γ1(x2 + y2) + W

(∫ t

0

Φ(t − s1)(x2(s1) + y2(s1))ds1

)
, γ1 > 0.

(3.4)
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On the other hand

V1 ≥
(

y −
∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

+
(

y +
∫ x

0

f1(ξ)dξ −
∫ t

0

H1(t − s1)v1(x(s1))ds1

)2

≥
(

|y| −
∫ t

0

|H1(t − s1)||v1(x(s1))|ds1

)2

+
(

|y +
∫ x

0

f1(ξ)dξ| −
∫ t

0

|H1(t − s1)||v1(x(s1))|ds1

)2

.

Since
∫ ∞
0

|H1(u)|du = L < 1 and by the assumption (i) of Theorem 2.2,
we conclude

V1 ≥
(

|y| − c2|x|
)2

+
(

|y| + α2|x| − c2|x|
)2

. (3.5)

Thus, from (3.4) and (3.5), we conclude that the condition (i) of Theo-
rem 2.1 is satisfied.

Now, by differentiating Eq. (3.2), we obtain

dV1

dt
= 2

(
y −

∫ t

0

H1(t − s1)v1(x(s1))ds1

)(
− f1(x)y − H1(0)v1(x)

)

+ 2
(

y +
∫ t

0

f1(ξ)dξ −
∫ t

0

H1(t − s1)v1(x(s1))ds1

)(
− H1(0)v1(x)

)

+ 4H1(0)v1(x)y + 2H1(0)
d
dt

∫ t

0

∫ ∞

t

|H1(u − s1)|du v2
1(x(s1))ds1.

From Leibnitz rule [23] Pg. 17 and the identity [23] Pg. 17 and [6] Pg.
41, we have

d
dt

∫ t

0

∫ ∞

t

|H1(u − s1)|du v2
1(x(s1))ds1 =

∫ ∞

t

|H1(u − t)|du v2
1(x(t))

−
∫ t

0

|H1(t − s1)|v2
1(x(s1))ds1,

then, we get

dV1

dt
= −2f1(x)y

2 − 2H1(0)v1(x)

∫ x

0
f1(ξ)dξ + 2H1(0)

∫ ∞

t

|H1(u − t)|du v2
1(x(t))

− 2H1(0)

∫ t

0
|H1(t − s1)|v2

1(x(s1))ds1 + 4H1(0)v1(x)

∫ t

0
H1(t − s1)v1(x(s1))ds1

+ 2f1(x)y

∫ t

0
H1(t − s1)v1(x(s1))ds1.
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From the condition (i) and the inequality |mn| ≤ 1
2 (m2+n2), we obtain

dV1

dt
≤ − 2a2y

2 − H1(0)c1b2x2 + 2H1(0)
∫ ∞

t

|H1(u − t)|du v2
1(x(t))

+ c1b1L(x2 + y2) − 2H1(0)
∫ t

0

|H1(t − s1)|v2
1(x(s1))ds1

+ 2H1(0)
∫ t

0

H1(t − s1)
(
v2
1(x(s1)) + v2

1(x(t))
)
ds1.

Therefore, we conclude

dV1

dt
≤ − 2a2y

2 − H1(0)c1b2x2 + 2H1(0)
( ∫ ∞

t

|H1(u − t)|du

+
∫ t

0

|H1(t − s1)|ds1

)
v2
1(x(t)) + c1b1Lx2 + c1b1Ly2.

Consider the conditions (i)–(iv) and |H1(0)| ≥ β1, we have

dV1

dt
≤ −

{(
β1b2c1 + 2β1c

2
2L1 − c1b1L

)
|x|2 +

(
2a2 − c1b1L

)
|y|2

}
.

Therefore, we conclude for D1 > 0, that

dV1

dt
≤ −D1(|x|2 + |y|2), for all D1 > 0, (3.6)

where, D1 = min {β1b2c1 + 2β1c2 − c1b1L, 2a2 − c1b1}.
Thus, from (3.4), (3.5) and (3.6) all the assumptions of Theorem 2.1 are
satisfied. Therefore the zero solution of (1.1) is UAS. Hence, the proof of
Theorem 2.2 is now complete.

4. Proof of Theorem 2.3.

We can rewrite (1.2) as the following equivalent system

ẋ = y,

ẏ = z,

ż = −f2(y)z − αy − H2(0)v2(y) +
d
dt

∫ t

0

H2(t − s2)v2(y(s2))ds2.

(4.1)

Define the LKF V2(t, xt, yt, zt) as

V2(t, xt, yt, zt) =
(

z + αx +
∫ y

0

f2(ξ)dξ −
∫ t

0

H2(t − s2)v2(y(s2))ds2

)2

+ H2(0)
∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2.

(4.2)



280 Page 8 of 17 R. O. A. Taie and D. A. M. Bakhit MJOM

From Eq. (4.2), we get

V2 =
(

z + αx +
∫ y

0

f2(ξ)dξ

)2

+
(∫ t

0

H2(t − s2)v2(y(s2))ds2

)2

− 2
(

z + αx +
∫ y

0

f2(ξ)dξ

)( ∫ t

0

H2(t − s2)v2(y(s2))ds2

)

+ H2(0)
∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2.

Applying the condition (i) and the inequality |mn| ≤ 1
2 (m2 + n2), we

obtain

V2 ≤ z2 + α2x2 + α
(
x2 + z2

)
+ α2

2y
2 + α2

(
y2 + z2

)
+ αα2

(
x2 + y2

)

+

( ∫ t

0

H2(t − s2)v2(y(s2))ds2

)2

+

∫ t

0

H2(t − s2)
{
v2
2(y(s2)) + z2(t)

}
ds2

+ α

∫ t

0

H2(t − s2)
{
v2
2(y(s2)) + x2(t)

}
ds2

+ α1

∫ t

0

H2(t − s2)
{
v2
2(y(s2)) + y2(t)

}
ds2

+ H2(0)

∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2.

Since
∫ ∞
0

H2(u)du = L and from condition (i), then we get

V2 ≤(1 + α + α2 + L)
(

αx2(t) + α2y
2(t) + z2(t)

)

+
(∫ t

0

H2(t − s2)v2(y(s2))ds2

)2

+ d22(1 + α + α1)
∫ t

0

|H2(t − s2)|y2(s2)ds2

+ H2(0)
∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2.

(4.3)

By the Schwarz inequality [8], we have

( ∫ t

0

H2(t − s2)v2(x(s2))ds2

)2

=

( ∫ t

0

|H2(t − s2)| 1
2 |H2(t − s2)| 1

2 v2(x(s2))ds2

)2

≤
∫ t

0

|H2(t − s2)|ds2

∫ t

0

|H2(t − s)2)|v2
2(x(s2))ds2.
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Applying the conditions of Theorem 2.3, we obtain

V2 ≤(1 + α + α2 + L)
(

αx2(t) + α2y
2(t) + z2(t)

)

+
∫ t

0

|H2(t − s2)|ds2

∫ t

0

|H2(t − s2)|v2
2(x(s2))ds2

+ d22(1 + α + α1)
∫ t

0

|H2(t − s2)|y2(s2)ds2

+ θ2d
2
2

∫ t

0

∫ ∞

t

|H2(u − s2)|duy2(s2)ds2.

It follows that

V2 ≤ (1 + α + α2 + L)

(
αx2 + α2y

2 + z2

)

+ W

[ ∫ t

0

{
d2(1 + α + α1)|H2(t − s2)| + d2

2θ2

∫ ∞

t−s2

H2(u)du

}
y2(s2)ds2

]
.

If we let

d2(1 + α + α1)|H2(t − s2)| + d22θ2

∫ ∞

t−s2

H2(u)du = Φ(t − s2),

then, we get

V2 ≤ (1 + α + α2 + L)
(

αx2 + α2y
2 + z2

)

+ W

( ∫ t

0

Φ(t − s2)y2(s2)ds2

)
.

Since 1+α+α2+L > 0, then we have a positive constant γ2, such that

V2 ≤γ2

(
αx2 + α2y

2 + z2
)

+ W

( ∫ t

0

Φ(t − s2)
(
x2(s2) + y2(s2) + z2(s2)

))
.

(4.4)

Now, (4.2) becomes

V2 ≥
(

z + αx +
∫ y

0

f2(ξ)dξ −
∫ t

0

H2(t − s2)v2(y(s2))ds2

)2

≥
(

|z + αx +
∫ y

0

f2(ξ)dξ| −
∫ t

0

|H2(t − s2)v2(y(s2))| ds2

)2

.

By (ii), we have
∫ ∞
0

|H2(u)|du = L < 1 and by the assumption (i) of
Theorem 2.3, we conclude that

V2 ≥
(

|z| + α|x| + α1|y| − d2|y|
)2

. (4.5)
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Differentiating the LKF V2(t, xt, yt, zt) with respect to t

dV2

dt
= 2

(
z + αx +

∫ y

0

f2(ξ)dξ −
∫ t

0

H2(t − s2)v2(y(s2))ds2

)

×
(

ż + αẋ + f2(y)z − d

dt

∫ t

0

H2(t − s2)v2(y(s2))ds2

)

+ H2(0)
d

dt

∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2.

From Leibnitz rule [23] Pg. 17 and the identity [6] Pg. 41, we get

d
dt

∫ t

0

∫ ∞

t

|H2(u − s2)|du v2
2(y(s2))ds2 =

∫ ∞

t

|H2(u − t)|du v2
2(y(t))

−
∫ t

0

|H2(t − s2)|v2
2(y(s2))ds2.

By using the equivalent system (4.1), we obtain

dV2

dt
= 2

(
z + αx +

∫ y

0

f2(ξ)dξ −
∫ t

0

H2(t − s2)v2(y(s2))ds2

)

×
(

− H(0)v(y) +
d
dt

∫ t

0

H2(t − s2)v2(y(s2))ds2

− d
dt

∫ t

0

H2(t − s2)v2(y(s2))ds2

)
+ H2(0)

∫ ∞

t

|H2(u − t)|du v2
2(y(t))

− H2(0)
∫ t

0

|H2(t − s2)|v2
2(y(s2))ds2.

From condition (i), we get

dV2

dt
≤ − 2H2(0)d2yz − 2αH2(0)d2xy − 2H2(0)d2α1y

2

+ H2(0)
( ∫ t

0

|H2(t − s2)|ds2 +
∫ ∞

t

|H2(u − t)|du

)
d22y

2.

It follows from condition (iv) and the inequality |mn| ≤ 1
2 (m2 + n2)

that

dV2

dt
≤ − θ1

{(
d2 + αd2 + 2α1d2 − θ3d

2
2

)
y2 + αd2x

2 + d2z
2

}
.

Thus, one can conclude for a positive constant D2 > 0 that

dV2

dt
≤ −D2

(
x2 + y2 + z2

)
, (4.6)

where D2 = θ1 min {d2 + αd2 + 2α1d2 − θ3d
2
2, αd2, d2}. From the results (4.4),

(4.5) and (4.6), we note that all assumptions of Theorem 2.1 are satisfied,
then the zero solution of (1.2) is UAS.

Thus, the proof of Theorem 2.3 is now complete.
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5. Illustrative Examples

Example 5.1. Consider the following VIDE with delay

ẍ + (10x
1
2 − 5 sin(x))ẋ +

∫ t

0

et−s1−1
(
6 sin2(x(s1)) + 5 sin3(x(s1))

)
ds1 = 0.

(5.1)

Note that

f1(x) = 10x
1
2 − 5 sin(x), f1(0) = 0.

So, we find

10 ≤ 10x
1
2 − 5 sin(x) ≤ 46, so a1 = 46 and a2 = 10,

and

f ′
1(x) = 5x− 1

2 − 5 cos x, |f ′
1(x)| ≤ 10 = c1.

Figure 1, shows the behaviour of f1(x) and f ′
1(x) on the interval t ∈

[2, 20] and t ∈ [0, 90], respectively.
Moreover, we have

v1(x) = 6 sin2 x + 5 sin3 x, so, 1 ≤ v1(x) ≤ 5 then, we get b1 = 5, b2 = 1,

and

v′
1(x) = 12 sin x cos x + 15 sin2 x cos x, therefore |v′

1(x)| ≤ 12 = c2.

Figure 2, illustrates the behaviour of v1(x) and v′
1(x) through the inter-

val t ∈ [0, 90].
Also, we have ∫ ∞

0

|H1(u)|du =
1
e

= L,

and

L1 =
∫ ∞

t

et−s1−1ds1 +
∫ t

0

et−s1−1ds1 =
1
e
.

Figure 1. Trajectories of the functions f1(x) and f ′
1(x)
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Figure 2. Trajectories of the functions v1(x) and v′
1(x)

Figure 3. Trajectories of the solutions for Example 5.1

Then, we get

H1(0) =
1
e
,

1
2e

≤ H1(0) ≤ 2
e
,

and

β1b2c1 + 2β1L1c
2
2 = 21.3 and c1b1L = 18.4.

So, it is clear that

β1b2c1 + 2β1L1c
2
2 > c1b1L, 2a2 = 20 > c1b1L.

We can see that the behaviour of the solutions (x(t), y(t)) with the initial
values (x0 = 0, y0 = 1) for (5.1) by Fig. 3.

Thus, all the hypotheses of Theorem 2.2 are satisfied.
Then, the zero solution of (5.1) is UAS.

Example 5.2. Consider the following VIDE with delay

...
x + 3 sin(ẋ)ẍ + 8ẋ +

∫ t

0

2et−s2−1(2 sin 2s2)ds2 = 0. (5.2)
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Figure 4. Trajectories of the functions f2(y) and f ′
2(y)

It follows that

f2(y) = 3 sin y, then f2(0) = 0.

So, we get

1 ≤ f2(y) ≤ 3, then α1 = 1, α2 = 3,

and

f ′
2(y) = 3 cos y, then |3 cos y| ≤ 3 = d1.

Figure 4, shows the behaviour of f2(x) and f ′
2(x) on the interval t ∈

[0, 50].
Moreover

v2(y) = 2 sin2 y, then v2(0) = 0.

So, we get

0 ≤ v2(y) ≤ 2, then α3 = 0, α4 = 2,

and

v′
2(y) = 4 sin y cos y, then |4 sin y cos y| ≤ 2 = d2.

Figure 5, illustrates the path of v2(x) and v′
2(x) on the interval t ∈ [0, 50].

Also, we have ∫ ∞

0

|H2(u)|du =
1
e

= L,

and ∫ ∞

t

2et−s2−1ds2 +
∫ t

0

2et−s2−1ds1 =
2
e

= θ3.

Also, we have

H2(0) =
2
e
,

e

4
≤ H(0) ≤ 1

e
.

and
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Figure 5. Trajectories of the functions v2(y) and v′
2(y)

Figure 6. Path of the solutions for Example 5.2

∫ ∞

t

2et−s2−1ds2 +
∫ t

0

2et−s2−1ds2 =
2
e

<
θ1θ3
θ2

.

So, it is clear that

1 + α + 2α1 > d2θ3,

Figure 6, shows the behaviour of the solutions (x(t), y(t), z(t)) with the
initial values (x0 = 0, y0 = 1, z0 = 1) for (5.2).

Thus, all the hypotheses of Theorem 2.3 are verified.
Then, the zero solution of (5.2) is UAS.

6. Conclusion

This work emphasizes the stability of solutions to certain nonlinear second-
order and third-order VIDE with delay.

By employing Lyapunov’s second method, a suitable LKF was con-
structed and used to establish the sufficient conditions of Theorems 2.2 and
2.3.
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Two numerical examples were given and all functions were drawn to
prove the sufficient conditions of Theorems 2.2 and 2.3, and also orbits of the
numerical solutions were drawn with assigned initial conditions to demon-
strate the effectiveness of the obtained results.

The results obtained in this paper extend many existing and exciting
results on nonlinear VIDE.
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[19] Tunç, O., Atan, S., Tunç, C., Yao, J.C.: Qualitative analyses of integro-
fractional differential equations with caputo derivatives and retardations via
the lyapunov-razumikhin method. Axioms 10(58), 1–19 (2021)
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