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Castelnuovo–Mumford Regularity of
Projective Monomial Curves via Sumsets

Philippe Gimenez and Mario González-Sánchez

Abstract. Let A = {a0, . . . , an−1} be a finite set of n ≥ 4 non-negative
relatively prime integers, such that 0 = a0 < a1 < · · · < an−1 = d. The
s-fold sumset of A is the set sA of integers that contains all the sums
of s elements in A. On the other hand, given an infinite field k, one can
associate with A the projective monomial curve CA parametrized by A,

CA = {(vd : ua1vd−a1 : · · · : uan−2vd−an−2 : ud) | (u : v) ∈ P
1
k} ⊂ P

n−1
k .

The exponents in the previous parametrization of CA define a homo-
geneous semigroup S ⊂ N

2. We provide several results relating the
Castelnuovo–Mumford regularity of CA to the behavior of the sumsets
of A and to the combinatorics of the semigroup S that reveal a new
interplay between commutative algebra and additive number theory.
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Introduction

Let A = {a0, a1, . . . , an−1} ⊂ N be a set of non-negative integers where we
assume that a0 < · · · < an−1 and set d := an−1. For every s ∈ N, the s-fold
sumset of A, sA, is defined by 0A := {0} and for s ≥ 1,

sA := {ai1 + · · · + ais : 0 ≤ i1 ≤ · · · ≤ is ≤ n − 1}.

Additive number theory studies the sumsets of A. As we will see later in
(0.1), for our purpose, we will need to count the number of elements in sA.
As observed in [21, (1.1) p.2], to compute |sA|, one may assume without loss
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of generality that a0 = 0 and gcd(a1, . . . , an−1) = 1. When this occurs, A is
said to be in normal form.

Consider now the points a0 = (0, d), a1 = (a1, d−a1), . . . ,an−1 = (d, 0)
in N

2, the set A = {a0,a1, . . . , an−1}, and the subsemigroup S of N
2

generated by A. Given an arbitrary infinite field k, one can associate with A
the projective monomial curve CA parametrized by A

CA = {(vd : ua1vd−a1 : · · · : uan−2vd−an−2 : ud) | (u : v) ∈ P
1
k} ⊂ P

n−1
k .

If A is in normal form, it is an algebraic curve of degree d and its defining ideal
I(CA) is the kernel of the homomorphism of k-algebras ϕ : k[x0, . . . , xn−1] →
k[u, v] induced by ϕ(xi) = uaivd−ai . The ideal I(CA) is homogeneous, bino-
mial, and prime, i.e., it is a homogeneous toric ideal. Denoting by k[CA] :=
k[x0, . . . , xn−1]/I(CA) the homogeneous coordinate ring of CA, one has that
k[CA] is isomorphic to Imϕ = k[S], the semigroup ring of S. If HFA denotes
the Hilbert function of k[CA], by [11, Prop. 2.3], one has that

|sA| = HFA(s), for all s ∈ N. (0.1)

This provides a bridge between additive number theory and the geometry of
monomial projective curves that has been recently explored in [11] and later
generalized to higher dimension varieties in [6]. We will follow here the same
philosophy: our aim is to study some homological invariants of the projective
monomial curve CA that we will now define, through the sumsets of A, and
vice versa.

Given a minimal graded free resolution (m.g.f.r.) of the graded k[x0, . . . ,
xn−1]-module k[CA],

F : 0 → Fp → . . . F0 → k[CA] → 0,

where the Fi’s are free modules, one has that for all i = 0, . . . , p, Fi is gener-
ated by βi,j elements of degree j. The non-zero integers βi,j are invariants of
the module k[CA] called its graded Betti numbers, and we can arrange them
in the Betti diagram of k[CA], a table whose entry in column i and row j is
βi,i+j . The size of the Betti diagram of k[CA] is measured by two important
invariants of k[CA]: the label of the last column is the projective dimension
of k[CA], pd(k[CA]) = p, the index of the last free module in any m.g.f.r. of
k[CA], while the label of the last row is its Castelnuovo–Mumford regularity

reg(k[CA]) := max{j − i : βi,j �= 0, 0 ≤ i ≤ p, j ≥ 0}. (0.2)

The projective dimension is controlled by the Auslander–Buchsbaum formula:
pd(k[CA]) = n − depth(k[CA]). As the Krull dimension of k[CA] is 2 and the
ideal I(CA) is prime, the depth of k[CA] can only be 1 or 2. Thus, the projective
dimension is either n−2 if k[CA] is Cohen–Macaulay, or n−1 otherwise. The
behavior of the Castelnuovo–Mumford regularity of k[CA] is more chaotic. In
this paper, the sumsets of A and the combinatorics of the semigroup S will
be related to the Castelnuovo–Mumford regularity and the regularity of the
Hilbert function of k[CA], revealing a nice interplay between additive number
theory and commutative algebra. Note that if n = 2, A = {0, 1}, and if n = 3,
CA is a hypersurface, so we will assume here that n ≥ 4.
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The paper is structured as follows. In Sect. 1, we recall some results
in additive number theory, in particular the fundamental Structure Theorem
and its relation to monomial curves. We define the sumsets regularity σ(A)
of a finite set of integers in normal form A as the least integer, such that,
for all larger integers, the decomposition in the Structure Theorem holds.
Several upper bounds for σ(A) that appear in the literature are recalled, in
particular the Granville–Walker bound recently obtained in [14]. In Sect. 2,
we analyze the structure of the semigroup S and see that the sumsets regular-
ity of A defined in the previous section could also be called the conductor of
the semigroup S. We focus on two important finite subsets of the semigroup
S that will play in fundamental role later: its Apery set and its exceptional
set. Both subsets can be used to characterize the Cohen–Macaulay property
for k[CA] as shown in Proposition 2.6. Section 3 contains our main results.
We start by completing the characterization of the elements in the Struc-
ture Theorem given in [11, Prop. 3.4] and express the sumsets regularity of
A in terms of some invariants of the monomial curve CA in Theorem 3.1.
As a direct consequence, we give a new upper bound for the sumsets regu-
larity in Theorem 3.4. We also give a combinatorial way for computing the
Castelnuovo–Mumford regularity of k[CA] in terms of the Apery and the ex-
ceptional sets of S (Theorem 3.7) and provide both upper and lower bounds
for the Castelnuovo–Mumford regularity of k[CA] in terms of the conductor of
S (Theorem 3.16). In Sect. 4, we prove in Theorem 4.3 a general result that
allows to read on the Betti diagram the value of the difference between the
Castelnuovo–Mumford regularity and the regularity of the Hilbert function
of k[CA]. Applied to the monomial curve CA, we deduce in Theorem 4.6 a way
to characterize when the regularity is attained at the last step of a m.g.f.r.
Finally, in Sect. 5, we use our results to relate a recent result in additive
number theory, the Granville–Walker bound for the sumsets regularity, to a
classical result in algebraic geometry, the Gruson–Lazarsfeld–Peskine bound
for the Castelnuovo–Mumford regularity in the particular case of monomial
curves. More precisely, we show how to obtain the first bound from the second
and vice versa.

The computations in the examples given in this paper are performed
using Singular [7] and, in particular, the library mregular.lib [2]. We also
used the package NumericalSgps [8] of GAP.

Notations

In this paper, N = {0, 1, 2, . . .}. For any a, b ∈ Z, such that a ≤ b, we denote
[a, b] := {n ∈ Z : a ≤ n ≤ b}. If x ∈ Z, �x	 is the greatest integer less than or
equal to x (floor function), while 
x� is the least integer greater than or equal
to x (ceil function). If d ∈ N and A ⊂ N, we denote d − A := {d − a : a ∈ A}.
Furthermore, we will assume that all the semigroups have an identity, i.e.,
we do not distinguish between semigroup and monoid.

If R = ⊕s∈NRs is a standard graded k-algebra, we denote by HFR

and HPR its Hilbert function and Hilbert polynomial respectively. The least
integer r such that, for all integer s ≥ r, HFR(s) = HPR(s) is called the
regularity of the Hilbert function of R and we will denote it by r(R). The
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Castelnuovo–Mumford regularity of R will be denoted by reg(R) and we will
use the abbreviation m.g.f.r. for minimal graded free resolution.

Finally, when we draw part of a semigroup S ⊂ N
2 as in Figs. 1 and

2, filled circles represent points in S, while empty squares represent points
outside S, i.e., gaps of S.

1. The Structure Theorem

In this section, we give an overview of some results in additive number theory
and their connection to monomial curves. Let us first recall the so-called
Structure Theorem, one of the main results in additive number theory.

Theorem 1.1. (Structure Theorem, [21, Thm. 1.1]) If A = {a0 = 0 < a1 <
· · · < an−1 = d} ⊂ N is a finite set in normal form, then there exist integers
c1, c2 ∈ N and finite subsets Ci ⊂ [0, ci − 2], i = 1, 2, such that

sA = C1  [c1, sd − c2]  (sd − C2) (1.1)

for all s ≥ max{1, s0}, where s0 := (n − 2)(d − 1)d.

The elements in the Structure Theorem have recently been characterized
in [11, Prop. 3.4] in terms of the curve CA and some of its invariants. If A is
a finite set in normal form, it is well known that CA has two possible singular
points, P1 = (1 : 0 : · · · : 0) ∈ P

n−1
k and P2 = (0 : · · · : 0 : 1) ∈ P

n−1
k .

Moreover, if δ(CA, P ) denotes the singularity order of P , then δ(CA, P1) =
|N \ S1| and δ(CA, P2) = |N \ S2|, where S1 and S2 denote the numerical
semigroups generated by A and d−A, respectively. Using that CA has degree
d, one gets ([11, Prop. 3.1]) that for all s ≥ r(k[CA])

|sA| = HFA(s) = sd + 1 − δ(CA, P1) − δ(CA, P2). (1.2)

Proposition 1.2. ([11, Prop. 3.4]) Following notations in Theorem 1.1, for
i = 1, 2, the following claims hold:
(1) ci is the conductor of Si.
(2) Ci = Si ∩ [0, ci − 2].
(3) δ(CA, Pi) = ci − |Ci|.
Definition 1.3. The least integer σ, such that the decomposition (1.1) in The-
orem 1.1 holds for all s ≥ σ, will be called the sumsets regularity of A and
we will denote it by σ(A).

Theorem 1.1 provides an upper bound for σ(A) that is generally far
from its real value: σ(A) ≤ (n − 2)(d − 1)d. After Nathanson’s proof, other
proofs of Theorem 1.1 have been published, [13,14,25]. In these articles, the
authors give the following better upper bounds for σ(A):

• [25, Thm. 2] (Wu, Chen, Chen; 2011) σ(A) ≤
(∑n−2

i=2 ai

)
+d−n+1 =:

sWCC
0 .

• [13, Thm. 1] (Granville, Shakan; 2020) σ(A) ≤ 2�d
2	 =: sGS

0 .
• [14, Thm. 1] (Granville, Walker; 2021) σ(A) ≤ d − n + 2 =: sGW

0 .
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Note that in [13,14,25], the union in Eq. (1.1) is not shown to be disjoint,
but this is shown in [19] for the Granville–Walker bound and, as sWCC

0 > sGW
0

and sGS
0 > sGW

0 if n ≥ 4, the above claims hold.
Besides giving a great upper bound for σ(A), Granville and Walker also

characterize the sets A for which this bound is attained.

Theorem 1.4. ([14, Thm. 2]) Let n ∈ N, n ≥ 3, and A = {a0 = 0 < a1 <
· · · < an−1 = d} ⊂ N be a set in normal form. Then, σ(A) = d − n + 2 if,
and only if, either A or d − A belongs to one of the following two families:

• A = [0, d] \ {a}, for some a, such that 2 ≤ a ≤ d − 2;
• A = [0, 1]  [a + 1, d], for some a, such that 2 ≤ a ≤ d − 2.

Note for any A belonging to one of the two families in Theorem 1.4, the
monomial curve CA is smooth.

2. The Structure of the Homogeneous Semigroup and Its
Relation to the Sumsets

As already observed, associated with a set of integers A = {a0 = 0 < a1 <
· · · < an−1 = d} in normal form, one has the set

A = {a0,a1, . . . ,an−1} ⊂ N
2,

where ai = (ai, d − ai) for all i = 0, . . . , n − 1, that we will call its homoge-
nization. A semigroup S in N

2 generated by a set A of this form will be said
to be homogeneous of degree d.

It is trivial to verify that the sumsets of A are completely determined
by those of A, since, for each s ∈ N,

sA = {(α, sd − α) : α ∈ sA}.

In particular, for any s ∈ N, |sA| = |sA|. Furthermore, the semigroup S
generated by A satisfies that S = ∞

s=0sA. Note that each sA lies on the
“line” Ls := {(x, y) ∈ N

2 : x + y = sd}.
We can apply the Structure Theorem to improve our knowledge on the

sumsets of A and the semigroup S. By Theorem 1.1 and Proposition 1.2, we
have that for all s ≥ σ(A), sA consists on a central interval and, outside that
interval, a copy of the non-trivial part of the semigroups S1 and S2, i.e., for
all s ≥ σ(A)

sA = {(i, sd − i), i ∈ S1 ∩ [0, c1 − 2]}  {(i, sd − i), i ∈ [c1, sd − c2]}
{(sd − i, i), i ∈ S2 ∩ [0, c2 − 2]}.

Furthermore, σ(A) is the least integer, such that this decomposition is satis-
fied for all s ≥ σ(A). More precisely, for s ≥ σ(A), when we go from sA to
(s + 1)A, gaps coming from S1 move up while gaps coming from S2 move to
the right, and there are no other gaps in (s+1)A than the ones coming from
sA, as shown in Fig. 1. And σ(A) is the least integer, such that this occurs.
For this reason, the regularity of the sumsets of A, σ(A), could also be called
the conductor of the homogeneous semigroup S and denoted by σ(S). If no
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Figure 1. Structure of the sumsets of A. For s ≥ σ, we
distinguish three disjoint areas: the central interval and the
copies of the non-trivial parts of S1 and S2

confusion arises, from now on, we will simply denote this number by σ, i.e.,
σ = σ(S) = σ(A).

We can relate the conductor of the semigroup S to the Hilbert function
regularity of k[CA] on the one hand, and to the conductors of the semigroups
S1 and S2 on the other. This relation will become more precise later in The-
orem 3.1.

Lemma 2.1. Let A = {a0 = 0 < a1 < · · · < an−1 = d} ⊂ N be a finite set in
normal form and σ be its sumsets regularity.
(1) For all s ≥ σ, |Ls \ sA| = |Lσ \ σA| and |(s + 1)A| − |sA| = d. In

particular, σ ≥ r(k[CA]).
(2) If sd − c2 < c1, the central interval in the previous decomposition of sA

does not exist, and hence, σ ≥ 
 c1+c2
d �.

Proof. Both results are consequences of the discussion before Fig. 1. (2) is
direct and for (1), recall that for all s ≥ 0, HFA(s) = |sA| and if s ≥ σ

HFA(s) = |sA| = sd + 1 − (c1 − |C1| + c2 − |C2|)
= sd + 1 − δ(CA, P1) − δ(CA, P2) = HPA(s)

(2.1)

by Proposition 1.2, so σ ≥ r(k[CA]). �
Remark 2.2. Note that both inequalities for σ in Lemma 2.1 can be strict as
we will see later in Example 3.3.

Let us now focus on the three semigroups S1, S2, and S. For i = 1, 2, we
define the Apery set of Si with respect to d as Api := {a ∈ Si : a − d /∈ Si}.
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Figure 2. A point (x, y) in Es and a point (x′, y′) in APs

We know that Api is a complete set of residues modulo d, and hence, Ap1 =
{r0 = 0, r1, . . . , rd−1} and Ap2 = {t0 = 0, t1, . . . , td−1} with ri ≡ ti ≡ i
(mod d).

Definition 2.3. The Apery set APS of S and the exceptional set ES of S are
defined as follows:

• APS := {(x, y) ∈ S : (x, y) − a0 /∈ S, (x, y) − an−1 /∈ S}.
• ES := {(x, y) ∈ S : (x, y)−a0 ∈ S, (x, y)−an−1 ∈ S, (x, y)−a0−an−1 /∈

S}.

Moreover, for each s ∈ N, set APs := APS ∩Ls = APS ∩sA and Es :=
ES ∩ Ls = ES ∩ sA. Figure 2 shows how points in ES and APS look like
when one draws the semigroup S.

Remark 2.4. As a consequence of Theorem 1.1, one gets that, if σ is the
conductor of S, then

∀s ≥ σ + 2, APs = Es = ∅.

The Cohen–Macaulayness of k[CA] is characterized in terms of APS and
ES as we will show in Proposition 2.6. Let us previously prove the following
easy lemma.

Lemma 2.5. For all i = 1, . . . , d − 1, the following claims hold:
(1) If (ri, td−i) ∈ S, then (ri, td−i) ∈ APS .
(2) If (ri, td−i) /∈ S, then (ri, td−i) /∈ APS and there exist natural numbers

x > ri and y > td−i, such that (x, td−i) ∈ APS and (ri, y) ∈ APS .

Proof. (1) is trivial. To prove (2), take i ∈ {1, 2, . . . , d − 1}. Since ri ∈ S1,
there exists a natural number y > td−i, such that (ri, y) ∈ S, and if we choose
the least y ∈ N satisfying this property, then (ri, y) ∈ APS . The proof of the
existence of x is analogous. �

Denote by G the subgroup of Z
2 generated by S and set S ′ := G ∩

(S1 × S2).

Proposition 2.6. (Characterization of the Cohen–Macaulayness of CA) The
following statements are equivalent:
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(1) CA is arithmetically Cohen–Macaulay, i.e., the ring k[CA] is Cohen–
Macaulay.

(2) For all i = 1, . . . , d − 1, (ri, td−i) ∈ S. In other words, if q1 ∈ Ap1,
q2 ∈ Ap2 and q1 + q2 ≡ 0 (mod d), then (q1, q2) ∈ APS .

(3) APS = {(0, 0)} ∪ {(ri, td−i) : 1 ≤ i < d}.
(4) APS has exactly d elements.
(5) The exceptional set ES is empty.
(6) S ′ = S.

Proof. The equivalences (1) ⇔ (5) and (1)⇔ (6) are well known; see, e.g., [4,
Lemma 4.3, Thm. 4.6]. Moreover, the implications (3) ⇒ (2) and (3) ⇒ (4)
are trivial and (4) ⇒ (3) is a direct consequence of Lemma 2.5, so let us prove
(2) ⇔ (5) ⇒ (3).
(5) ⇔ (2): Suppose that there is an index i, 1 ≤ i < d, such that (ri, td−i) /∈ S.
By Lemma 2.5 (2), there exist x > ri and y > td−i, such that (x, td−i) ∈ APS
and (ri, y) ∈ APS . Then, there exist x′ ≤ x and y′ ≤ y, such that (x′, y′) ∈
ES , so ES is not empty.

Conversely, suppose that there exist (x, y) /∈ S, such that (x + d, y) ∈ S
and (x, y + d) ∈ S and let i be the index, 1 ≤ i ≤ d − 1, such that x ≡ i ≡ ri

(mod d) and y ≡ d − i ≡ td−i (mod d). As (x, y + d) ∈ S, x ∈ S1, and
y ∈ S2, because (x + d, y) ∈ S, so ri ≤ x and td−i ≤ y. This implies that
(ri, td−i) /∈ S.
(5) + (2) ⇒ (3): Assuming that (2) holds, one gets that {(0, 0)}∪{(ri, td−i) :
1 ≤ i < d} ⊂ APS by Lemma 2.5 (1). To prove the equality, take (x, y) ∈
APS . If x /∈ Ap1, then x−d ∈ S1, so there exists y′ > y, such that (x−d, y′) ∈
S and choosing y′ minimum with this property, one gets that (x− d, y′) ∈ S,
(x, y′ − d) ∈ S and (x − d, y′ − d) /∈ S, a contradiction with (5). This implies
that x ∈ Ap1, and we prove that y ∈ Ap2 using a similar argument. Thus,
(x, y) = (ri, td−i) for some i, 1 ≤ i < d, and we are done. �

Remark 2.7. (1) If k[S] is not Cohen–Macaulay, the ring k[S ′] is called the
Cohen–Macaulayfication of k[S]. This is because S �= S ′ by Proposition
2.6 (6) and k[S ′] is the least Cohen–Macaulay intermediate between k[S]
and its field of fractions; see [4, Remark 4.7].

(2) For a general affine semigroup ring S, the Cohen–Macaulay property of
the semigroup ring k[S] may depend on the characteristic of the field
k, as shown in [17]. However, by Proposition 2.6, it is clear that this is
not the case for a homogeneous semigroup S ⊂ N

2.

Example 2.8. Let A = {0, 1, 2, 3, 8} ⊂ N. One can check that the Apery sets
of S1 and S2 are Ap1 = {0, 1, 2, 3, 4, 5, 6, 7} and Ap2 = {0, 17, 10, 11, 12, 5, 6, 7},
respectively, and that APS = {(0, 0), (1, 7), (2, 6), (3, 5), (4, 12), (5, 11), (6, 10),
(7, 17)}, and hence, k[CA] is Cohen–Macaulay.

We focus now on the distribution of points (x, y) in APS and ES on the
levels given by the sumsets of A.

Proposition 2.9. |APs |− |Es| = |sA|−2|(s−1)A|+ |(s−2)A|, for all s ∈ N.
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Proof. Let us count the number of elements in APs for all s ∈ N. Note that
|AP0 | = 1 = |0A| and |AP1 | = |A|−2 = |A|−2|0A|, and since E0 = E1 = ∅
and sA = ∅ if s < 0, one gets that the formula holds if s ≤ 1. Consider now
s ≥ 2. Since for each element s ∈ (s−1)A, neither s+a0 nor s+an−1 belong
to APs, every element in (s − 1)A provides two elements in sA that do not
belong to APs and any other element in sA belongs to APs. However, we
are counting some of those elements twice, precisely the s ∈ sA, such that
s−a0 ∈ (s−1)A and s−an−1 ∈ (s−1)A. Now, for such an element s, either
s−a0 −an−1 /∈ (s−2)A, and hence, s ∈ Es, or (x, y)−a0 −an−1 ∈ (s−2)A.
This provides the following formula:

|APs | = |sA| − 2|(s − 1)A| + (|(s − 2)A| + |Es|) ,

and the result follows. �
Remark 2.10. As a consequence of the previous theorem and Remark 2.4, we
obtain that |APS | = |ES | + d, since

|APS | =
σ+1∑
s=0

|APs | =
σ+1∑
s=0

(|sA| − 2|(s − 1)A| + |(s − 2)A|) +
σ+1∑
s=0

|Es|

= (|(σ + 1)A| − |σA|) + |ES | = |ES | + d,

where we have that |(σ + 1)A| − |σA| = d by Lemma 2.1 (1). In particular,
|APS | ≥ d and we recover that (4) ⇔ (5) in Proposition 2.6.

Corollary 2.11. If CA is arithmetically Cohen–Macaulay, the sequence

(|sA| − |(s − 1)A|)∞
s=0 ⊂ N

is increasing (and it stabilizes at d).

Proof. For each s ∈ N, we observe that

|sA| − |(s − 1)A| =
s∑

j=0

(|jA| − 2|(j − 1)A| + |(j − 2)A|) =
s∑

j=0

|APj |,

by Proposition 2.9. �
Remark 2.12. The result in Corollary 2.11 holds in a more general setting.
For a graded (or local) k-algebra R of Krull dimension two, the differences
between two consecutive elements in the sequence (HFR(s)−HFR(s−1))∞

s=0

are the coefficients of its h-polynomial that are known to be non-negative
when R is Cohen–Macaulay [24]. Thus, the sequence (HFR(s) − HFR(s −
1))∞

s=0 is increasing.

Note that if one removes the Cohen–Macaulay hypothesis, then the
result in Corollary 2.11 may be wrong as the first example below shows.
However, this property does not characterize arithmetically Cohen–Macaulay
curves as the second example shows.

Example 2.13. (1) For A = {0, 1, 3, 11, 13}, (|sA| − |(s − 1)A|)∞
s=0 = (1, 4, 9,

14, 17, 15, 13, 13, . . . ) is not increasing, and hence, k[CA] is not Cohen–
Macaulay by Corollary 2.11.

(2) [1, Ex. 4.3]. For A = {0, 5, 9, 11, 20}, (|sA| − |(s − 1)A|)∞
s=0 = (1, 4, 9, 15,

20, 20, . . . ) is increasing, but k[CA] is not Cohen–Macaulay.
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3. Regularity, Sumsets, and Semigroups

We start this section by giving a characterization of σ, the sumsets regularity
of A, which is also the conductor of the semigroup S, in terms of the curve
CA and its invariants. This result already appears in [12] and it concludes
the characterization of the elements in Structure Theorem given in [11, Prop.
3.4].

Theorem 3.1. The least integer σ such that the decomposition (1.1) in The-
orem 1.1 holds for all s ≥ σ is

σ = max

{
r(k[CA]),

⌈
c1 + c2

d

⌉}
,

where r(k[CA]) is the regularity of the Hilbert function of k[CA] and ci is the
conductor of the numerical semigroup Si for i = 1, 2.

Proof. By Lemma 2.1, σ ≥ max
{
r(k[CA]), 
 c1+c2

d �}. Conversely, for s ≥
max

{
r(k[CA]), 
 c1+c2

d �}, one has that (2.1) is satisfied by applying (1.2).
Moreover, since sd − c2 ≥ c1, one has that

sA = (sA ∩ C1)  (sA ∩ [c1, sd − c2])  (sA ∩ (sd − C2))

⊂ C1  [c1, sd − c2]  (sd − C2) .

Since both sets sA and C1  [c1, sd − c2]  (sd − C2) are finite and have the
same cardinality, they are equal, so max

{
r(k[CA]), 
 c1+c2

d �} ≥ σ and the
result follows. �

Given a subset A ⊂ N in normal form, it is not easy to know in advance
whether σ = r(k[CA]) or σ = 
 c1+c2

d �. However, in some cases, it is, as
Proposition 3.2 and Corollary 3.21 show.

Proposition 3.2. (1) If CA is smooth, then σ = r(k[CA]) ≥ 
 c1+c2
d � = 0.

(2) If CA is arithmetically Cohen–Macaulay, then σ = 
 c1+c2
d � ≥ r(k[CA]).

Proof. If CA is smooth, then c1 = c2 = 0 and (1) follows. Now, for s =

 c1+c2

d �, the sumset sA decomposes as the union of three disjoint subsets

sA = (sA ∩ C1)  (sA ∩ [c1, sd − c2])  (sA ∩ (sd − C2)) .

If either sA∩C1 �= C1, or sA∩ [c1, sd−c2] �= [c1, sd−c2], or sA∩ (sd − C2) �=
(sd − C2), then ES �= ∅. Thus, if CA is arithmetically Cohen–Macaulay, by
applying Proposition 2.6 (5), one gets that sA = C1  [c1, sd− c2] (sd − C2)
and (2) follows. �

As a direct consequence of Proposition 3.2, we recover the well-known
fact that for any n ≥ 4, the rational normal curve, i.e., the curve CA given by
A = [0, n − 1], is the only projective monomial curve in P

n−1
k which is both

smooth and arithmetically Cohen–Macaulay.

Example 3.3. (1) If A = [0, d]\{a} for some 2 ≤ a ≤ d−2, then c1 = c2 = 0
and σ = 2 by Theorem 1.4. In this example, σ = r(k[CA]) > 
 c1+c2

d �.
(2) For A = {0, 2, 5, 6, 9}, one has c1 = 4, c2 = 6 and r(k[CA]) = 1, so

σ = 
 c1+c2
d � = 2 > r(k[CA]).
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By combining the Erdös–Graham bound for the conductor of a numer-
ical semigroup and the bound for the Castelnuovo–Mumford regularity of a
projective monomial curve given by L’vovsky, we obtain the following new
bound for the sumsets regularity. This bound is different from the already
known bounds recalled in Sect. 1. Indeed, in Example 3.3 (2), both numbers
sEG
0 and sL

0 introduced in Theorem 3.4 are strictly lower than the Granville–
Walker bound sGW

0 recalled in Sect. 1: sEG
0 = 4, sL

0 = 5, and sGW
0 = 6. This

new bound deserves to be studied in the future.

Theorem 3.4. If A = {a0 = 0 < a1 < · · · < an−1 = d} ⊂ N is a finite set in
normal form, set

• sEG
0 :=

⌈
2
(⌊

d

n − 1

⌋
(1 +

an−2 − a1

d
) − 1 +

1
d

)⌉
, and

• sL
0 := max1≤i<j≤n−1 {(ai − ai−1) + (aj − aj−1)} − 1.

Then, the least integer σ such that the decomposition (1.1) in Theorem 1.1
holds for all s ≥ σ, i.e., the sumsets regularity of A, satisfies

σ ≤ max{sEG
0 , sL

0 }.

Proof. By [22, Thm. 3.1.12], one has that c1 ≤ 2an−2� d
n−1	 − d + 1 and

c2 ≤ 2(d − a1)� d
n−1	 − d + 1. Combining these two bounds, one gets that


 c1+c2
d � ≤ sEG

0 . On the other hand, using the known fact that r(k[CA]) ≤
reg(k[CA]) ([9, Thm 4.2]) and that reg(k[CA]) ≤ sL

0 by [20, Prop. 5.5], the
upper bound follows from Theorem 1.1. �

To express reg(k[CA]) in terms of APS and ES , let us introduce the
following notations.

Definition 3.5. For any set A ⊂ N in normal form, consider the homogeneous
semigroup S ⊂ N

2 associated. We define
• m (ES) := max ({s ∈ N : Es+1 �= ∅}) (and m (ES) := −∞ if ES = ∅),
• m (APS) := max ({s ∈ N : APs �= ∅}).

Remark 3.6. (1) Note that the maxima in Definition 3.5 are attained, be-
cause APS and ES are finite subsets of N

2 by Remark 2.4. In fact,
m (ES) ≤ σ and m (APS) ≤ σ + 1.

(2) Both m (ES) and m (APS) can be expressed in terms of the sumsets of
A as follows:

• m (ES) = max ({s ∈ N : ∃α ∈ sA | α − d ∈ sA \ (s − 1)A}),
• m (APS) = max ({s ∈ N : ∃α ∈ sA | α /∈ (s − 1)A and α − d /∈ (s − 1)A}).

The following result gives a combinatorial way for computing the regu-
larity of k[CA].

Theorem 3.7. The Castelnuovo–Mumford regularity of the projective mono-
mial curve CA is

reg(k[CA]) = max{m (ES) ,m (APS)}.
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To prove this result, let us recall some known facts on the local cohomol-
ogy modules of the coordinate ring of CA, k[CA] ∼= k[S]. For k[CA], there are
at most two non-trivial local cohomology modules, H1

m (k[S]) and H2
m (k[S]),

where m denotes the irredundant ideal. Furthermore, these two modules are
completely characterized in terms of the semigroup S.

Lemma 3.8. ([16, Lemma 2.2]) Let G ⊂ Z
2 be the group generated by S and

S ′ = G ∩ (S1 × S2).

(1) H1
m (k[S]) ∼= k[S ′ \ S], and

(2) H2
m (k[S]) ∼= k [G ∩ ((Z \ S1) × (Z \ S2))],

where the symbol ∼= means that there exists an isomorphism of Z-graded mod-
ules.

When CA is arithmetically Cohen–Macaulay, S ′ = S by Proposition 2.6
(6), so H1

m (k[S]) = 0 as we already know. For i = 1, 2, let

end
(
Hi

m (k[S])
)

:= max{j :
(
Hi

m (k[S])
)
j

�= 0}

(with the convention that end
(
Hi

m (k[S])
)

:= −∞ if Hi
m (k[S]) = 0). Then,

by the equivalent definition for the Castelnuovo–Mumford regularity given in
[10], one has that

reg(k[S]) = max{end
(
H1

m (k[S])
)

+ 1, end
(
H2

m (k[S])
)

+ 2}. (3.1)

The proof of Theorem 3.7 will then be a consequence of the following two
lemmas that relate the local cohomology modules H1

m (k[S]) and H2
m (k[S])

to the numbers m (ES) and m (APS). Note that the relation m (ES) =
end

(
H1

m (k[S])
)
+1 stated in Lemma 3.9 also holds when CA is arithmetically

Cohen–Macaulay, since both numbers are −∞ in this case.

Lemma 3.9. If S′ �= S, i.e., if CA is not arithmetically Cohen–Macaulay,
then

max{s : Es+2 �= ∅} = max{s : (S′ \ S) ∩ Ls �= ∅}.
Therefore, m (ES) = end

(
H1

m (k[S])
)

+ 1.

Proof. If CA is not arithmetically Cohen–Macaulay, then ES �= ∅ by Propo-
sition 2.6 (5). Set E′

S := {(x, y) ∈ N
2 : (x, y) + a0 + an−1 ∈ ES} and,

for each s ∈ N, E′
s := E′

S ∩ Ls. Note that (x, y) ∈ E′
s if and only if

(x, y) + a0 + an−1 ∈ Es+2 so max{s : Es+2 �= ∅} = max{s : E′
s �= ∅}.

Let us consider an element (x, y) ∈ E′
S . It is clear that (x, y) ∈ S ′ \ S, since

(x, y) = (x + d, y) − (d, 0) ∈ G. Therefore, E′
S ⊂ S ′ \ S and we get that

max{s : E′
s �= ∅} ≤ max{s : (S′\S) ∩ Ls �= ∅}.

Conversely, let (x, y) ∈ (S ′\S) ∩ Ls be an element, such that s is max-
imum. Then, (x, y) + a0 ∈ S and (x, y) + an−1 ∈ S, and hence, (x, y) ∈ E′

s.
Therefore, max{s : E′

s �= ∅} ≥ max{s : (S′\S) ∩ Ls �= ∅} and the equality
max{s : Es+2 �= ∅} = max{s : (S′\S) ∩ Ls �= ∅} follows. By Lemma 3.8 (1),
it implies that m (ES) = end

(
H1

m (k[S])
)

+ 1. �
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Observe that in the previous proof, we show that E′
S ⊂ S ′\S. Equality,

which would be a result stronger than the one stated in Lemma 3.9, is wrong
in general. Using the example given in [16, Example 3.2], we show that those
two sets may be different.

Example 3.10. For A = {0, 1, 2, 5, 13, 14, 16, 17}, the curve CA is smooth.
Thus, S1 = S2 = N and G = Z

2, and hence, S ′ = G ∩ N
2 = N

2. Since
(8, 9) ∈ S ′\S but (8, 9) /∈ E′

S , because (8, 26) /∈ S, one has that the inclusion
E′

S ⊂ S ′\S is strict.

We now want to relate m (APS) to end
(
H2

m (k[S])
)
. Let (x, y) ∈ G ∩

((Z\S1) × (Z\S2)) ∩ Ls be an element with s maximal. Since x /∈ S1 and
y /∈ S2, one has that (x, y + d) /∈ S and (x + d, y) /∈ S. There are two
possibilities, either (x + d, y + d) ∈ S or (x + d, y + d) /∈ S, and let us
check that in both cases, the inequality (3.2) below holds. In the first case,
note that (x + d, y + d) ∈ APS ∩Ls+2, so max{s : APs+2 �= ∅} ≥ max{s :
G ∩ ((Z\S1) × (Z\S2)) ∩ Ls �= ∅} and (3.2) follows from Lemma 3.8 (2). In
the second case, there exists an index i, 0 ≤ i ≤ d − 1, such that x ≡ ri

(mod d) and y ≡ td−i (mod d). Then, ri ≥ x + d and td−i ≥ y + d and since
(x + d, y + d) /∈ S, by Lemma 2.5, there exist natural numbers x′ ≥ x + d
and y′ ≥ y + d, being at least one of these two inequalities strict, such that
(x′, y′) ∈ APS . Observe that (x′, y′) ∈ Ls′ for s′ ≥ s+3, so max{s : APs+2 �=
∅} > max{s : G ∩ ((Z\S1) × (Z\S2)) ∩ Ls �= ∅} in this case. In both cases,
one has that

m (APS) ≥ end
(
H2

m (k[S])
)

+ 2. (3.2)

Adding an additional hypothesis, one gets equality in (3.2) as the following
lemma shows.

Lemma 3.11. If end
(
H2

m (k[S])
)

+ 2 > end
(
H1

m (k[S])
)

+ 1 = m (ES), then

max{s : APs+2 �= ∅} = max{s : G ∩ ((Z \ S1) × (Z \ S2)) ∩ Ls �= ∅}.
Therefore, in this case, one has that m (APS) = end

(
H2

m (k[S])
)

+ 2.

Proof. Let (x, y) ∈ APs+2 be an element, such that s is maximal and consider
the element (x − d, y − d). If (x − d, y − d) /∈ G ∩ ((Z\S1) × (Z\S2)), one
can assume without loss of generality that x − d /∈ S1. Then, there exists
y′ ≥ y + d, such that (x − d, y′) ∈ S, so (x, y′) ∈ Es′ for some s′ ≥ s + 3.
Therefore, end

(
H1

m (k[S])
)

+ 1 = m (ES) ≥ m (APS) by Lemma 3.9, and
using (3.2), we get that end

(
H1

m (k[S])
)

+ 1 ≥ end
(
H2

m (k[S])
)

+ 2 which is
in contradiction with the hypothesis in the statement of the lemma. Thus,
(x−d, y−d) ∈ G∩ ((Z\S1) × (Z\S2))∩Ls, and hence, end

(
H2

m (k[S])
)
+2 ≥

m (APS) by Lemma 3.8 (2). Using (3.2), we are done. �
If one removes the hypothesis end

(
H2

m (k[S])
)

+ 2 > end
(
H1

m (k[S])
)

+
1 = m (ES) in Lemma 3.11, the result may be wrong. To illustrate this fact,
we will use again the example in [16, Example 3.2].

Example 3.12. For A = {0, 1, 2, 5, 13, 14, 16, 17}, as observed in Example
3.10, S1 = S2 = N and G = Z

2. Therefore, end
(
H2

m (k[S])
)

= 0 by Lemma
3.8 (2), but (8, 43) ∈ AP3 so m (APS) �= end

(
H2

m (k[S])
)

+ 2.
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Proof of Thm. 3.7. If m (ES) ≥ m (APS), then m (ES) = end
(
H1

m (k[S])
)
+1

by Lemma 3.9, and end
(
H1

m (k[S])
)
+ 1 ≥ end

(
H2

m (k[S])
)

+ 2, because oth-
erwise, by Lemma 3.11, one would have that m (APS) > m (ES), a contra-
diction. Thus, the equality reg(k[CA]) = m (ES) follows from Eq. (3.1).
Assume now that m (APS) > m (ES) and consider an element (x, y) ∈ APs

with s = m (APS). Since s > m (ES), then (x, y) − a0 − an−1 ∈ G ∩
((Z\S1) × (Z\S2)) ∩ Ls−2, and hence

end
(
H2

m (k[S])
)

+ 2 ≥ s = m (APS) > m (ES) = end
(
H1

m (k[S])
)
,

where the first inequality follows from Lemma 3.8 (2) and the last equality
from Lemma 3.9. Therefore, end

(
H2

m (k[S])
)

+ 2 > end
(
H1

m (k[S])
)

+ 1 and
the equality reg(k[CA]) = m (APS) follows from Lemma 3.11 and Eq. (3.1).

�

Note that there exist curves, such that the maximum in Theorem 3.7
is equal to m (ES) and not equal to m (APS), and vice versa. For instance,
if CA is arithmetically Cohen–Macaulay, then m (APS) > m (ES) = −∞.
However, there also exist non-arithmetically Cohen–Macaulay curves, such
that m (APS) > m (ES). To illustrate these facts, we use the same curves as
in Example 2.13.

Example 3.13. (1) For A = {0, 1, 3, 11, 13}, one has that m (ES) = 5 and
m (APS) = 4. Thus, CA is not arithmetically Cohen–Macaulay, and
reg(k[CA]) = 5 = m (ES) > m (APS).

(2) [1, Ex. 4.3]. For A = {0, 5, 9, 11, 20}, m (ES) = 4 and m (APS) = 5,
so CA is not arithmetically Cohen–Macaulay, and reg(k[CA]) = 5 =
m (APS) > m (ES).

Remark 3.14. Let m be the maximal homogeneous ideal of k[S] ∼= k[CA]
and q := 〈ud, vd〉. We know that q is a minimal reduction of m. Denote by
red(k[CA]) the reduction number of m with respect to q, i.e., red(k[CA]) =
min{s ∈ N : ms+1 = qms}, which can be computed as

red(k[CA]) = min{s ∈ N : (s + 1)A = sA + {a0,an−1}}.
By the discussion at the beginning of Sect. 2, it is clear that red(k[CA]) =
m (APS), and we can characterize when reg(k[CA]) = red(k[CA]) in a combi-
natorial way: by Theorem 3.7,

reg(k[CA]) = red(k[CA]) ⇐⇒ m (APS) ≥ m (ES) .

In particular, we obtain that reg(k[CA]) = red(k[CA]) whenever CA is arith-
metically Cohen–Macaulay which is already known. However, this occurs in
many other examples, e.g., in Example 3.13 (2).

The Castelnuovo–Mumford regularity of the semigroup ring k[S] can
also be bounded from above and from below in terms of σ, the conductor
of S. These bounds will be given in Theorem 3.16 where we distinguish two
cases depending on the value of σ in Theorem 3.1. Let us first prove a lemma
that will be needed in the proof. Recall that for i = 1, 2, the Fröbenius number
of Si, denoted by F (Si), is the largest gap of Si, i.e., F (Si) = ci − 1.
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Table 1. Examples where the bounds in Theorem 3.16 are attained

A r(k[CA]) 
 c1+c2
d � σ reg(k[CA])

{0, 1, 3, 11, 13} 5 1 5 5
{0, 1, 3, 5, 6, 12} 1 1 1 2
{0, 4, 5, 9, 16} 2 3 3 3
{0, 5, 9, 11, 20} 3 4 4 5

Lemma 3.15. Set N := 
 c1+c2
d �. Then, reg(k[CA]) ≥ 
N

2 � + 1.

Proof. One has that F (S1) + d ∈ Ap1 and consider y ∈ Ap2, such that
F (S1) + d + y ≡ 0 (mod d). Note that y �= 0. By Lemma 2.5, there are two
options: either (F (S1)+d, y) ∈ APS , or there exist y′ ≥ y such that (F (S1)+
d, y′) ∈ APS . In both cases, there exists y ≥ 1, such that (F (S1)+d, y) ∈ APS
and, analogously, there exists x ≥ 1, such that (x, F (S2) + d) ∈ APS . By
Theorem 3.7

reg(k[CA]) ≥ max
{

F (S1) + d + y

d
,
F (S2) + d + x

d

}

≥ 1
2

F (S1) + F (S2) + 2
d

+ 1 =
c1 + c2

2d
+ 1.

Thus, reg(k[CA]) ≥ 
 c1+c2
2d � + 1 = 
N

2 � + 1. �

Theorem 3.16. We have the following bounds for the Castelnuovo–Mumford
regularity of k[CA]:
(1) If σ = r(k[CA]) ≥ 
 c1+c2

d �, then σ ≤ reg(k[CA]) ≤ σ + 1.
(2) If σ = 
 c1+c2

d � > r(k[CA]), then 
σ
2 � + 1 ≤ reg(k[CA]) ≤ σ + 1.

Proof. In both cases, the upper bound is a consequence of Theorem 3.7 and
Remark 3.6 (1). If σ = r(k[CA]) ≥ 
 c1+c2

d �, then we apply the known fact
r(k[CA]) ≤ reg(k[CA]), see [9, Thm 4.2], and in the other case, the lower
bound is the one given in Lemma 3.15. �

Example 3.17. To illustrate that all the upper and lower bounds in Theo-
rem 3.16 are sharp, the values of r(k[CA]), 
 c1+c2

d �, σ and reg(k[CA]) in four
different examples are displayed in Table 1.

The following result is more precise than the one stated in Theorem 3.16
in a particular case. It gives, in this case, the precise relationship between
the three regularities, in the sense of Castelnuovo–Mumford, of the Hilbert
function, and of the sumsets.

Proposition 3.18. If CA is arithmetically Cohen–Macaulay and (F (S1) + d,
F (S2) + d) ∈ APS , then

σ =

⌈
c1 + c2

d

⌉
, r(k[CA]) = σ, and reg(k[CA]) = σ + 1.
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Proof. Since (F (S1) + d, F (S2) + d) ∈ APS , one has that (F (S1)+d, F (S2)+
d) ∈ APs for s = m (APS) and, as CA is arithmetically Cohen–Macaulay,
reg(k[CA]) = m (APS) by Theorem 3.7. Thus,

reg(k[CA]) =
F (S1) + d + F (S2) + d

d
=

F (S1) + F (S2)
d

+ 2.

On the other hand,
⌈

c1 + c2
d

⌉
=

⌈
F (S1) + F (S2)

d
+

2
d

⌉
=

F (S1) + F (S2)
d

+ 1,

so reg(k[CA]) = 
 c1+c2
d � + 1, and r(k[CA]) = 
 c1+c2

d �, since reg(k[CA]) =
r(k[CA]) + 1 whenever CA is arithmetically Cohen–Macaulay. Finally, σ =

 c1+c2

d � by Theorem 3.1. �

Example 3.19. For A = {0, 1, 2, 3, 8}, k[CA] is Cohen–Macaulay, as shown in
Example 2.8, and (F (S1) + d, F (S2) + d) = (7, 17) ∈ APS . By Proposition
3.18, σ = r(k[CA]) = 
 c1+c2

d � = 3, and reg(k[CA]) = σ + 1 = 4.

Using the previous results, we can give a new proof for the bound ob-
tained by J. Elias in [11] for arithmetically Cohen–Macaulay curves.

Proposition 3.20. ([11, Thm. 4.7]) If A = {a0 = 0 < a1 < · · · < an−1 = d} ⊂
N is a set in normal form, such that CA is arithmetically Cohen–Macaulay,
then

reg(k[CA]) ≤
⌈

d − 1
n − 2

⌉
.

Proof. Set s0 := 
 d−1
n−2�. By Corollary 2.11, the sequence (|sA| − |(s − 1)A|)∞

s=0

is increasing and its limit is d. Indeed, as observed in the proof of this corol-
lary, |sA| − |(s − 1)A| =

∑s
j=0 |APj | for all s ∈ N. On the other hand,

|APS | = d by Proposition 2.6 (4) and, by [18, Thm. 1], |sA| − |(s− 1)A| ≥ d
if s ≥ s0. Therefore, |APs | = 0 for all s > s0, and hence, reg(k[CA]) ≤ s0 by
Theorem 3.7. �

Finally, as a consequence of Theorem 3.16, one gets a sufficient condition
for σ to be equal to 
 c1+c2

d � in Theorem 3.1. The condition is expressed in
terms of the difference between the Castelnuovo–Mumford regularity and the
regularity of the Hilbert function of k[CA]. We will see in the next section how
this condition can be characterized in terms of the Betti numbers of k[CA].

Corollary 3.21. If D = reg(k[CA]) − r(k[CA]) ≥ 2, then σ = 
 c1+c2
d � >

r(k[CA]).

Proof. If σ = r(k[CA]) ≥ 
 c1+c2
d �, then σ ≤ reg(k[CA]) ≤ σ + 1 by Theorem

3.16, so D ≤ 1. �



MJOM Castelnuovo–Mumford Regularity via Sumsets Page 17 of 24 287

4. The Shape of the Betti Diagram

In this section, we relate both regularities reg(k[CA]) and r(k[CA]) in terms
of the Betti diagram of k[CA] that can be used to characterize the difference
D := reg(k[CA]) − r(k[CA]). Recall that the projective dimension of k[CA] is
either n − 2 if the ring k[CA] is Cohen–Macaulay, or n − 1 otherwise.

The Hilbert function and polynomial of k[CA] are computed using the
Betti numbers as follows: if we denote by reg := reg(k[CA]) the Castelnuovo–
Mumford regularity of k[CA], then

HFA(t) =
(

t + n − 1
n − 1

)
+

n−1∑
i=1

reg∑
j=0

(−1)iβi,i+j

(
t − (i + j) + n − 1

n − 1

)
,

HPA(t) =
1

(n − 1)!

[
(t + n − 1)(t + n − 2) . . . (t + 1)

+
n−1∑
i=1

reg∑
j=0

(−1)iβi,i+j

n−1∏
l=1

(t − (i + j) + l)

]
.

Taking into account the roots of the polynomial
∏n−1

l=1 (t − (i + j) + l), it is
easy to prove that HFA(t) = HPA(t) for all t ≥ reg, that is

r(k[CA]) ≤ reg(k[CA]); (4.1)

see [9, Thm. 4.2] for the details. To determine precisely the difference D be-
tween the two regularities, we need to evaluate the difference HPA(reg −λ)−
HFA(reg −λ) for 1 ≤ λ ≤ reg. For λ ≥ 1, set

A
(λ)
i+j :=

(
reg +n − (λ + 1) − (i + j)

n − 1

)
,

B
(λ)
i+j :=

1
(n − 1)!

n−1∏
l=1

(reg −λ − (i + j) + l) .

Using this notation, for all λ, 1 ≤ λ ≤ reg, we can write

HPA(reg −λ) − HFA(reg −λ) =
n−1∑
i=1

reg∑
j=0

(−1)iβi,i+j

(
B

(λ)
i+j − A

(λ)
i+j

)

=
reg +n−1∑

i+j=1

(−1)iβi,i+j

(
B

(λ)
i+j − A

(λ)
i+j

)
.

(4.2)

The following lemma establishes when A
(λ)
i+j and B

(λ)
i+j coincide.

Lemma 4.1. Consider λ ≥ 1 and i + j, such that 1 ≤ i + j ≤ reg +n − λ.

(1) If i + j ≤ reg −λ, then A
(λ)
i+j = B

(λ)
i+j �= 0.

(2) If reg −λ + 1 ≤ i + j ≤ reg +n − (λ + 1), then A
(λ)
i+j = B

(λ)
i+j = 0.

(3) If i + j = reg +n − λ, then A
(λ)
i+j = 0 and B

(λ)
i+j = (−1)n−1.
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Proof. If i + j ≤ reg −λ, then reg +n − (λ + 1) − (i + j) ≥ n − 1 so A
(λ)
i+j =

B
(λ)
i+j �= 0 and (1) follows. Otherwise, A

(λ)
i+j = 0 and we distinguish two cases.

If i + j ≤ reg +n − (λ + 1), then 1 ≤ i + j + λ − reg ≤ n − 1, and hence,
B

(λ)
i+j = 0 and (2) follows. Finally, if i + j = reg +n − λ, then

B
(λ)
reg +n−λ =

1
(n − 1)!

n−1∏
l=1

(l − n) = (−1)n−1,

and we are done. �

By Lemma 4.1 (3) and Eq. (4.2), HPA(reg −1) − HFA(reg −1)
= βn−1,reg +n−1 so if βn−1,reg +n−1 �= 0, one gets that r(k[CA]) = reg(k[CA]),
i.e., D = 0. And the reciprocal statement also holds. This is a particular case
of the following result that relates precisely D to some of the Betti numbers.

Proposition 4.2. If λ ≥ 1 is the least positive integer, such that
∑

i

(−1)iβi,reg +n−λ �= 0,

then r(k[CA]) = reg(k[CA]) − λ + 1, i.e., D = λ − 1, and

HPA(reg −λ) − HFA(reg −λ) =
∑

i

(−1)n+i−1βi,reg +n−λ.

Proof. The case λ = 1 is proved just before the proposition, so assume that
λ ≥ 2. Since, for all μ = 1, 2, . . . , λ− 1,

∑
i(−1)iβi,reg +n−μ = 0, by Eq. (4.2),

one gets that HPA(t) = HFA(t) for all t ≥ reg −λ + 1, i.e., r(k[CA]) ≤
reg(k[CA]) − λ + 1. Moreover, by applying Lemma 4.1 (3) to Eq. (4.2), we
obtain that

HPA(reg −λ) − HFA(reg −λ) =
∑

i

(−1)iβi,reg +n−λB
(λ)
reg +n−λ

=
∑

i

(−1)n+i−1βi,reg +n−λ �= 0,

and hence, r(k[CA]) = reg(k[CA]) − λ + 1. �

Note that the previous result is general. In its proof, we do not use that
the ring is the coordinate ring of a monomial projective curve. This proves
the following result that improves [9, Thm. 4.2]:

Theorem 4.3. Let M be a finitely generated graded module over k[x0, . . . , xn−1],
and denote by D the difference between the Castelnuovo–Mumford regularity
and the regularity of the Hilbert function of M , i.e., D := reg(M) − r(M).
Then, D + 1 is the least non-negative integer λ ≥ 0, such that

∑
i

(−1)iβi,reg(M)+n−λ �= 0

where the βij are the graded Betti numbers of M .
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Remark 4.4. (1) If we focus on the secondary diagonals of the Betti diagram
starting from the bottom right of the table, the number λ in the previous
theorem is the label of the first diagonal, such that the alternating sum
of the Betti numbers on this diagonal is not 0.

j/i 0 1 . . . p − 1 p p + 1 . . . n

0 1 β1,1 . . . βp−1,p−1 βp,p 0 . . . 0

1 − β1,2 . . . βp−1,p βp,p+1 0 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

reg−1 − β1,reg . . . βp−1,reg +p−2 βp,reg +p−1 0 . . . 0

reg − β1,reg +1 . . . βp−1,reg +p−1 βp,reg +p 0 . . . 0

λ = n − p + 1 λ = n − p λ = 0

(2) If p denotes the projective dimension of the module M , the previous
result implies that βp,reg(M)+p �= 0, i.e., the regularity is attained at the
last step of a m.g.f.r. of M , if, and only if, λ = n−p, i.e., D = n−1−p.
This occurs, in particular, whenever M is a Cohen–Macaulay module,
so, in this case, reg(M) − r(M) = n − 1 − p which is a well-known fact;
see, e.g., [9, Cor. 4.8].

Going back to the case of projective monomial curves, the case λ = 2
(i.e., D = 1) in Proposition 4.2 includes all arithmetically Cohen–Macaulay
curves, since βn−1,reg +n−1 = βn−1,reg +n−2 = 0 and βn−2,reg +n−2 �= 0 in this
case. However, there are also non-arithmetically Cohen–Macaulay curves CA,
such that D = reg(k[CA]) − r(k[CA]) = 1 as we will see in the next example.

Example 4.5. Different values of D = reg(k[CA]) − r(k[CA]) and different
shapes for the Betti diagram of k[CA] are obtained in the following four
examples of monomial curves in P

4
k.

(1) For A = {0, 1, 3, 11, 13},
D = 0 and reg(k[CA]) is
attained at the last step
of a m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 2 2 - -

3: - 2 2 - -

4: - 3 8 5 -

5: - - 2 4 2

------------------------------------

total: 1 8 14 9 2

(3) For A = {0, 6, 9, 13, 22}, D = 1
and reg(k[CA]) is not attained at
the last step of a m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 1 - - -

3: - - 1 - -

4: - 5 9 5 1

5: - - 2 2 -

------------------------------------

total: 1 7 12 7 1
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(2) For A = {0, 2, 5, 6, 9},
D = 1 and reg(k[CA]) is
attained at the last step
of a m.g.f.r.

0 1 2 3

------------------------------

0: 1 - - -

1: - 1 - -

2: - 7 12 5

------------------------------

total: 1 8 12 5

(4) For A = {0, 5, 9, 11, 20}, D = 2
and reg(k[CA]) is not attained at
the last step of a m.g.f.r.

0 1 2 3 4

------------------------------------

0: 1 - - - -

1: - 1 - - -

2: - 1 - - -

3: - 1 1 - -

4: - 3 9 5 1

5: - - - 1 -

------------------------------------

total: 1 6 10 6 1

Recall that, as stated in [23, Thm. 3.11], the regularity is always de-
termined by the tail of a m.g.f.r.. In other words, the definition of regularity
given in (0.2) can be simplified as
reg(k[CA]) := max{j − i : βi,j �= 0, n − dim(k[CA]) ≤ i ≤ n − depth(k[CA]), j ≥ 0}.

In our situation, dim(k[CA]) = 2, and hence, 1 ≤ depth(k[CA]) ≤ 2. If k[CA]
is Cohen–Macaulay, then the regularity is always attained at the last step of a
m.g.f.r., a general and well-known fact. When k[CA] is not Cohen–Macaulay, it
is always attained at one of the last two steps of a m.g.f.r. and our next result
characterizes when the regularity is attained at the last step in terms of the
formula given in Theorem 3.7 and of the difference D = reg(k[CA])−r(k[CA]).

Theorem 4.6. If CA is not arithmetically Cohen–Macaulay, the following are
equivalent:
(1) The Castelnuovo–Mumford regularity of k[CA] is attained at the last step

of a m.g.f.r.
(2) reg(k[CA]) = m (ES), i.e., m (ES) ≥ m (APS).
(3) reg(k[CA]) = r(k[CA]), i.e., D = 0.

Proof. The equivalence (1)⇔(3) is a direct consequence of Proposition 4.2 as
observed in Remark 4.4 (2). Therefore, we only have to prove (1)⇔(2). It is
well known that the maximal degree of the minimal (n−depth(R/I))-syzygies
of k[CA] is equal to end

(
H

depth(R/I)
m (k[S])

)
+ n. This is, e.g., a consequence

of [5, Cor. 2.2]. If k[CA] is not Cohen–Macaulay, then by Theorem 3.7, its
proof, and Lemma 3.9, one has that reg(k[CA]) = m (ES) if and only if
end

(
H1

m (k[S])
)

+ 1 = m (ES) ≥ end
(
H2

m (k[S])
)

+ 2, i.e., if and only if
the Castelnuovo–Mumford regularity is attained at the last step of a m.g.f.r.
of k[CA] by (3.1) and the previous observation. This proves the equivalence
between (1) and (2). �

Finally, let us focus on monomial curves in P
3
k. Since these curves have

codimension 2, they have some additional properties.

Proposition 4.7. Let A ⊂ N be a set in normal form with |A| = 4 and consider
the associated monomial curve CA ⊂ P

3
k.
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(1) The Castelnuovo–Mumford regularity is attained at the last step of a
m.g.f.r. of k[CA].

(2) Setting D := reg(k[CA]) − r(k[CA]), one has that 0 ≤ D ≤ 1. More
precisely,

D = 0 ⇔ k[CA] is not Cohen–Macaulay ⇔ reg(k[CA]) = m (ES) ≥ m (APS) ,

D = 1 ⇔ k[CA] is Cohen–Macaulay ⇔ reg(k[CA]) = m (APS) > m (ES) .

Proof. (1) is a particular case of [3, Cor. 2.13]. By Proposition 4.2 and Remark
4.4 (2), this implies that either D = 0 if CA is not arithmetically Cohen–
Macaulay, or D = 1 if CA is arithmetically Cohen Macaulay. (2) then follows
from Theorem 4.6. �

5. The Relation Between Known Bounds for σ and reg(k[CA ])

In this final section, we show how the bound for σ recently obtained by
Granville and Walker in [14] and the classical bound for reg(k[CA]) given by
the Gruson–Lazarsfeld–Peskine Theorem [15] are related. As a consequence
of some of our results, we obtain that each of these bounds can be deduced
from the other.

Let us first recall these two bounds. Consider A = {a0 = 0 < a1 < · · · <
an−1 = d} ⊂ N a set in normal form. In Sect. 1, we presented several upper
bounds for σ, the sumsets regularity of A, which we also called the conductor
of the homogeneous semigroup S. The best bound is the one given in [14,
Thm. 1] by Granville and Walker:

σ ≤ d − n + 2. (5.1)

On the other hand, a classical and important result in algebraic geome-
try provides an upper bound for the Castelnuovo–Mumford regularity of any
reduced and irreducible projective curve in terms of its degree and codimen-
sion. It is the Gruson–Lazarsfeld–Peskine Theorem; see, e.g., [9, Thm. 5.1].
Applied to the monomial projective curve CA, the Gruson–Lazarsfeld–Peskine
Theorem claims that

reg(k[CA]) ≤ d − n + 2. (5.2)

Let us first show that the Granville–Walker bound (5.1) can be deduced
from (5.2) using Theorem 3.1. We start with the following result that bounds
one of the terms in Theorem 3.1.

Lemma 5.1. Let A = {a0 = 0 < a1 < · · · < an−1 = d} ⊂ N be a set in normal
form. If S1 is the semigroup generated by A, S2 is the semigroup generated
by d − A, and ci is the conductor of Si for i = 1, 2, then

⌈
c1 + c2

d

⌉
≤ d − n + 1.
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Proof. The conductors of both semigroups S1 and S2 can be bounded using
[22, Thm. 3.1.1]:

c1 ≤ (a1 − 1)(an−1 − 1) = (a1 − 1)(d − 1),

c2 ≤ (d − an−2 − 1)(d − a1 − 1).

Therefore

c1 + c2 ≤ d2 − 3d − dan−2 + a1an−2 + an−2 + 2

≤ d2 − 3d − d(a1 + n − 3) + (d − 1)a1 + (d − 1) + 2,

because an−2 ≥ a1 + n − 3 and an−2 ≤ d − 1. Thus,

c1 + c2 ≤ d2 − 3d − nd + 3d − a1 + d + 1 ≤ d2 − nd + d = d(d − n + 1).

Dividing by d, the result follows. �

As recalled in (4.1), r(k[CA]) ≤ reg(k[CA]), so (5.1) is a straightforward
consequence of (5.2), Lemma 5.1, and Theorem 3.1.

Conversely, to show that (5.2) can be deduced from (5.1), we will use
the additional result of Granville and Walker recalled in Theorem 1.4 where
all the sets A in normal form, such that the bound in (5.1) is attained are
characterized. We distinguish three cases:

(a) If neither A nor d−A belongs to the two families listed in Theorem 1.4,
then σ ≤ d − n + 1, and (5.2) follows from Theorem 3.16.

(b) If A = [0, d] \ {a} for some a ∈ [2, d − 2], then σ = 2 and reg(k[CA]) = 2
as well by Theorem 3.7, and hence (5.2) holds for such a set A. Observe
that, in this case, d = n so equality holds in (5.1) and (5.2).

(c) If A = [0, 1]  [a + 1, d] for some a ∈ [2, d − 2], then sA = [0, sd] for
all s ≥ a and a /∈ (a − 1)A. Therefore, σ = a and reg(k[CA]) = a by
Theorem 3.7, so (5.2) also follows from (5.1) in this case. One gets the
same conclusion if d − A = [0, 1]  [a + 1, d] for some a ∈ [2, d − 2].

Note that this discussion provides a new combinatorial proof of the Gruson–
Lazarsfeld–Peskine Theorem for projective monomial curves.
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