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Abstract. In this paper, we introduce some new weighted maximal oper-
ators of the partial sums of the Walsh–Fourier series. We prove that for
some “optimal” weights these new operators indeed are bounded from
the martingale Hardy space Hp(G) to the Lebesgue space weak−Lp(G),
for 0 < p < 1. Moreover, we also prove sharpness of this result. As a
consequence we obtain some new and well-known results.
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1. Introduction

All symbols used in this introduction can be found in Sect. 2.
It is well-known that the Walsh system does not form a basis in the

space L1(G) (see e.g. [2,30]). Moreover, there exists a function in the dyadic
Hardy space H1(G), such that the partial sums of f are not bounded in the
L1-norm. Uniform and pointwise convergence and some approximation prop-
erties of partial sums in L1(G) norms were investigated by Avdispahić and
Memić [1], Gát, Goginava and Tkebuchava [12,13], Nagy [17], Onneweer [18]
and Persson, Schipp, Tephnadze and Weisz [21]. Fine [9] obtained sufficient
conditions for the uniform convergence which are completely analogous to the
Dini–Lipschits conditions. Gulic̆ev [15] estimated the rate of uniform conver-
gence of a Walsh–Fourier series2 by using Lebesgue constants and modulus of
continuity. These problems for Vilenkin groups were investigated by Blatota,
Nagy, Persson and Tephnadze [7] (see also [4–6]), Fridli [10] and Gát [11].
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To study convergence of subsequences of Fejér means and their restricted
maximal operators on the martingale Hardy spaces Hp(G) for 0 < p ≤ 1/2,
the central role is played by the fact that any natural number n ∈ N can be
uniquely expressed as

n =
∞∑

k=0

nj2j , nj ∈ Z2 (j ∈ N), (1)

where only a finite numbers of nj differ from zero and their important char-
acters [n] , |n| , ρ (n) and V (n) are defined by

[n] := min{j ∈ N, nj �= 0}, |n| := max{j ∈ N, nj �= 0}, ρ (n) = |n| − [n]
(2)

and

V (n) := n0 +
∞∑

k=1

|nk − nk−1| , for all n ∈ N

In particular, (see [8,16,22])

V (n)
8

≤ ‖Dn‖1 ≤ V (n)

from which it follows that, for any F ∈ L1(G), there exists an absolute
constant c such that the following inequality holds:

‖SnF‖1 ≤ cV (n) ‖F‖1 .

Moreover, for any f ∈ H1(G) (see [26])

‖SnF‖H1
≤ cV (n) ‖F‖H1

.

For 0 < p < 1 in Refs. [24,25], the weighted maximal operator
∼
S

∗,p

,
defined by

∼
S

∗,p

F := sup
n∈N

|SnF |
(n + 1)1/p−1

(3)

was investigated and it was proved that the following inequalities hold:
∥∥∥∥

∼
S

∗
F

∥∥∥∥
p

≤ cp ‖F‖Hp

Moreover, it was also proved that the rate of the sequence {(n + 1)1/p−1}
given in the denominator of (3) can not be improved.

In Refs. [26,27] (see also [3]), it was proved that if F ∈ Hp(G), then
there exists an absolute constant cp, depending only on p, such that

‖SnF‖Hp
≤ cp2ρ(n)(1/p−1) ‖F‖Hp

,

which implies that
∥∥∥∥

SnF

2ρ(n)(1/p−1)

∥∥∥∥
p

≤ cp ‖F‖Hp
.
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Moreover, if 0 < p < 1, {nk : k ≥ 0} is any increasing sequence of positive
integers such that

sup
k∈N

ρ (nk) = ∞

and Φ : N+ → [1,∞) is any nondecreasing function, satisfying the condition

lim
k→∞

2ρ(nk)(1/p−1)

Φ(nk)
= ∞,

then there exists a martingale F ∈ Hp(G), such that

sup
k∈N

∥∥∥∥
Snk

F

Φ(nk)

∥∥∥∥
weak−Lp

= ∞.

In this paper, we prove that the weighted maximal operator of the par-
tial sums of the Walsh–Fourier defined by

sup
n∈N

|SnF |
2ρ(n)(1/p−1)

is bounded from the martingale Hardy space Hp(G) to the space weak −
Lp(G), for 0 < p < 1. We also prove the sharpness of this result (see Theorem
2). As a consequence, we obtain both some new and well-known results.

This paper is organized as follows: In order not to disturb our discussions
later on some preliminaries are presented in Sect. 2. The main results and
some of its consequences can be found in Sect. 3. The detailed proofs of the
main results are given in Sect. 4.

2. Preliminaries

Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Denote by Z2

the discrete cyclic group of order 2, that is Z2 := {0, 1}, where the group op-
eration is the modulo 2 addition and every subset is open. The Haar measure
on Z2 is given so that the measure of a singleton is 1/2.

Define the group G as the complete direct product of the group Z2,
with the product of the discrete topologies of Z2‘s. The elements of G are
represented by sequences

x := (x0, x1, . . . , xj , . . .), where xk = 0 ∨ 1.

It is easy to give a base for the neighborhood of x ∈ G :

I0 (x) := G, In(x) := {y ∈ G : y0 = x0, . . . , yn−1 = xn−1} (n ∈ N).

Denote In := In (0) , In := G\In and

en := (0, . . . , 0, xn = 1, 0, . . .) ∈ G, for n ∈ N.

Then it is easy to prove that

IM =
M−1⋃

s=0

Is\Is+1. (4)
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The norms (or quasi-norms) of the Lebesgue space Lp(G) and the weak
Lebesgue space Lp,∞ (G) , (0 < p < ∞) are, respectively, defined by

‖f‖p
p :=

∫

G

|f |p dμ and ‖f‖p
weak−Lp

:= sup
λ>0

λpμ (f > λ) .

The k-th Rademacher function rk (x) is defined by

rk (x) := (−1)xk (x ∈ G, k ∈ N) .

Now, define the Walsh system w := (wn : n ∈ N) on G by

wn(x) :=
∞
Π

k=0
rnk

k (x) = r|n| (x) (−1)

|n|−1∑
k=0

nkxk

(n ∈ N) .

The Walsh system is orthonormal and complete in L2 (G) (see e.g. [14,
22]).

If f ∈ L1 (G) we can establish the Fourier coefficients, the partial sums
of the Fourier series, the Dirichlet kernels with respect to the Walsh system
in the usual manner:

f̂ (k) :=
∫

G

fwkdμ (k ∈ N) ,

Snf :=
n−1∑

k=0

f̂ (k) wk, (n ∈ N+)

Dn :=
n−1∑

k=0

wk (n ∈ N+) .

Recall that (see [19,20,22])

D2n (x) =
{

2n, if x ∈ In

0, if x /∈ In
(5)

and

Dn = wn

∞∑

k=0

nkrkD2k = wn

∞∑

k=0

nk (D2k+1 − D2k) , for n =
∞∑

i=0

ni2i. (6)

Moreover, we have the following lower estimate (see [20]):

Lemma 1. Let n ∈ N and [n] �= |n| . Then,

|Dn(x)| =
∣∣Dn−2|n|(x)

∣∣ ≥ 2[n]

4
, for x ∈ I[n]+1

(
e[n]

)
.

The σ-algebra generated by the intervals {In (x) : x ∈ G} will be de-
noted by ζn (n ∈ N) .

Denote by F = (Fn, n ∈ N) the martingale with respect to �n (n ∈ N)
(see e.g. [28]).

The maximal function F ∗ of a martingale F is defined by

F ∗ := sup
n∈N

|Fn| .
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In the case f ∈ L1 (G) , the maximal function f∗ is given by

f∗ (x) := sup
n∈N

1
μ (In (x))

∣∣∣∣∣∣∣

∫

In(x)

f (u) dμ (u)

∣∣∣∣∣∣∣
.

For 0 < p < ∞, the Hardy martingale spaces Hp (G) consists of all
martingales for which

‖F‖Hp
:= ‖F ∗‖p < ∞.

It is easy to check that for every martingale F = (Fn, n ∈ N) and every
k ∈ N the limit

F̂ (k) := lim
n→∞

∫

G

Fn (x)wk (x) dμ (x)

exists and it is called the k-th Walsh–Fourier coefficients of F.
If F := (S2nf : n ∈ N) is a regular martingale, generated by f ∈ L1 (G) ,

then (see e.g. [20,23,28])

F̂ (k) = f̂ (k) , k ∈ N.

A bounded measurable function a is called p-atom, if there exists a
dyadic interval I, such that

∫

I

adμ = 0, ‖a‖∞ ≤ μ (I)−1/p
, supp (a) ⊂ I.

The dyadic Hardy martingale spaces Hp(G) for 0 < p ≤ 1 have an
atomic characterization. Namely, the following holds (see [20,28,29]):

Lemma 2. A martingale F = (Fn, n ∈ N) belongs to Hp(G) (0 < p ≤ 1) if
and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence
(μk, k ∈ N) of real numbers such that for every n ∈ N,

∞∑

k=0

μkS2nak = Fn,

∞∑

k=0

|μk|p < ∞, (7)

Moreover, ‖F‖Hp
� inf (

∑∞
k=0 |μk|p)1/p

, where the infimum is taken over all
decomposition of F of the form (7).

3. The Main Results with Applications

Our first main result reads:

Theorem 1. Let 0 < p < 1, f ∈ Hp (G), n be defined by (1) and ρ (n) be
defined by (2). Then, the weighted maximal operator S̃∗,∇, defined by

S̃∗,∇F = sup
n∈N

|SnF |
2ρ(n)(1/p−1)

, (8)

is bounded from the martingale Hardy space Hp(G) to the space weak−Lp(G).

Our second main result shows that Theorem 1 can not be improved in
general, because it is sharp in some special senses:



284 Page 6 of 13 D. Baramidze et al. MJOM

Theorem 2. (a) Let 0 < p < 1, n be defined by (1), ρ (n) be defined by (2) and
S̃∗,∇ is defined by (8). Then, there exists a sequence {fn, n ∈ N} of p-atoms,
such that

sup
n∈N

∥∥∥S̃∗,∇fn

∥∥∥
p

‖fn‖Hp(G)

= ∞.

(b) Let 0 < p < 1, n be defined by (1) and ρ (n) be defined by (2). If
ϕ : N → [1, ∞) is a nondecreasing function, satisfying the condition

lim
n→∞

2ρ(n)(1/p−1)

ϕ (n)
= ∞, (9)

then there exists a sequence {fn, n ∈ N} of p-atoms, such that

sup
n∈N

∥∥∥supk∈N

|Skfn|
ϕ(k)

∥∥∥
weak−Lp(G)

‖fn‖Hp(G)

= ∞.

Theorem 1 implies the following result of Weisz [29] (see also [28]):

Corollary 1. Let 0 < p < 1 and f ∈ Hp (G). Then the maximal operator S∗,�

defined by

S∗,�F := sup
n∈N

|S2nF |

is bounded from the Hardy space Hp(G) to the Lebesgue space weak − Lp(G)
(and, thus, to the Lebesgue space Lp(G)).

Moreover, Theorems 1 and 2 imply the following results (see [20]):

Corollary 2. Let 0 < p < 1 and f ∈ Hp (G). Then, the maximal operator
S̃∗,∇, defined by

S∗,∇F := sup
k∈N

|Snk
F |

is bounded from the Hardy space Hp(G) to the Lebesgue space weak − Lp(G)
if and only if condition

sup
k∈N

ρ (nk) < c < ∞

is fulfilled.

Remark 1. The statement in Corollary 2 holds also if the space weak−Lp(G)
is replaced by Lp(G).

Corollary 3. (a) Let 0 < p < 1 and f ∈ Hp (G). Then, the weighted maximal
operator defined by

sup
n∈N

∣∣S2n+2n/2F
∣∣

2
n
2 (1/p−1)

is bounded from the Hardy space Hp(G) to the Lebesgue space weak− Lp(G).
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(b) (Sharpness) Let ϕ : N → [1, ∞) be a nondecreasing function, satis-
fying the condition

lim
n→∞

2
n
2 (1/p−1)

ϕ (n)
= ∞.

Then, there exists sequence {fn, n ∈ N} of p-atoms, such that

sup
n∈N

∥∥∥∥
S
2n+2n/2fn

ϕ(2n+2n/2)

∥∥∥∥
weak−Lp(G)

‖fn‖Hp(G)

= ∞.

Corollary 4. (a) Let 0 < p < 1 and f ∈ Hp (G) . Then, the weighted maximal
operator defined by

sup
n∈N

|S2n+1F |
2n(1/p−2)

is bounded from the Hardy space Hp(G) to the Lebesgue space weak− Lp(G).
(b) (Sharpness) Let ϕ : N → [1, ∞) is a nondecreasing function, satis-

fying the condition

lim
n→∞

2n(1/p−1)

ϕ (n)
= ∞.

Then, there exists sequence {fn, n ∈ N} of p-atoms, such that

sup
n∈N

∥∥∥S2n+1fn

ϕ(2n+1)

∥∥∥
weak−Lp(G)

‖fn‖Hp(G)

= ∞.

Finally, we note that Theorem 1 implies the following result of Teph-
nadze [27]:

Corollary 5. (a) Let 0 < p < 1 and f ∈ Hp(G). Then, the weighted maximal

operator
∼
S

∗,p

, defined by (3) is bounded from the martingale Hardy space
Hp(G) to the Lebesgue space weak − Lp(G).

(b) Let {ϕn} be any nondecreasing sequence satisfying the condition

lim
n→∞

(n + 1)1/p−1

ϕn
= ∞.

Then, there exists a martingale f ∈ Hp(G), such that

sup
n∈N

∥∥∥∥
Snf

ϕn

∥∥∥∥
p

= ∞.

4. Proofs of the Theorems

Proof of Theorem 1. Since σn is bounded from L∞ to L∞, by Lemma 2, the
proof of Theorem 1 will be complete, if we prove that

tpμ
{

x ∈ IM : S̃∗,∇a(x) ≥ t
}

≤ cp < ∞, t ≥ 0 (10)
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for every p-atom a. In this paper, cp (or Cp) denotes a positive constant
depending only on p but which can be different in different places.

We may assume that a is an arbitrary p-atom, with support I, μ (I) =
2−M and I = IM . It is easy to see that Sna (x) = 0, when n < 2M .
Therefore, we can suppose that n ≥ 2M . Since ‖a‖∞ ≤ 2M/p, we obtain that

|Sna (x)|
2ρ(n)(1/p−1)

≤ 1
2ρ(n)(1/p−1)

‖a‖∞

∫

IM

|Dn (x + t)| μ (t)

≤ 1
2ρ(n)(1/p−1)

2M/p

∫

IM

|Dn (x + t)| μ (t) .

Let x ∈ Is\Is+1, 0 ≤ s < [n] ≤ M or 0 ≤ s ≤ M < [n] . Then, it is easy
to see that x + t ∈ Is\Is+1 for t ∈ IM and if we combine (5) and (6) we get
that Dn (x + t) = 0, for t ∈ IM so that

|Sna (x)|
2ρ(n)(1/p−1)

= 0. (11)

Let Is\Is+1, [n] ≤ s ≤ M or [n] ≤ s ≤ M. Then, it is easy to see that
x + t ∈ Is\Is+1 for t ∈ IM and if we again combine (5) and (6), we find that
Dn (x + t) ≤ c2s, for t ∈ IM and

|Sna (x)|
2ρ(n)(1/p−1)

≤ cp2M/p 2s−M

2ρ(n)(1/p−1)

≤ cp
2[n](1/p−1)+s+M(1/p−1)

2|n|(1/p−1)
≤ cp2[n](1/p−1)+s ≤ cp2s. (12)

By applying (11) and (12) for any x ∈ Is\Is+1, 0 ≤ s < M, we find
that

S̃∗,∇a (x) = sup
n∈N

( |Sna (x)|
2ρ(n)(1/p−1)

)
≤ Cp2s/p. (13)

It immediately follows that for s ≤ M , we have the following estimate

S̃∗,∇a (x) ≤ Cp2M/p for any x ∈ Is\Is+1, s = 0, 1, . . . ,M

and also that

μ
{

x ∈ Is\Is+1 : S̃∗,∇a (x) > Cp2k/p
}

= 0, k = M,M + 1, . . . (14)

By combining (4) and (13), we get that

{
x ∈ IN : S̃∗,∇a (x) ≥ Cp2k/p

}
⊂

M−1⋃

s=k

{
x ∈ Is\Is+1 : S̃∗,∇a (x) ≥ Cp2k/p

}

and

μ
{

x ∈ IM : S̃∗,∇a (x) ≥ Cp2k/p
}

≤
M−1∑

s=k

1
2s

≤ 2
2k

.(15)

In view of (14) and (15), we can conclude that

2kμ
{

x ∈ IN : S̃∗,∇a (x) ≥ Cp2k/p
}

< cp < ∞,

which shows that (10) holds and the proof of is complete. �
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Proof of Theorem 2. a) Set

fnk
(x) = D2nk+1 (x) − D2nk (x) , nk ≥ 3.

It is evident that

f̂nk
(i) =

{
1, if i = 2nk , . . . , 2nk+1 − 1,
0, otherwise.

Then, we have that

Sifnk
(x) =

⎧
⎨

⎩

Di (x) − D2nk (x) , if i = 2nk , . . . , 2nk+1 − 1,
fnk

(x) , if i ≥ 2nk+1,
0, otherwise.

(16)

Since

Dj+2nk (x) − D2nk (x) = w2nk Dj(x), j = 1, 2, . . . , 2nk , (17)

from (5), it follows that

‖fnk
‖Hp

=
∥∥∥∥sup

n∈N

S2nfnk

∥∥∥∥
p

= ‖D2nk+1 − D2nk ‖p

= ‖D2nk ‖p ≤ 2nk(1−1/p). (18)

Let qs
nk

∈ N be such that

2nk < qs
nk

< 2nk+1, where [qs
nk

] = s, s = 0, . . . , nk − 1.

By combining (16) and (17), we can conclude that
∣∣∣Sqs

nk
fnk

(x)
∣∣∣ =

∣∣∣Dqs
nk

(x) − D2nk (x)
∣∣∣ =

∣∣∣Dqs
nk

−2nk −1 (x)
∣∣∣

Let x ∈ Is+1 (es). By using Lemma 1, we find that
∣∣∣Sqs

nk
fnk

(x)
∣∣∣ ≥ c2s (19)

so that
∣∣∣Sqs

nk
fnk

(x)
∣∣∣

2(1/p−1)ρ(qs
nk

)
≥ c2s/p

2nk(1/p−1)
.

Hence,
∫

G

(
sup
n∈N

|Snfnk
(x)|

2(1/p−1)ρ(n)

)p

dμ (x)

≥
nk−1∑

s=0

∫

Is+1(es)

⎛

⎝

∣∣∣Sqns
k
fnk

(x)
∣∣∣

2(1/p−1)ρ(qs
nk

)

⎞

⎠
p

dμ (x)

≥ cp

nk−1∑

s=0

1
2s

2s

2nk(1−p)
≥ Cp

2nk(1−p)

nk∑

s=1

1 ≥ Cpnk

2nk(1−p)
. (20)
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Finally, by combining (18) and (20), we obtain that
(∫

G

(
supn∈N

|Snfnk
(x)|

2(1/p−1)ρ(n)

)p

dµ (x)

)1/p

‖fnk
‖Hp

≥
(

Cpnk

2nk(1−p)

)1/p

2nk(1−1/p)
≥ cpn

1/p
k → ∞, as k → ∞,

so the proof of part a) is complete.
(b) Under condition (9), we can choose qsk

nk
∈ N for some 0 ≤ sk < nk

such that

2nk < qsk
nk

< 2nk+1, where [qnk
] = sk

and

lim
k→∞

2ρ(q
sk
nk

)(1/p−1)

ϕ (qsk
nk)

= ∞.

Let x ∈ Isk+1 (esk
). By using (19) we get that

∣∣∣Sq
sk
nk

fnk
(x)

∣∣∣ ≥ c2sk

so that ∣∣∣Sq
sk
nk

fnk
(x)

∣∣∣
ϕ (qsk

nk)
≥ c2sk

ϕ (qsk
nk)

.

Hence, we find that

μ

⎧
⎨

⎩x ∈ G :

∣∣∣Sq
sk
nk

fnk
(x)

∣∣∣
ϕ (qsk

nk)
≥ c2sk

ϕ (qsk
nk)

⎫
⎬

⎭ ≥ μ (Isk+1(esk
)) > c/2sk . (21)

By combining (18) and (21), we get that

c2sk

ϕ(q
sk
nk)

⎛

⎝μ

⎧
⎨

⎩x ∈ G :

∣∣∣∣Sq
sk
nk

fnk
(x)

∣∣∣∣
ϕ(q

sk
nk) ≥ c2sk

ϕ(q
sk
nk)

⎫
⎬

⎭

⎞

⎠
1/p

‖fnk
‖Hp(G)

≥ cp2sk

ϕ (qsk
nk) 2nk(1−1/p)

1
2sk/p

=
cp2nk(1/p−1)

2sk(1/p−1)ϕ (qsk
nk)

=
cp2ρ(q

sk
nk)(1/p−1)

ϕ (qsk
nk)

→ ∞ as k → ∞,

so also part (b) is proved and the proof is complete. �
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