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Common Values of Padovan and Perrin
Sequences

Eric Fernando Bravo

Abstract. The integer sequence defined by Pn+3 = Pn+1 + Pn with ini-
tial conditions P0 = P1 = P2 = 1 is known as the Padovan sequence
(Pn)n∈Z. The Perrin sequence (Rm)m∈Z satisfies the same recurrence
equation as the Padovan sequence but with starting values R0 = 3,
R1 = 0, and R2 = 2. In this note, we solve the Diophantine equation
Pn = ±Rm with (n,m) ∈ Z

2.
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1. Introduction

The Padovan numbers (Pn)n≥0 are defined by the Fibonacci–like recurrence
relation

Pn+3 = Pn+1 + Pn for n ≥ 0,

with initial conditions P0 = P1 = P2 = 1. The first of these numbers for
n ≥ 0 are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, . . .

The Perrin numbers (Rm)m≥0 satisfy the same recurrence equation as Padovan
numbers, but with different initial values. The first Perrin numbers for m ≥ 0
are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, . . .

Therefore, both sequences share the same characteristic polynomial given by
X3−X −1. Since the constant term of this polynomial is −1, these sequences
can be extended to negative indices. We call these sequences n–Padovan and
n–Perrin. These sequences are linear recursive with characteristic polynomial
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−X3 − X2 + 1 and, therefore, have integer members as well. The first n–
Padovan and n–Perrin numbers for n,m ≤ −1 are respectively

0, 1, 0, 0, 1, −1, 1, 0, −1, 2, −2, 1, 1, −3, 4, −3, 0, 4, −7, 7, −3, . . .

and

−1, 1, 2, −3, 4, −2, −1, 5, −7, 6, −1, −6, 12, −13, 7, 5, −18, 25, . . . .

One of the basic questions in the theory of linear recurrences is the descrip-
tion of the common terms of recurrences. Evertse [8] and Laurent [10] proved
ineffectively that only a finite number of common terms can occur. Effective
version is known only for the equations un = um provided that the charac-
teristic polynomial of (un) has at most three roots with the same absolute
value and for un = vm when both recurrences have dominating simple and
real roots. The book of Shorey and Tijdeman [15] gives detailed overview on
the related results.

In 2020, Bravo et al. [3,4] established all solutions of equation

Tn = Tm

in integers n,m, where (Tn)n≥0 denotes the Tribonacci sequence, which is
defined by the initial terms T0 = T1 = 0, T1 = 1 and by the recursion
Tn+3 = Tn+2 + Tn+1 + Tn for n ≥ 0. Pethő [13] generalized the results of
Bravo et al. [3,4] to generalized Fibonacci numbers, showing that equation

F (k)
n = F (�)

m

has only finitely many solutions (n,m) ∈ Z
2 for fixed k ≥ � ≥ 2, where(

F
(k)
n

)
n≥−k+2

denotes the generalized Fibonacci sequence, which is defined

by the initial values F
(k)
n = 0 for n = 0, . . . ,−k + 2, F

(k)
1 = 1 and by the

k ≥ 2 fixed order recursion F
(k)
n+k = F

(k)
n+k−1 + · · · + F

(k)
n for n ≥ −k + 2. Of

course, for k = 3, we get the Tribonacci sequence. Unfortunately, the proof
of Pethő [13] is ineffective, since it is based on the theory of S-unit equations.
See also Pethő and Szalay [14].

The results of Bravo et al. [3,4] were also generalized by Pethő [12] by
solving effectively the equation

un = vm

in positive integers n,m, where (un) and (vm) denote linear recursive se-
quences, such that the first has dominating real root α, while the second has
a dominating pair β, β of conjugate complex numbers, such that α and |β|
are multiplicatively dependent.

Here, we consider solving equation

Pn = ±Rm (1.1)

for (n,m) ∈ Z
2. Recently, using the theory of linear forms in logarithms and

an application of the LLL algorithm, Bravo [1, Corollary 2] solved Eq. (1.1)



MJOM Common Values of Padovan and Perrin Sequences Page 3 of 19 268

for n,m ≥ 0. It has exactly 10 solutions, namely

P3 = P4 = 2 = R2 = R4;
P5 = 3 = R0 = R3;
P7 = 5 = R5 = R6;
P8 = 7 = R7;

P10 = 12 = R9.

To solve completely Eq. (1.1), we solve the equations

P−n = ±Rm, Pn = ±R−m, and P−n = ±R−m

for n,m ≥ 0, using the technique developed by Bravo et al. [3,4].

2. Results

Theorem 2.1. The only solutions of equation

P−n = ±Rm (2.1)

for n,m ≥ 0 are the 24 that we list below

P−35 = P−19 = −7 = −R7;
P−21 = P−16 = P−14 = −3 = −R0 = −R3;

P−11 = −2 = −R2 = −R4;
P−17 = P−8 = P−4 = P−3 = P−1 = 0 = ±R1;

P−10 = 2 = R2 = R4;
P−20 = 7 = R7;

P−25 = 10 = R8.

Theorem 2.2. The only solutions of equation

Pn = ±R−m (2.2)

for n,m ≥ 0 are the 30 ones listed below

P2 = P1 = P0 = 1 = R−2 = −R−1 = −R−7 = −R−11 = −R−29;
P4 = P3 = 2 = R−3 = R−20 = −R−6;

P5 = 3 = −R−4;
P6 = 4 = R−5;
P7 = 5 = R−8 = R−16;
P8 = 7 = R−15 = −R−9;

P10 = 12 = R−13;
P12 = 21 = −R−25;
P17 = 86 = R−34.

Theorem 2.3. All solutions of equation

P−n = ±R−m (2.3)
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for (n,m) ∈ Z
+ × Z

+ are the 59 given below

P−35 = P−19 = −7 = R−9 = −R−15;
P−22 = −4 = −R−5;

P−21 = P−16 = P−14 = −3 = R−4;
P−11 = −2 = −R−3 = R−6 = −R−20;

P−9 = P−6 = −1 = R−1 = −R−2 = R−7

= R−11 = R−29;
P−26 = P−13 = P−12 = P−7 = P−5 = P−2 = 1 = −R−1 = R−2 = −R−7

= −R−11 = −R−29;
P−10 = 2 = R−3 = −R−6 = R−20;

P−18 = P−15 = 4 = R−5;
P−20 = 7 = −R−9 = R−15;

P−28 = 25 = R−18.

Bravo [1, Corollary 2] and our main results yield:

Corollary 2.4. There are exactly 123 solutions of Eq. (1.1) in integers n,m.

Corollary 2.5. The only common values of Padovan and Perrin sequences are
0, ±1, ±2, ±3, 4, 5,±7, 10, 12, 25, 86.

3. The Padovan and Perrin Sequences

We begin by recalling some properties of these ternary recurrence sequences.
First, their characteristic polynomial is given by Ψ(X) = X3−X−1. Denoting
its roots by ρ, β, γ, being ρ the only real root, an analytic expression of the
kth term of the Padovan and Perrin sequences can be given, respectively, by

Pk = cρρ
k + cββk + cγγk (3.1)

and

Rk = ρk + βk + γk, (3.2)

where

cρ =
7ρ2 + ρ + 3

23
, cβ =

7β2 + β + 3
23

, and cγ = cβ .

Here

ρ =
3

√
9 +

√
69

18
+

3

√
9 − √

69
18

is called the plastic constant, and it is the smallest Pisot number (see Siegel
[16]). Furthermore

β = ρ−1/2z and γ = ρ−1/2z−1, (3.3)
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where z := eiθ and θ ∈ (0, π). Numerically

1.32 < ρ < 1.33, 0.86 < |β| = |γ| = ρ−1/2 < 0.87,
0.72 < cρ < 0.73, 0.24 < |cβ | = |cγ | = (23cρ)−1/2 < 0.25.

In addition, it can be shown by induction that

ρn−2 ≤ Pn ≤ ρn−1 for all n ≥ 4, (3.4)

and

ρm−2 ≤ Rm ≤ ρm+1 for all m ≥ 2. (3.5)

The following results similar to (3.4) and (3.5) for |P−n| and |R−m| were
proved by using linear forms in logarithms by Bravo and Luca [6, Lemma 2]
and Bravo, Bravo, and Luca [2, Lemma 11], respectively:

ρ
n
2 −9.4×1015 log n < |P−n| < 0.51ρn/2 for all n ≥ 18. (3.6)

ρ
m
2 −3×1015 log m < |R−m| < 2.01ρm/2 for all m ≥ 6. (3.7)

From the result of de Weger [17, Theorem 3], it follows that the Padovan
sequence (Pk)k∈Z has five zeros (for a different proof of this result, see Bravo,
Bravo, and Luca [2, Theorem 1]). For (Rk)k∈Z, Bravo, Bravo, and Luca [2,
Corollary 3] proved that the Perrin sequence has one zero. More precisely

Pk = 0 if and only if k ∈ {−1,−3,−4,−8,−17}, (3.8)

and

Rk = 0 if and only if k = 1. (3.9)

We end this section of preliminaries on the Padovan and Perrin sequences
by mentioning that we can identify the automorphisms of the Galois group
of the splitting field K = Q(α, β) of Ψ over Q with the permutations of the
roots of Ψ, since

Gal
(
K/Q

) � {(1) , (αβ) , (αγ) , (βγ) , (αβγ) , (αγβ)} � S3.

For example, the permutation (ρβγ) corresponds to the automorphism σρβγ :
ρ → β, β → γ, γ → ρ (σρβγ : cρ → cβ , cβ → cγ , cγ → cρ).

4. Linear Forms in Logarithms

For an algebraic number α of degree d over Q with minimal primitive poly-
nomial

adX
d + ad−1X

d−1 + · · · + a0 = ad

(
X − α(1)

) · · · (X − α(d)
) ∈ Z [X] ,

we put

h(α) =
1
d

(

log(|ad|) +
d∑

j=1

max
{

log(|α(j)|), 0}
)
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for the logarithmic height of α := α(1). The following are some basic proper-
ties of this height that will be used later without reference:

h(α) = h
(
α(j)

)
,

h(α1 + α2) ≤ h(α1) + h(α2) + log 2, h
(
α1α

±1
2

) ≤ h(α1) + h(α2),

h
(
α

p
q
)

=
∣
∣p
q

∣
∣ h(α),

h
(

p
q

)
= log max{|p|, q}

(
p
q ∈ Q, q > 0, gcd(p, q) = 1

)
.

Next, we give the general lower bound for linear forms in logarithms due to
Matveev [11]. Let K be a number field of degree D over Q, let α1, . . . , αt be
non-zero elements of K, and let b1, . . . , bt be integers. Set

Λ = αb1
1 · · · αbt

t − 1 and B ≥ max {|b1|, . . . , |bt|} .

Let A1, . . . , At be real numbers, such that

Aj ≥ max
{
Dh(αj), |log α(j)|, 0.16

}
, 1 ≤ j ≤ t.

With this notation, the main result of Matveev [11] implies the following
estimate.

Theorem 4.1. If Λ �= 0 and K ⊆ C, we have

|Λ| > exp
( − 3 · 30t+4(t + 1)5.5D2A1 · · · At(1 + log D)(1 + log(tB))

)
.

5. Reduction Tools

Next, we remind the Baker–Davenport reduction method from Bravo, Gómez,
and Luca [5, Lemma 1], which is an immediate variation of a result due to
Dujella and Pethő [7, Lemma 5(a)], which turns out to be useful to reduce
the bounds arising from applying Theorem 4.1.

Lemma 5.1. Suppose that M is a positive integer. Let p/q be a convergent of
the continued fraction of κ, such that q > 6M . Let A,B, μ be real numbers
with A > 0 and B > 1. Set ε = ‖μq‖−M ‖κq‖, where ‖·‖ denotes the distance
from the nearest integer. If ε > 0, then there is no solution of the inequality

0 < |sκ − r + μ| < AB−w

in positive integers r, s, w, with s ≤ M and w ≥ log (Aq/ε)/ log B.

The above Lemma 5.1 cannot be applied when μ = 0, since then ε < 0.
In this case, we use the following result well known in the theory of continued
fractions. A proof of it follows from Hardy and Wright [9, Theorem 150,
Theorem 182].

Lemma 5.2. Let p0/q0, p1/q1, . . . be the convergents of the continued fraction
[a0, a1, . . .] of the irrational number κ. Let M be a positive integer and put
aM = max{aj : 0 ≤ j ≤ N +1}, where N is a non-negative integer, such that
qN ≤ M < qN+1. If r, s ∈ Z, then

∣
∣
∣
∣κ − r

s

∣
∣
∣
∣ >

1
(aM + 2)s2

for all 0 < s < M.
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6. The Proof of Theorem 2.1

Assume that n ≥ 18 and m ≥ 2. Using (3.5) and (3.6) in Eq. (2.1), we get

ρ
n
2 −9.4×1015 log n < |P−n| = |±Rm| = Rm ≤ ρm+1.

Taking logarithms in the inequality that results above, we obtain

n − 2m < 1.88 × 1016 log n.

On the other hand, it also follows from (3.5) and (3.6) in equation (2.1) that:

ρm−2 ≤ Rm = |±Rm| = |P−n| < 0.51ρn/2.

Taking logarithms in the resulting inequality above, we get

n − 2m > 0.789087.

We recorded what we just showed.

Lemma 6.1. If (n,m) is a solution of Eq. (2.1) with n ≥ 18 and m ≥ 2, then
n − 2m ∈ [

1, 1.88 × 1016 log n
)
.

On using now (3.1), (3.2), and (3.3) in Eq. (2.1) with ε := ±1, we get

ρm
(
cβρ(n−2m)/2z−n + cγρ(n−2m)/2zn − ε

)
= ε(βm + γm) − cρρ

−n. (6.1)

However

cβρ
n−2m

2 z−n + cγρ
n−2m

2 zn − ε = cγρ
n−2m

2 z−n

(
z2n − ε

cγρ
n−2m

2

zn +
cβ

cγ

)

= cγρ(n−2m)/2z−n(zn − y1)(zn − y2),

where y1, y2 are the roots of the trinomial

y2 − ε

cγρ(n−2m)/2
y +

cβ

cγ
. (6.2)

From (6.1), we get then that

cγρn/2z−n(zn − y1)(zn − y2) = ε(βm + γm) − cρρ
−n.

Dividing the above equation by cγρn/2 and taking absolute value, we get

|(zn − y1)(zn − y2)| <
6.6
ρn/2

. (6.3)

Now, we use Theorem 4.1 for |Λ1| := |zn − y1| = |y1z−n − 1|. The lower
bound we obtain for |Λ1| is the same as the one we would obtain for |Λ2|
with Λ2 := zn − y2 since h(y1) = h(y2). We put

α1 := y1 =
εc−1

γ ρ(2m−n)/2 +
√

c−2
γ ρ2m−n − 4cβc−1

γ

2
, α2 := z, b1 := 1,

and b2 := −n. Note that α1, α2 ∈ K := Q

(√
ρ, β,

√
c−2
γ ρ2m−n − 4cβc−1

γ

)
.

Let L = Q
(√

ρ, β
)
. Then, we have K = L

(√
c−2
γ ρ2m−n − 4cβc−1

γ

)
. Thus,

D =
[
K : Q

]
=

[
K : L

][
L : Q

] ≤ 2(12) = 24, and as n ≥ 18 we take B := n.
Additionally, it is a straightforward exercise to check that

h(yi) ≤ h(b) + h(c) + log 2, i = 1, 2, (6.4)
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where y1, y2 are the roots of the trinomial y2 + by + c ∈ C[y]. If b =
−ε/cγρ(n−2m)/2 and c = cβ/cγ , then h(α1) ≤ |n−2m|

2 h(ρ) + 3h(cβ) + log 2 <

8.9 × 1014 log n, where we used the facts that |n − 2m| < 1.88 × 1016 log n
by Lemma 6.1, h(ρ) = (log ρ)/3, and h(cβ) = h(cγ) = (log 23)/3. Therefore,
we take A1 := 2.14 × 1016 log n. Furthermore, h(α2) = 1

2h(β/γ) ≤ (log ρ)/3,
since z =

√
β/γ by (3.3). Therefore, we take A2 := 8 log ρ. It remains to

show that Λ1 is non-zero. If so, then, from (6.1), we get

ερm = cββ−n + cγγ−n.

Conjugating the above relation by the automorphism σρβγ , and then taking
absolute value on both sides of the resulting equality, we get

|cγ |ρn/2 ≤ ρ−m/2 + cρρ
−n,

which is impossible for any n ≥ 9 and m ≥ 2. Thus, Λ1 �= 0. In addition, the
proof that Λ2 �= 0 is the same as Λ1 �= 0. Now, Theorem 4.1 implies that

exp
(−3.42 × 1032 log2 n

)
< |(zn − y1)(zn − y2)|,

where we used the fact that 1+ log(2n) < 1.6 log n for all n ≥ 18. Comparing
(6.3) and the above last inequality, and then taking logarithms, we get

n < 2.5 × 1033 log2 n,

and therefore, n < 1.8 × 1037. We record what we have shown so far.

Lemma 6.2. If (n,m) is a solution of Eq. (2.1) with n ≥ 18 and m ≥ 2, then
n < 1.8 × 1037.

We begin with the reduction of the bound of n − 2m. Using (3.1), we
get

|P−n| = |cββ−n + cγγ−n|
∣
∣
∣
∣1 +

cρρ
−n

cββ−n + cγγ−n

∣
∣
∣
∣

= |cβ ||β|−n

∣
∣
∣
∣1 +

cγ

cβ

(
γ

β

)−n∣
∣
∣
∣

∣
∣
∣
∣1 +

cρρ
−n

cββ−n + cγγ−n

∣
∣
∣
∣

> 0.24ρn/2

∣
∣
∣
∣1 +

cγ

cβ

(
β

γ

)n∣
∣
∣
∣

∣
∣
∣
∣
∣
1 −

∣
∣
∣
∣

cρρ
−n

cββ−n + cγγ−n

∣
∣
∣
∣

∣
∣
∣
∣
∣

> 0.23972ρn/2

∣
∣
∣
∣
cγ

cβ

(
β

γ

)n

+ 1
∣
∣
∣
∣. (6.5)

In the above, we have also used that |cρρ
−n/(cββ−n + cγγ−n)| < 1.14506 ×

10−3 for all n ≥ 18, which follows by (3.8), since:

|cββ−n + cγγ−n| = |P−n − cρρ
−n| ≥ |P−n| − cρρ

−n

≥ 1 − cρρ
−n > 873.31cρρ

−n.

Combining (2.1), (6.5) and the fact that Rm ≤ ρm+1 for all m ≥ 2 by (3.5),
we obtain

∣
∣
∣
∣
cγ

cβ

(
β

γ

)n

+ 1
∣
∣
∣
∣ <

5.6
ρ(n−2m)/2

. (6.6)
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However, (β/γ)n = e2inθ by (3.3). Likewise, cγ/cβ = e2iω with ω ∈ (0, 2π).
Therefore, (6.6) becomes

∣
∣ei(2nθ+π+2ω) − 1

∣
∣ <

5.6
ρ(n−2m)/2

. (6.7)

Let r = �(2nθ + π + 2ω)/π�. Then, 2nθ + π + 2ω − rπ ∈ [−π/2, π/2]. Hence

|ei(2nθ+π+2ω) + 1| ≥ |sin(2nθ + π + 2ω)| ≥ 2
∣
∣
∣
∣
2nθ

π
− (r − 1) +

2ω

π

∣
∣
∣
∣, (6.8)

where we used that

|sin y| = sin|y| ≥ (2/π)|y| for all y ∈ [−π/2, π/2] . (6.9)

Thus, we can conclude from inequalities (6.7) and (6.8) that
∣
∣
∣
∣
2nθ

π
− (r − 1) +

2ω

π

∣
∣
∣
∣ < 2.8ρ−(n−2m)/2. (6.10)

We put

κ := 2θ/π, μ := 2ω/π, A := 2.8, and B :=
√

ρ.

We also put M = 1.8 × 1037, which is an upper bound for n by Lemma 6.2.
It then follows from Lemma 5.1 applied to inequality (6.10) that:

n − 2m < log (Aq73/ε)/ log B < 647.949,

where q73 = 209509831018529557470433975207606463797 is the denominator
of the first convergent of the continued fraction of κ, such that q73 > 6M and
ε > 0.159775. Thus, n−2m ≤ 647. If we repeat the argument after Lemma 6.1
until the upper bound for n with this new bound for n−2m, we have to replace
only A1 by 820, and we get n < 9.31×1019 log n which gives n < 4.64×1021.
Now, we apply Lemma 5.1 to inequality (6.10) with M = 4.64 × 1021. In
this case with q41 = 56787231118705906647120, we obtain that q41 > 6M ,
ε > 0.404707 and then n − 2m ≤ 386. From the above and Lemma 6.1, we
get that n − 2m ∈ [1, 386].

Next, we reduce the bound of n. If n − 2m ∈ [1, 5], then the trinomial
(6.2) has complex roots, such that |y1| > 1 and |y2| < 1 or |y1| < 1 and
|y2| > 1. In any case, we obtain from (6.3) that

|y1| + |y2| − |y1y2| − 1 ≤ |(zn − y1)(zn − y2)| < 6.6ρn/2.

Taking logarithms in the resulting inequality above, we get

n <
2 log (6.6/(|y1| + |y2| − |y1y2| − 1))

log ρ
.

The maximum value of the right-hand side of the above inequality is reached
at n − 2m = 5. In this case, |y1|, |y2| ∈ {1.142280483 . . . , 0.8754417278 . . .},
and therefore, n < 42.1054. So that n ≤ 42 for all n − 2m ∈ [1, 5].

From now on, we assume that n − 2m ∈ [6, 386]. Since

|(zn − y1) − (zn − y2)| =
∣
∣
∣
√

c−2
γ ρ2m−n − 4cβc−1

γ

∣
∣
∣,
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it follows that |zn − yj | ≥ c1/2 for some j ∈ {1, 2} where:

c1 := min
{∣

∣
∣
√

c−2
γ ρ2m−n − 4cβc−1

γ

∣
∣
∣ : n − 2m ∈ [6, 386]

}
.

We now explain the calculations only in the case j = 2; namely, when |zn −
y2| > c1/2, since for j = 1, they are similar. Then, by (6.3), we obtain

|zn − y1| <
13.2

c1ρn/2
.

Now, we write y−1
1 = eiφn−2m where φn−2m ∈ (0, 2π), since the trino-

mial (6.2) has complex roots with modulus 1 for all n − 2m ∈ [6, 386].
Dividing both sides of the above inequality by |y1| and using that c1 =∣
∣
∣
√

c−2
γ ρ−6 − 4cβc−1

γ

∣
∣
∣ > 0.9626732778, we get that

∣
∣ei(nθ+φn−2m) − 1

∣
∣ <

14
ρn/2

. (6.11)

Put r := �(nθ + φn−2m)/π�. Then, nθ + φn−2m − rπ ∈ [−π/2, π/2] and by
(6.9), we get

∣
∣ei(nθ+φn−2m) − 1

∣
∣ ≥ |sin(nθ + φn−2m)| ≥ 2

∣
∣
∣
∣
nθ

π
− r +

φn−2m

π

∣
∣
∣
∣,

which together with (6.11) implies that

|nκ − r + μn−2m| < AB−n, (6.12)

where

κ := θ/π, μn−2m := φn−2m/π, A := 7, and B :=
√

ρ.

Note that n < M := 4.64 × 1021. Here, we applied Lemma 5.1 to in-
equality (6.12) for each n − 2m ∈ [6, 386]. By means of a computational
search, we find that q46 = 2340639420725066129293050 is the denominator
of the first convergent of the continued fraction of κ, such that q46 > 6M ,
min{ε : n − 2m ∈ [6, 386]} > 1.27921 × 10−4 and the maximum value of
log (Aq46/ε)/ log B is < 444.158. Thus, n ≤ 444 for all n − 2m ∈ [6, 386].

In summary, in any case, we have proved the following result.

Lemma 6.3. All solutions (n,m) of Eq. (2.1) are in the range n ≤ 444 and
m ≤ 221.

A computational search shows that the 24 pairs (n,m) given in Theo-
rem 2.1 are the only solutions of Eq. (2.1) in the range given in Lemma 6.3.
This completes the proof of Theorem 2.1.

7. The Proof of Theorem 2.2

This proof follows to a large extent the line of argument set out in the previous
proof of Theorem 2.1. We omit some details. Using (3.4) and (3.7) in Eq. (2.2),
we establish the following result.
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Lemma 7.1. If (n,m) is a solution of Eq. (2.2) with n ≥ 4 and m ≥ 6, then
m − 2n ∈ [−8, 6 × 1015 log m

)
.

Now, we use (3.1), (3.2), and (3.3) in Eq. (2.2) with ε := ±1, which
gives us that

cρρ
n − ε(ρm/2z−m + ρm/2zm) = ερ−m − (cββn + cγγn). (7.1)

Dividing the above equation by cρρ
n and taking absolute value, we get that

∣
∣ε(c−1

ρ ρ(m−2n)/2z−m + c−1
ρ ρ(m−2n)/2zm) − 1

∣
∣ <

0.65
ρn

. (7.2)

Note that

ε(c−1
ρ ρ

m−2n
2 z−m + c−1

ρ ρ
m−2n

2 zm) − 1 = εc−1
ρ ρ

m−2n
2 z−m(zm − y1)(zm − y2),

where y1, y2 are the roots of the trinomial

y2 − cρ

ερ(m−2n)/2
y + 1. (7.3)

Thus, (7.2) implies that

|(zm − y1)(zm − y2)| <
0.47
ρm/2

. (7.4)

We apply Theorem 4.1 with the choices

α1 := y1 =
εcρρ

(2n−m)/2 +
√

c2ρρ
2n−m − 4

2
, α2 := z, b1 := 1,

and b2 := −m. Here α1, α2 ∈ K = Q

(√
ρ, β,

√
c2ρρ

2n−m − 4
)
. As in the first

application of Theorem 4.1, we take D ≤ 24, A2 = 8 log ρ, and the proof that
Λ3 := αb1

1 αb2
2 −1 �= 0 is similar to proof Λ1 �= 0 using (7.1) instead of (6.1). We

also take A1 = 6.96×1015 log m, since h(α1) < 1
6 |m−2n| log ρ+h(cρ)+log 2 <

2.9×1014 log m by (6.4), Lemma 7.1, and the facts that h(ρ) = (log ρ)/3 and
h(cρ) = (log 23)/3. Summarizing we get

exp (−3.46838 × 1031 log m(1 + log (2m))) < |zm − yi|
for i = 1, 2 since h(y1) = h(y2). Moreover, the proof that Λ4 := y2z

−m−1 �= 0
is the same as Λ3 �= 0. Thus

exp (−6.93675 × 1031 log m(1 + log (2m))) < |(zm − y1)(zm − y2)|. (7.5)

Combining (7.4), (7.5) and the fact that 1+log (2m) < 2 log m for all m ≥ 6,
we obtain in summary the following result.

Lemma 7.2. If (n,m) is a solution of Eq. (2.2) with n ≥ 4 and m ≥ 6, then
m < 7.1 × 1036.

Using (3.2) and the fact that
∣
∣ρ−k/

(
β−k+γ−k

)∣∣ < (ρ−1)−1 for all k ≥ 1
(which follows by (3.9), since

∣
∣β−k + γ−k

∣
∣ =

∣
∣R−k − ρ−k

∣
∣ ≥ |R−k| − ρ−k ≥

1 − ρ−k > (ρ − 1)ρ−k), we have

|R−k| > 2ρk/2

∣
∣
∣
∣

(
β

γ

)k

+ 1
∣
∣
∣
∣. (7.6)
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Now, we use that Pn ≤ ρn−1 for all n ≥ 4 (by (3.4)) on the left-hand side of
(2.2), and (7.6) with k = m on the right-hand side. The above is to reduce
m − 2n as we did with n − 2m in the proof of Theorem 2.1. This time we
obtain

∣
∣
∣
∣
θ

π
− r

m

∣
∣
∣
∣ <

0.1
ρ(m−2n)/2m

, (7.7)

where now r := �mθ/π�. Next, we apply Lemma 5.2. We put κ = θ/π, and
compute its continued fraction [a0, a1, . . .] = [0, 1, 3, 2, 6, 3, 25, 1, 1, 7, 1, . . .],
and its convergents

{
pj

qj
: j = 0, 1, . . .

}
=

{
0, 1,

3
4
,

7
9
,

45
58

,
142
183

,
3595
4633

, . . .

}
.

Furthermore, we note that m < 7.1×1036 := M according to Lemma 7.2, and
it follows that q68 < M < q69 and aM = max {aj : 0 ≤ j ≤ 69} = a11 = 3550.
Then, by Lemma 5.2, we have that

∣
∣
∣
∣
θ

π
− r

m

∣
∣
∣
∣ >

1
3552m2

. (7.8)

Hence, combining the inequalities (7.7) and (7.8) and taking into account
that m < 7.1 × 1036 by Lemma 7.2, we obtain

m − 2n <
2 log

(
0.1 · 3552 · 7.1 × 1036

)

log ρ
< 645.277.

Repeating the argument after Lemma 7.1 up to the upper bound for m
with this new bound for m − 2n, we have to substitute only A1 for 728,
and we get m < 5.2 × 1021. We now repeat the reduction of m − 2n using
Lemma 5.2 again now with M = 5.2 × 1021. This time, q39 < M < q40 so
aM = max {aj : 0 ≤ j ≤ 40} = a11 = 3550 and we arrive again at (7.8). Com-
bining (7.7) and (7.8) with this new bound for m, we get that m− 2n ≤ 397.
From the above and Lemma 7.1, we have that m − 2n ∈ [−8, 397].

Next, we reduce the bound of m when m−2n = −8. In this case, the tri-
nomial (7.3) has real roots, such that |y1|, |y2| ∈ {1.598113 . . . , 0.625738 . . .}.
From (7.4), it follows that:

(1 − |y2|)(|y1| − 1) ≤ |(zm − y1)(zm − y2)| <
0.47
ρm/2

;

therefore

m <
2 log (0.47/(1 − |y2|)(|y1| − 1))

log ρ
< 5.27562.

Now, we reduce the bound of m when m − 2n ∈ [−7, 397]. As

c2 := min
{∣

∣
∣
√

c2ρρ
2n−m − 4

∣
∣
∣ : m − 2n ∈ [−7, 397]

}
=

∣
∣
∣
√

c2ρρ
7 − 4

∣
∣
∣ > 0.5164

and
∣
∣(zm −y1)−(zm −y2)

∣
∣ =

∣
∣
∣
√

c2ρρ
2n−m − 4

∣
∣
∣, we have that

∣
∣zm −yj

∣
∣ ≥ c2/2

for some j ∈ {1, 2}. If j = 2, then we divide both sides of the resulting
inequality in (7.4) by |y1| = 1 and we write y−1

1 = eiζm−2n with ζm−2n ∈
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(0, 2π), since the trinomial (7.3) has complex roots with modulus 1 for all
m − 2n ∈ [−7, 397], so that

∣
∣ei(mθ+ζm−2n) − 1

∣
∣ <

1.9
ρm/2

.

Similar to the case of the reduction of n in the proof of Theorem 2.1, we
succeed in transforming the above inequality to

|mκ − r + μm−2n| < AB−m, (7.9)

where now

κ := θ/π, r := �(mθ + ζm−2n)/π� , μm−2n := ζm−2n/π, A := 1,

and B :=
√

ρ. Note that m < M := 5.2× 1021, and we applied Lemma 5.1 to
inequality (7.9) for each m−2n ∈ [−7, 397]. This time, we find through a com-
putational search that q45 = 862020269673771307850593 is the denominator
of the first convergent of the continued fraction of κ, such that q45 > 6M ,
min{ε : m − 2n ∈ [−7, 397]} = ‖μ43q45‖ − M ‖κq45‖ > 1.28279 × 10−3 and
the maximum value of log(Aq45/ε)/ log B is < 419.195.

In any case we have shown the following result.

Lemma 7.3. All solutions (n,m) of Eq. (2.2) are in the range n ≤ 213 and
m ≤ 419.

By a computational search, we find that the only common values be-
tween Pn and ±R−m for m ∈ [0, 419] and n ∈ [0, 213] are those recorded in
the statement of Theorem 2.2. The proof of Theorem 2.2 is now complete.

8. The Proof of Theorem 2.3

The Case m ≥ n

Suppose that n ≥ 18 and m ≥ 6. Using (3.6) and (3.7) in Eq. (2.3), we have

ρ
m
2 −3×1015 log m < |±R−m| = |P−n| < 0.51ρn/2.

Taking logarithms in the resulting inequality above, we get

m − n < 6 × 1015 log m. (8.1)

Using now (3.1), (3.2), and (3.3) in Eq. (2.3) with ε := ±1, we get

cβρ
n
2 z−n

(
ερ

m−n
2 zn−m

cβ
− 1

)
+ cγρ

n
2 zn

(
ερ

m−n
2 zm−n

cγ
− 1

)
=

cρ

ρn
− ε

ρm
.

(8.2)

Dividing the above equation by ρn/2 and taking absolute value, we obtain
∣
∣cβz−n

(
εc−1

β ρ(m−n)/2zn−m − 1
)

+ cγzn
(
εc−1

γ ρ(m−n)/2zm−n − 1
)∣∣ <

2
ρ3n/2

,

so ∣
∣
∣
∣
∣
cβ

cγ
z−2n

(
1 − εc−1

β ρ(m−n)/2zn−m

εc−1
γ ρ(m−n)/2zm−n − 1

)

− 1

∣
∣
∣
∣
∣
<

3
ρ3n/2

, (8.3)
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where we have used the fact that
∣
∣cγzn

(
εc−1

γ ρ(m−n)/2zm−n−1
)∣∣ ≥ ∣

∣ρ(m−n)/2−
|cγ |∣∣ ≥ 1−|cγ | for all m−n ≥ 0. We apply Theorem 4.1 with the parameters

α1 :=
cβ

cγ
, α2 := z2, α3 :=

1 − εc−1
β ρ(m−n)/2zn−m

εc−1
γ ρ(m−n)/2zm−n − 1

, b1 = b3 := 1,

and b2 := −n. We take K := Q
(√

ρ, β
)
, so D = 12. We also take B := m

since m ≥ n. Note that h(α1) = h((cγ/cβ)−1) = h(cγ/cβ) ≤ 2
3 log 23, so

A1 := 8 log 23 is a correct choice. We already knew that h(z) ≤ (log ρ)/3, so
h(α2) ≤ (2 log ρ)/3 and we chose A2 = 8 log ρ. Now, let us estimate h(α3).
We have

h(α3) ≤ h
(
1 − εc−1

β ρ(m−n)/2zn−m
)

+ h
(
εc−1

γ ρ(m−n)/2zm−n − 1
)

≤ |m − n|(h(ρ) + h(z2)) + 2h(cβ) + 2 log 2

≤ (m − n) log ρ + 2
3 log 23 + 2 log 2

< 1.7 × 1015 log m,

where we have used (8.1) and the facts h(cβ) = h(cγ) = (log 23)/3, h(ρ) =
(log ρ)/3, and h

(
z2

) ≤ (2 log ρ)/3. Therefore, we can take A3 := 2.04 ×
1016 log m. Finally, let us prove that Λ5 := αb1

1 αb2
2 αb3

3 − 1 is non-zero. Well,
if it were, then

cβρ
n
2 z−n

(
εc−1

β ρ
m−n

2 zn−m − 1
)

+ cγρ
n
2 zn

(
εc−1

γ ρ
m−n

2 zm−n − 1
)

= 0.

This implies by (8.2) that cρρ
−n−ερ−m = 0. From here, n−m = (log cρ)/ log ρ,

which is not possible. Thus, Λ5 �= 0. Now, Theorem 4.1 and the fact that
1 + log(3m) < 2.2 log m for all m ≥ 6 imply that

exp
( − 1.707 × 1035 log2 m

)
<

∣
∣
∣
∣
∣
cβ

cγ
z−2n

(
1 − εc−1

β ρ
(m−n)

2 zn−m

εc−1
γ ρ

(m−n)
2 zm−n − 1

)

− 1

∣
∣
∣
∣
∣
.

(8.4)

Combining (8.3) and (8.4), and then taking logarithms in the resulting in-
equality, we get

3n
2 log ρ − log 3 < 1.707 × 1035 log2 m.

From the above inequality, we have n < 4.1×1035 log2 m. Thus, by (8.1), one
obtains that m < 4.2 × 1035 log2 m, which leads to m < 3.48 × 1039. Let us
record what we just proved.

Lemma 8.1. If (n,m) is a solution of Eq. (2.3) with m ≥ max{n, 18}, then
m < 3.48 × 1039.

We begin with the reduction of the upper bound of m − n. Combining
(2.3), (7.6) and inequality |P−n| < 0.51ρn/2 for all n ≥ 18 (by (3.6)), and
proceeding as in the reduction of m − 2n in the proof of Theorem 2.2, we
obtain

∣
∣
∣
∣
θ

π
− r

m

∣
∣
∣
∣ <

0.1
mρ(m−n)/2

, (8.5)
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where r := �mθ/π�. On using Lemma 5.2 with M := 3.48 × 1039, which is
an upper bound for m by Lemma 8.1, we get the same inequality (7.8). By
combining (7.8) and (8.5) and using Lemma 8.1, we get that

m − n <
2 log

(
0.1 · 3552 · 3.48 × 1039

)

log ρ
< 689.336.

Now, we find again an absolute upper bound for m using this absolute upper
bound for m − n. To do so, we repeat the procedure described after (8.1)
and before Lemma 8.1. All parameters are the same except A3 which is now
2367. Thus, m < 2.64 × 1024. By repeating the previous reduction for m − n
with this new upper bound for m, we get that m − n ≤ 441. Therefore,
m − n ∈ [0, 441]. Next, we reduce the bound of m. Let

z′ :=
1 − εc−1

β ρ(m−n)/2zn−m

εc−1
γ ρ(m−n)/2zm−n − 1

.

Note that z′ is a complex number with |z′| = 1, since cβ = cγ , z = z−1, and
ρ ∈ R. Thus, z′ = eiϕm−n with ϕm−n ∈ (0, 2π) for each m − n ∈ [0, 441].
Then, (8.3) becomes

∣
∣ei(−2nθ+ϕm−n−2ω) − 1

∣
∣ <

3
ρ3n/2

.

Similar to the case of the reduction of n in the proof of Theorem 2.1, using
(6.9), we manage to convert the above inequality into

|nκ − r + μm−n| < AB−m, (8.6)

where now r := �(−2nθ + ϕm−n − 2ω)/π�,
κ := −2θ/π, μm−n := (ϕm−n − 2ω)/π, A := 1.5, and B := ρ3/2.

Note that n ≤ m < M := 2.64 × 1024. This time, applying Lemma 5.1 to
inequality (8.6) for each m−n ∈ [0, 441], we find computationally that q47 =
3426387812500808051528229268 is the denominator of the first convergent of
the continued fraction of κ, such that q47 > 6M , the minimum value of ε is
> 3.6782 × 10−4 and the maximum value of log(Aq47/ε)/ log B is < 170.021.

In short, we have showed the following.

Lemma 8.2. If (n,m) is a solution of Eq. (2.3) with m ≥ n, then m ≤ 170.

The Case n > m

Suppose that n ≥ 18 and m ≥ 6. Using (3.6) and (3.7) in Eq. (2.3) and taking
logarithms in the resulting inequality, we obtain

n − m < 2.6 × 1016 log n. (8.7)

Using now (3.1), (3.2), and (3.3) in Eq. (2.3) with ε := ±1, we get

ρm/2z−m
(
cβρ

n−m
2 zm−n − ε

)
+ ρm/2zm

(
cγρ

n−m
2 zn−m − ε

)
= ερ−m − cρρ

−n.

Dividing the above equation by ρm/2 and taking absolute value, we obtain
∣
∣z−m

(
cβρ(n−m)/2zm−n − ε

)
+ zm

(
cγρ(n−m)/2zn−m − ε

)∣∣ <
2

ρ3m/2
,
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so
∣
∣
∣
∣
∣
z−2m

(
ε − cβρ(n−m)/2zm−n

cγρ(n−m)/2zn−m − ε

)

− 1

∣
∣
∣
∣
∣
<

1942
ρ3m/2

, (8.8)

where we have used the fact that
∣
∣cγρ(n−m)/2zn−m−ε

∣
∣ ≥ ∣

∣|cγ |ρ(n−m)/2−1
∣
∣ ≥∣

∣|cγ |ρ5 − 1
∣
∣ for all n − m > 0. We apply Theorem 4.1 with the parameters

α1 := z, α2 :=
ε − cβρ(n−m)/2zm−n

cγρ(n−m)/2zn−m − ε
, b1 := −2m, and b2 := 1.

We take K := Q
(√

ρ, β
)
, so D = 12. We also take B := 2n, since n > m. We

know that h(α1) ≤ (log ρ)/3, so A1 := 4 log ρ is a correct choice. On other
hand, it can be seen that h(α2) < (n−m) log ρ+(2 log 23)/3+2 log 2, using the
facts h(cβ) = h(cγ) = (log 23)/3, h(ρ) = (log ρ)/3, and h

(
z2

) ≤ (2 log ρ)/3.
Therefore, we can take A2 := 8.88 × 1016 log n by (8.7). Now, Theorem 4.1
and the fact that 1 + log(4n) < 1.9 log n for all n ≥ 18 imply that

exp
( − 8.76618 × 1031 log2 n

)
<

∣
∣
∣
∣
∣
z−2m

(
ε − cβρ

(n−m)
2 zm−n

cγρ
(n−m)

2 zn−m − ε

)

− 1

∣
∣
∣
∣
∣
. (8.9)

Combining (8.8) and (8.9), and then taking logarithms in the resulting in-
equality, we obtain after some calculations using (8.7) the following result.

Lemma 8.3. If (n,m) is a solution of Eq. (2.3) with n > max{m, 6}, then
n < 1.52 × 1036.

We begin with the reduction of the upper bound of n − m. Combining
(2.3), (6.5) and inequality |R−m| < 2.01ρm/2 for all m ≥ 6 (by (3.7)), and
proceeding as in the reduction of n − 2m in the proof of Theorem 2.1, we
obtain

∣
∣
∣
∣
nθ

π
− r +

ω

π

∣
∣
∣
∣ < 2.1ρ−(n−m)/2, (8.10)

where r := �(nθ + ω)/π�. We put M = 1.52 × 1036, which is an upper bound
for n by Lemma 8.3. It then follows from Lemma 5.1 applied to inequality
(8.10) that:

n − m < log(Aq69/ε)/ log B < 625.594,

where q69 = 28053414776062526249173714612539009521 is the denominator
of the first convergent of the continued fraction of θ/π such that q69 > 6M
and ε > 0.371861. Now, we repeat the arguments used before Lemma 8.3 to
find again an absolute upper bound for n with the help of the new upper
bound we have for n − m. In this reduction, we just change A2 to 2151 and
get that n < 2.4 × 1020. Now, we reduce again to n − m with the help of
Lemma 5.1 taking into account that n < M = 2.4 × 1020. In this application
of Lemma 5.1, it suffices to take q37 = 1788537343925558655409 to satisfy
that q37 > 6M , ε > 0.128786 and we arrive at n − m ≤ 367. Therefore,
n − m ∈ [1, 367].
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Next we reduce the bound of n. Put

z′ :=
ε − cβρ(n−m)/2zm−n

cγρ(n−m)/2zn−m − ε
.

Note that z′ ∈ C with |z′| = 1, since cβ = cγ , z = z−1, and ρ ∈ R. Thus,
z′ = eiλm−n with λm−n ∈ (0, 2π) for each n − m ∈ [1, 367]. Then, (8.8)
becomes

∣
∣ei(−2mθ+λm−n) − 1

∣
∣ <

1942
ρ3m/2

.

In a similar way as in the case of the reduction of n in the proof of Theo-
rem 2.1, we manage to transform the previous inequality into

|mκ − r + μm−n| < AB−n, (8.11)

where now r := �(−2mθ + λm−n)/π�
κ := −2θ/π, μm−n := λm−n/π, A := 971, and B := ρ3/2.

Here, m < n < M := 2.4 × 1020. This time, applying Lemma 5.1 to in-
equality (8.11) for each n − m ∈ [1, 367], we find computationally that
q42 = 62878052392513962537203 is the denominator of the first convergent
of the continued fraction of κ, such that q42 > 6M , the minimum value of ε
is > 1.18018 × 10−3 and the maximum value of log(Aq42/ε)/ log B is 150.

In short, we have showed the following.

Lemma 8.4. If (n,m) is a solution of Eq. (2.3) with n > m, then n ≤ 150.

From Lemmas 8.2 and 8.4, it is sufficient to look for coincidences be-
tween P−n and ±R−m for max{n,m} ≤ 170. By means of a computational
search, we find those given in Theorem 2.3. This ends the proof of Theo-
rem 2.3.
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