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Abstract. In this work, we analyze a strategy for solving symmetric alge-
braic Riccati equation based on the use of efficient high-order iterative
scheme. This iterative scheme is more efficient than Newton’s method.
Then, we propose two iterative two-stage predictor–corrector schemes
using an iterative scheme with good accessibility as the predictor iter-
ation and a high-order iterative scheme as the corrector iteration. The
iterative schemes constructed turn out to be competitive compared to
the commonly used Newton’s method. The efficiency of these methods
is illustrated by a numerical example.
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1. Introduction

The study of algebraic Riccati equation (ARE) is motivated by the important
role played in many applications from different areas, such as optimal filter
design and control theory [20], queueing models [23], numerical solutions of
the transport theory [14], problems with or without symmetric constraints,
etc. The algebraic Riccati equation is given by ([18]):

R(X) := XDX − XA − BX − C = 0, (1)

where X ∈ C
m×n is the unknown, and the coefficients are A ∈ C

n×n,
B ∈ C

m×m, D ∈ C
n×m and C ∈ C

m×n. Equation (1) is known as the non-
symmetric algebraic Riccati equation (NARE), which is distinguished from
the symmetric one:

R(X) := XDX − XA − A∗X − C = 0, (2)
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where A∗ denotes the transpose conjugate of the matrix A. The symmetric
term refers to a matrix equation R(X) = 0 such that R(X)∗ = R(X∗). In
particular, Eq. (1) turns to a symmetric equation if A = B∗, D = D∗ and
C = C∗. Besides, if m = n, then Eq. (2) is known as a continuous-time
algebraic Riccati equation (CARE). In this case, the solution X of interest
is a Hermitian matrix. A typical problem where a (CARE) appears involved
is the linear-quadratic optimal control problems.

In the literature can be found different techniques for solving these equa-
tions. Many papers dedicated to solve ARE equations are based on alge-
braic techniques and theory of matrices, see for instance [19] where the Schur
method was introduced. And, other techniques like the use of the hierarchi-
cal matrices for solving large scale Riccati equations, see [10]. In fact, in the
large and sparse case, it is a common approach to use Newton’s method to
find a solution of (2), see for instance [7,8,12,16,21,24] and references given
therein.

For solving (CARE), at every Newton step, a Lyapunov equation ( [18])
must be solved:

LF (X) = XF + F ∗X = W,

where F and W are given matrices.
In this work, we analyze a strategy for solving symmetric algebraic

Riccati equation based on the use of efficient high-order iterative scheme
[3,6]. We propose two iterative two-stage predictor–corrector schemes [17]
using an iterative scheme with good accessibility as the predictor iteration
and a high-order iterative scheme as the corrector iteration which accelerates
the convergence. An advantage of this strategy is that at every step, the
matrix of the Lyapunov equations which must be solved, is the same. Thus,
the use of this iterative scheme reduce the number of iterations and hence
the total amount of work.

Throughout the work, we suppose the pair (A,D) is stabilizable, that
is a (feedback) matrix K ∈ R

n×n exists such that all eigenvalues of A − DK
are in the open left half-plane. Note that the matrix K can be chosen to be
symmetric if the matrix D is symmetric (see [18]). Under these conditions, the
existence of Hermitian solutions X of (2) can be characterized using spectral

properties of the matrix
(−A D

C A∗

)
, see [18].

For this, we denote H the set of Hermitian matrices in R
n×n. For any

matrix, norm H is a Banach space, and R is a mapping from H into itself.
From now on, we denote by ‖ · ‖ a general norm in the set of Hermitian
matrices. Then, the first Frèchet derivative of R at a matrix X ∈ H is a
linear map R′(X) : H → H, given by

R′(X)E = E(DX − A) + (DX − A)∗E, E ∈ H. (3)

Also, the second derivative at X ∈ H, is a bilinear map R′′(X) : H×H → H,
given by

R′′(X)E1E2 = E1DE2 + E2DE1, E1, E2 ∈ H.
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One of the most well-known iterative schemes for solving Eq. (2) is the
Newton method [1,15]:⎧⎪⎨

⎪⎩
X0 given,

R′(Xn)Ln = −R(Xn),

Xn+1 = Xn + Ln, n ≥ 0.

(4)

Thus, taking into account (3), to approximate a solution of equation (2)
via the Newton method is equivalent to solve the Lyapunov equation:

Xn+1(A − DXn) + (A − DXn)∗Xn+1 = −H(Xn) − C,

where H : H → H is the operator H(X) = XDX.
Our main aim is to approximate a solution of the equation (2), improv-

ing the results obtained by the classic Newton’s method. To do this, first,
we think of an iterative scheme that improves the quadratic speed of con-
vergence that Newton’s method has. But, obviously, this is not enough, we
must consider an iterative scheme with reduced operational cost thus, it is
more efficient than Newton’s method. Thus, we consider the M5 method [4]
that has local fifth order of convergence and reduced operational cost. In fact,
we prove that it is a more efficient iterative scheme than Newton’s method.
However, when choosing an iterative scheme, in addition to its speed of con-
vergence and its operational cost, there is another very important aspect,
which is its accessibility. The measure of this accessibility is given by the set
of starting points that make the iterative scheme convergent. Therefore, a
commonly used procedure is to obtain a local convergence result for the it-
erative scheme. This result gives us the well-known convergence ball [2] that
indicates a domain of starting points that make the iterative scheme con-
vergent. Thus, comparing the convergence balls of the iterative schemes we
compare their accessibility. Then we check that the method M5 has a reduced
accessibility and therefore we modify this scheme. Thus, to solve this prob-
lem, we consider two-stage predictor–corrector iterative schemes. Thus, first,
it is applied to an iterative scheme which has a wide accessibility region, and
second, it is applied in the M5 method with better computational efficiency
than Newton’s method. In this way, we obtain two interesting improvements
of the M5 method considering the Newton method and the modified Newton
method [15] as predictor schemes.

The paper is organized as follows—First, in Sect. 2, we study the M5
method, proving that it has local fifth order of convergence for solving Eq. (2).
Next, in Sect. 3, from a local convergence result given for the iterative scheme
M5, we study its domain of parameters and we prove that its accessibility
is poor. Then, we justify a first improvement of the M5 method through an
iterative two-stage predictor–corrector scheme. In Sect. 4, we obtain a second
improvement of the M5 method by means of the modified Newton method
from a reduction of the operational cost. To finish, in Sect. 5, we use the
predictor–corrector iterative schemes considered to approximate a solution
of a particular symmetric ARE of the benchmark collection. We show that
these iterative schemes considered are competitive with respect to Newton’s
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method, which is one of the iterative schemes commonly used in this type of
problem.

From now on, we denote by B(X, ρ) = {Y ∈ H; ‖Y − X‖ � ρ} and
B(X, ρ) = {Y ∈ H; ‖Y − X‖ < ρ}, with X ∈ H and ρ ∈ R+.

2. A High-Order Iterative Scheme: M5 Method

In order to accelerate the speed of convergence, we consider the efficient
fifth-order iterative scheme M5:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Given an initial guess X0 ∈ H,

Yk = Xk − [R′(Xk)]−1R(Xk),

Zk = Yk − 5[R′(Xk)]−1R(Yk),

Xk+1 = Zk − 1
5
[R′(Xk)]−1(R(Zk) − 16R(Yk)), k ≥ 0.

(5)

given that the maps R′(Xn) are all invertible.
Observe that, from the aforesaid, the iteration (5) is equivalent to solve

a single Lyapunov equation, LF (X) = W , with different independent terms:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Given an initial guess X0 ∈ H,
LA−DXk(Yk) = (PD(Xk) + C),
LA−DXk(Zk) = (PD(Xk) + C) + 5PD(Yk − Xk),
LA−DXk(Xk+1) = (PD(Xk) + C) + PD(Yk − Xk)

−1

5
[(Yk − Xk)D(Zk − Yk) + (Zk − Yk)D(Yk − Xk) + PD(Zk − Yk)] , k � 0.

(6)

where LF (X) := XF + F ∗X with F and W given matrices and W is Her-
mitian if Xk is so. In this section, we prove that method (5), under certain
conditions at X̂, is convergent to the solution X̂ of (2) with at least local
fifth order of convergence.

In what follows, we denote Ek = Xk − X̂ the error in the k-th iteration,
the equation Ek+1 = MEp

k , where M is a p-linear operator, M : H×· · · (p · · ·×
H → H, is called the error equation and p is the local order of convergence.
Notice that Ep

k is Ek × · · · (p · · · × Ek. Next result proves the local order of
convergence of the M5 method, using the Taylor expansions, and obtain the
error equation.

Theorem 1. Let R : H → H, be the symmetric quadratic algebraic equation
given in (2) and X̂ a solution of (2). Suppose that A − DX̂ is stable and R′

is nonsingular at X̂. Then, the sequence {Xk}, given by the M5 method, con-
verges to X̂ with local fifth order of convergence. Moreover, the error equation
satisfies

‖Ek+1‖ ≤ 14‖[R′(X̂)]−1‖4‖D‖4‖Ek‖5.
Proof. We expand R and R′ in the Taylor series around the solution X̂. We
denoting by C2 = 1

2 [R′(X̂)]−1R′′(X̂), it follows

R(Xk) = R′(X̂)
(
Ek + C2E

2
k

)
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and

R′(Xk) = R′(X̂) (I + 2C2)Ek) .

From R′(Xk)[R′(Xk)]−1 = [R′(Xk)]−1R′(Xk) = I, we obtain

[R′(Xk)]−1 =
(
I − 2C2Ek + 4(C2Ek)2 − 8(C2Ek)3 + 16(C2Ek)4

−32(C2Ek)5
)
[R′(X̂)]−1 + O(E6

k)

On the other hand, it follows

Yk − X̂ = C2E
2
k − 2(C2Ek)2Ek + 4(C2Ek)3Ek

−8(C2Ek)4Ek + O(E6
k).

And therefore, hence R(Yk) = R′(X̂)
(
(Yk − X̂) + C2(Yk − X̂)2

)
, it follows

R(Yk) = R′(X̂)
(
C2E

2
k − 2(C2Ek)2Ek + 4(C2Ek)3Ek

−8(C2Ek)4Ek + C2(C2E
2
k)2

−2C2
2 (C2Ek)2EkC2E

2
k

−2C2
2E2

k(C2Ek)2Ek

)
+ O(E6

k),

and

[R′(Xk)]−1R(Yk) = C2E
2
k − 4(C2Ek)2Ek + 12(C2Ek)3Ek

−32(C2Ek)4Ek + C2(C2E
2
k)2

−2C2
2 (C2Ek)2EkC2E

2
k − 2C2

2E2
k(C2Ek)2Ek

−2C2EkC2(C2E
2
k)2 + O(E6

k).

Notice that, Zk − X̂ = (Yk − X̂) − 5[R′(Xk)]−1R(Yk), thus

Zk − X̂ = −4C2E
2
k + 18(C2Ek)2Ek − 56(C2Ek)3Ek

+152(C2Ek)4Ek − 5C2(C2E
2
k)2

+10C2(C2Ek)2EkC2E
2
k + 10C2

2E2
k(C2Ek)2Ek

+10C2EkC2(C2E
2
k)2 + O(E6

k).

Hence, R(Zk) = R′(X̂)
(
(Zk − X̂) + C2(Zk − X̂)2

)
, it follows

R(Zk) = [R′(X̂)]
(−4C2E

2
k + 18(C2Ek)2Ek − 56(C2Ek)3Ek + 152(C2Ek)4Ek

+11C2(C2E
2
k)2 − 62C2

2E2
k(C2Ek)2Ek − 62C2(C2Ek)2EkC2E

2
k

+10C2EkC2(C2E
2
k)2

)
+ O(E6

k),

and

[R′(Xk)]−1R(Zk) =
(−4C2E

2
k + 26(C2Ek)2Ek

−108(C2Ek)3Ek + 349(C2Ek)4Ek

+11C2(C2E
2
k)2 − 62C2(C2Ek)2EkC2E

2
k

−62C2
2E2

k(C2Ek)2Ek

−11C2EkC2(C2E
2
k)2

)
+ O(E6

k).
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Next, taking into account that

Xk+1 − X̂ = Zk − X̂ − 1
5
[R′(Xk)]−1R(Yk) (R(Zk) − 16R(Yk))

and taking norms, it follows

‖Xk+1 − X̂‖ ≤ 14‖[R′(X̂)]−1‖4‖D‖4‖Xk − X̂‖5.
�

One of the most important aspects to consider when choosing an it-
erative scheme to solve a nonlinear equation is its efficiency, see [9,11]. The
parameters that are taken into account to analyze the efficiency of an iterative
scheme are the order of convergence and the operational cost.

A widely used efficiency index is the computational efficiency (CE), see
[25]. This efficiency index is defined by CE = ord1/op, where ord is the order
of convergence and op is the amount of operations per iteration associated
with the method.

2.1. Computational Efficiency

In this section, we analyze the computational efficiency of method (6) and
compare it with that of Newton method.

To analyze the computational efficiency, we need to know the order of
operations that these methods perform per step.

On the other hand, Newton’s method requires solving a Lyapunov equa-
tion at each step. Applying the M5 method involves a Lyapunov equation
with three different independent terms.

One of the most known and effective algorithms to the sequential solu-
tion of Lyapunov equation with different independent terms is the Bartels–
Stewart [5]. The main idea of this algorithm is to reduce the matrix system
to Schur or upper Hessenberg form. In this way, it transforms the Lyapunov
equation into a triangular system which can be solved efficiently by forward
or backward substitutions. Thus, the algorithm leaves the matrix system
XF + F ∗X = W , transformed into the form

HY + Y H∗ = C̃

where H = QTFQ is the orthogonal reduction of F to Schur or upper Hessen-
berg form. The operational cost of computing the real Schur decomposition is
O(25n3). Moreover, the update the right-hand side, QTWQ, backward sub-
stitution for Y and the solution, X = QY QT , require a total cost of 4n3

operations.
Thus, denoting by CE(M5) and CE(N) the computational efficiency

of M5, Newton and doubling methods, respectively, we have

CE(M5) = 5
1

37n3

and

CE(N) = 2
1

29n3 ,

In any case, as we can observe in Figs. 1 and 2, the M5 method has a
better behavior than the Newton, even for large dimensions.
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Figure 1. Log(CE) of the Newton and M5 methods, when
approximating a solution of equation (2), n = 100:200

Figure 2. Log(CE) of the Newton and M5 methods, when
approximating a solution of equation (2), n = 10000:30000

3. A First Improvement for M5 Method

Another interesting aspect when selecting an iterative scheme is its acces-
sibility, that is, the set of starting matrices that make the iterative scheme
a convergent process. This fact is measured from a local convergence result
that shows us the convergence ball of an iterative scheme.
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3.1. Local Convergence

Usually, the local convergence results for iterative schemes require conditions
on the operator R and a solution X̂ of Eq. (2). Notice that a local result
provides the convergence ball which we denote by B(X̂, S). From the value S,
the convergence ball gives information about the accessibility of the solution
X̂, since the convergence of the iterative scheme is ensured from any starting
point belonging to the ball B(X̂, S).

We started our study obtaining some previous results.

Lemma 2. If X̂ is a Hermitian solution of (2) and A − DX̂ is stable, then
there exists [R′(X̂)]−1 with ‖[R′(X̂)]−1‖ ≤ β, β ∈ R+.

Proof. Taking a Hermitian matrix X̂, to obtain the existence of the lineal
operator R′(X̂)−1, we have to solve a Lyapunov equation in this way

−R′(X̂)Y = Y (A − DX̂) + (A − DX̂)∗Y = Z ⇔ −R′(X̂)−1(Z) = Y.

It is well known [18], that this equation has solution if A−DX̂ is stable, that
is, all their eigenvalues have real negative part. In this case, the solution is
known:

Y = −R′(X̂)−1(Z) =
∫ ∞

0

exp((A − DX̂)t)Z exp((A − DX̂)∗t)dt.

On the other hand, as D = D∗, C = C∗ and the pair (A,D) is stabiliz-
able, there exist l,m ∈ R such that, ‖ exp((A − DX̂)t)‖ ≤ m exp(−lt) for all
t ≥ 0. Therefore, [R′(X̂)]−1 exists and ‖[R′(X̂)]−1‖ ≤ m2/2l = β. �

Hence, from now on, we consider that [R′(X̂)]−1 exists, with ‖[R′(X̂)]−1‖ ≤
b. Moreover, it is easy to check that

‖R′′(X)‖ ≤ 2‖D‖, X ∈ H.

To prove that {Xn}, given by (5), converges to X̂, we will previously
prove that for each element of the sequence, it is verified that there exists
[R(Xn)]−1 and Xn ∈ B(X̂, S).

Lemma 3. Under conditions of previous Lemma, if X ∈ B(X̂, S) with β‖D‖S ≤
1
2
, then there exists [R′(X)]−1], with

‖[R′(X)]−1]‖ ≤ β

1 − 2β‖D‖S
.

Proof. Firstly, we have

‖I − [R′(X̂)]−1R′(X)‖ ≤ ‖[R′(X̂)]−1‖‖R′(X̂) − R′(X)‖ < 2β‖D‖S ≤ 1.

Second, from by the Perturbation Lemma [21], then we get the thesis. �

From the algorithm (5) and the Taylor expansions, it is easy to check
the following technical result.

Lemma 4. If Xn, Yn, Zn ∈ H, then the following equalities are satisfied for
n � 0 :
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(i) R(Yn) = 1
2R′′(Xn)(Yn − Xn)2

(ii) R(Zn) = −5R(Yn) + 1
2R′′(Xn)(Zn − Xn)2. �

Lemma 5. Under conditions of Lemma 2, assuming that Xn ∈ B(X̂, S) are
well defined, the following items are satisfied for n ≥ 1:

(in) ‖Yn − X̂‖ < Ψ0(Δ(S))‖Xn − X̂‖,
(iin) ‖Zn − X̂‖ < Ψ1(Δ(S))‖Xn − X̂‖,
(iiin) ‖Xn+1 − X̂‖ < Ψ2(Δ(S))‖Xn − X̂‖,

where Δ(S) =
β‖D‖S

1 − 2β‖D‖S
and the auxiliary real functions: Ψ0(t) = 3t,

Ψ1(t) = Ψ0(t)(4 + 10t + 3t2) and Ψ2(t) =
t

5
(8Ψ0(t) + 4Ψ0(t)2 + 2Ψ1(t) +

Ψ1(t)2).

Proof. From algorithm (5) and the Taylor expansions, it is easy to check

Yn − X̂ = Xn − [R′(Xn)]−1R(Xn) − X̂

= [R′(Xn)]−1(R′(Xn)(Xn − X̂) − R(Xn))

= [R′(Xn)]−1

[
(R′(Xn) − R′(X̂))(Xn − X̂) − 1

2
R′′(X̂)(Xn − X̂)2

]

Now, taking norms, we obtain

‖Yn − X̂‖ ≤ 3
2
‖R′(Xn)]−1‖‖2‖D‖‖‖Xn − X̂‖2

<
3
2

β

1 − 2β‖D‖S
2‖D‖S‖Xn − X̂‖,

which proves (in).
To prove (iin), it follows the previous procedure. Thus,

Zn − X̂ = Yn − 5[R′(Xn)]−1R(Yn) − X̂

= [R′(Xn)]−1(R′(Xn)(Yn − X̂) − 5R(Yn))

= [R′(Xn)]−1
[
5(R′(Xn) − R′(X̂))(Yn − X̂) − 4R′(Xn)(Yn − X̂)

+
1
2
R′′(X̂)(Yn − X̂)2

]

= [R′(Xn)]−1
[
5R′′(Θ)(Xn − X̂)(Yn − X̂) − 4R′(Xn)(Yn − X̂)

+
1
2
R′′(X̂)(Yn − X̂)2

]

= [R′(Xn)]−1

[
5R′′(Θ)(Xn − X̂)(Yn − X̂) +

1
2
R′′(X̂)(Yn − X̂)2

]

−4(Yn − X̂),
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where Θ = λXn + (1 − λ)X̂ for some λ ∈ [0, 1]. Next, taking norms in the
previous equality and taking into account (in), we get

‖Zn − X̂‖ ≤ β

1 − 2β‖D‖S

[
10‖D‖‖Xn − X̂‖ + ‖D‖‖Yn − X̂‖

]

‖Yn − X̂‖ + 4‖Yn − X̂‖
<

[
β

1 − 2β‖D‖S

(
10‖D‖‖Xn − X̂‖ + ‖D‖3Δ(S)‖Xn − X̂‖

)
+ 4

]

3Δ(S)‖Xn − X̂‖
< 3Δ(S)

[
4 + 10Δ(S) + 3Δ(S)2

] ‖Xn − X̂‖,

then (iin) is proved.
To finish, we prove (iiin). Therefore, applying the algorithm (5) and

Taylor expansions, we have

Xn+1 − X̂ = Zn − 1
5
[R′(Xn)]−1 (−16R(Yn) + R(Zn)) − X̂.

= [R′(Xn)]−1

(
R′(Xn)(Zn − X̂) +

16
5

R(Yn) − 1
5
R(Zn)

)

= [R′(Xn)]−1

(
1
5
R′′(Θ1)(Xn − X̂)(Zn − X̂) +

4
5
R′(Xn)(Zn − X̂)

+
16
5

R′(X̂)(Yn − X̂)
)

− [R′(Xn)]−1

(
1
10

R′′(X̂)(Zn − X̂)2 − 16
10

R′′(X̂)(Yn − X̂)2
)

, (7)

with Θ1 = λXn + (1 − λ)X̂ for some λ ∈ [0, 1]. However, taking into account
that Zn − X̂ = Yn − X̂ − 5[R′(Xn)]−1R(Yn), then

4
5
R′(Xn)(Zn − X̂) +

16
5

R′(X̂)(Yn − X̂)

=
4
5
R′′(Θ2)(Xn − X̂)(Yn − X̂) + 4R′(X̂)(Yn − X̂) − 4R(Yn)

=
4
5
R′′(Θ2)(Xn − X̂)(Yn − X̂) − 2R′′(X̂)(Yn − X̂)2, (8)

with Θ2 = λXn + (1 − λ)X̂ for some λ ∈ [0, 1]. Next, substituting in (7) the
expression obtained in (8), we have

Xn+1 − X̂ = [R′(Xn)]−1

(
1
5
R′′(Θ1)(Xn − X̂)(Zn − X̂)

+
4
5
R′′(Θ2)(Xn − X̂)(Yn − X̂)

)

−[R′(Xn)]−1

(
2
5
R′′(X̂)(Yn − X̂)2 +

1
10

R′′(X̂)(Zn − X̂)2
)

.
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Next, taking norms in the previous equality and applying the items (in)
and (iin), we obtain

‖Xn+1 − X̂‖ <
β

1 − 2β‖D‖S(
2

5
‖D‖SΨ1(Δ(S))‖Xn − X̂‖ +

8

5
‖D‖SΨ0(Δ(S))‖Xn − X̂‖

)

+
β

1 − 2β‖D‖S(
4

5
‖D‖SΨ0(Δ(S))2‖Xn − X̂‖ +

2

10
‖D‖SΨ1(Δ(S))2‖Xn − X̂‖

)

<
Δ(S)

5

(
8Ψ0(Δ(S)) + 4Ψ0(Δ(S))2 + 2Ψ1(Δ(S)) + Ψ1(Δ(S))2

) ‖Xn − X̂‖
�

Theorem 6. Let X̂ be a Hermitian solution of (2) and A − DX̂ is stable. If
X0 ∈ B(X̂, S) with β‖D‖S < 0.14, then the sequence the sequence {Xk},
given by the M5 method (5), converges to X̂.

Proof. Note that if β‖D‖S < 0.14, then Ψ2(Δ(S)) < 1, and therefore {‖Xk−
X̂‖} is a strictly decreasing sequence of positive real numbers. Therefore, the
thesis is obtained. �

3.2. Accessibility

Notice that, the local convergence result, Theorem 6, is based on demanding
conditions to β‖D‖S. This result provides the so-called domain of parameters
[1] corresponding to the conditions required that guarantee the convergence
of sequence {Xn} to a solution X̂ of symmetric ARE, (2). In this case, the
condition is β‖D‖S < 0.14. Therefore, the domain of parameters

DM5 = {(x, y) ∈ R
2 : xy < 0.14} (9)

measures the accessibility of the M5 method, taking x = β‖D‖ and y = S.
That is, the location of starting approximations, X0, from which the M5
method converges to a solution of symmetric ARE, (2). Thus, the accessibility
of the M5 method from Theorem 6 is given by its domain of parameters, that
we can see in Fig. 3.

It is clear that to compare the accessibility of two iterative schemes, we
must consider two local convergence results in the same conditions for the
operator considered. An interesting local result for Newton’s method is given
in [13]

Theorem 7. Let X̂ be a Hermitian solution of (2) and A−DX̂ is stable.Then,
the sequence {Xn} generated by the Newton method (4) converges to X̂ from
every matrix X0 ∈ B(X̂, S), with β‖D‖S < 1

3 .

Thus, if we consider the previous result for Newton method (4), in the
same conditions that Theorem 6, its domain of parameters is given by

DN = {(x, y) ∈ R
2 : xy <

1
3
} (10)
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Figure 3. Domain of parameters of M5 method given by
Theorem 6
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Figure 4. Domain of parameters of the M5 and Newton
methods

As we can see in Fig. 4, there is an important difference between the
domains of parameters associated with these two methods. And therefore,
we can affirm that the accessibility of Newton’s method is greater than that
of the M5 method.

3.3. A Predictor–Corrector Iterative Scheme

As we have obtained previously, the iterative scheme M5 has better com-
putational efficiency than Newton’s method. However, in our analysis of ac-
cessibility, it has been shown that the iterative scheme M5 has a reduced
accessibility region, contrary to what happens to Newton’s method. Next we
build an iterative scheme that uses the best features of both the M5 and
Newton iterative schemes. Thus, we consider a two-stage predictor–corrector
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iterative scheme. Firstly it is applied Newton’s method, which has a wide
accessibility region, and second, it is applied the M5 method with better
computational efficiency than Newton’s method.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Given an initial guess X0 ∈ H,

Xj+1 = Xj − [R′(Xj)]−1R(Xj), j = 0, 1, . . . , N0,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W0 = XN0+1,

Yk = Wk − [R′(Wk)]−1R(Wk),

Zk = Yk − 5[R′(Wk)]−1R(Yk),

Wk+1 = Zk − 1
5
[R′(Wk)]−1(R(Zk) − 16R(Yk)), k � 0.

(11)

whose expression, according to the practical application by solving Lya-
punov equations, is given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Given an initial guess X0 ∈ H,

LA−DXj
(Xj+1) = (PD(Xj) + C), j = 0, 1, . . . , N0,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

W0 = XN0+1,

LA−DWk
(Yk) = (PD(Wk) + C),

LA−DWk
(Zk) = (PD(Wk) + C) + 5PD(Yk − Wk),

LA−DWk
(Wk+1) = (PD(Wk) + C) + PD(Yk − Wk)

−1

5
[(Yk − Wk)D(Zk − Yk) + (Zk − Yk)D(Yk − Wk) + PD(Zk − Yk)] , k � 0.

(12)

Obviously, the study of the local convergence of this iterative scheme
requires the determination of the existence of the value N0 hence we can
ensure that the iteration W0 is in the accessibility region of the iterative
scheme M5.

Let X0 ∈ DN , DN given in (10), that is, X0 ∈ B(X̂, S) with β||D||S <

1/3. Being X̂, a Hermitian solution of the equation of (2), where A − DX̂ is
stable.

First, from previous Lemma 3, for n � 1 if Xn ∈ B(X̂, S), with β||D||S <
1/3, then there exists the operator [R′(Xn)]−1. Secondly, from Taylor series
we have:

0 = R(X̂) = R(Xn) + R′(Xn)(X̂ − Xn) + (X̂ − Xn)D(X̂ − Xn).

Thirdly, from the algorithm of Newton’s iterative scheme (4), we have:

Xn+1 − X̂ = (Xn − X̂) − [R′(Xn)]−1R(Xn).

Thus, the following decomposition is verified:

Xn+1 − X̂ = (Xn − X̂) + (X̂ − Xn) + [R′(Xn)]−1(X̂ − Xn)D(X̂ − Xn)

= [R′(Xn)]−1(X̂ − Xn)D(X̂ − Xn).

Hence, taking norms, if Xn ∈ B(X̂, S), we obtain

‖Xn+1 − X̂‖ ≤ β||D||S
1 − 2β||D||S ‖X̂ − Xn‖ = Δ(S)‖X̂ − Xn‖.
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Therefore, under the previous conditions, for n = 0, we have

‖X1 − X̂‖ ≤ β||D||S
1 − 2β||D||S ‖X̂ − X0‖ = Δ(S)‖X̂ − X0‖.

As Δ(S) < 1, then X1 ∈ B(X̂, S). To continue, by applying an inductive
procedure, it follows that Xn ∈∈ B(X̂, S) for all n � 1. Moreover,

‖Xn+1 − X̂‖ ≤ β||D||S
1 − 2β||D||S ‖X̂ − Xn‖ = Δ(S)‖X̂ − Xn‖

<
[
Δ(S)

]n+1

‖X̂ − X0‖.

Now, as Δ(S) < 1, there will be a value N0 ∈ N such that

‖XN0+1 − X̂‖ ≤ Δ(S)‖X̂ − XN0‖ <
[
Δ(S)

]N0+1

‖X̂ − X0‖

<
[
Δ(S)

]N0+1 1
3β||D|| ≤ 0.14

β||D|| .

Then W0 = XN0+1 ∈ DM5, given in (9), and then the sequence {Wn} con-
verges to X̂.

In this way, we have obtained the following local convergence result for
the iterative scheme given in (11).

Theorem 8. Let X̂ be a Hermitian solution of (2) and A − DX̂ is stable.
Then, the sequence {Wn} generated by the iterative scheme (11) converges to
X̂ from every matrix X0 ∈ B(X̂, S), with β‖D‖S < 1

3 .

As we can see, from this result, the iterative scheme (11) has the same
accessibility as Newton’s method, maintaining, except for the first N0 itera-
tions, the same computational efficiency as the iterative scheme M5.

4. A Second Improvement for M5 Method

As we have already seen in the case of the iterative scheme M5 (5), high-
order iterative schemes are known to have a small region of accessibility
associated with them. Therefore, locating starting points for them is a difficult
problem to solve. For this reason, in this new improvement, we maintain the
idea of improving the accessibility of the M5 method in the first stage of
the predictor–corrector iterative scheme. But, in this case, we also intend to
reduce the operational cost. The first improvement of the M5 method that
we have established in the previous section, we have considered Newton’s
method as a predictor method. This iterative scheme improved accessibility
but for its application it requires the resolution of a Lyapunov equation in
each of the N0 iterations that we must carry out. Well, we propose a second
improvement of the M5 method in which we are going to consider the well-
known modified Newton method [15]. This method also improves accessibility
and only needs to solve a Lyapunov equation, with different independent
terms, in the N0 iterations that we must carry out, which significantly reduces
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the operational cost of the predictor–corrector iterative scheme. Thus, we
consider the modified Newton method as predictor iterative scheme:{

X0 given,

Xn+1 = Xn − [R′(X0)]−1R(Xn), n ≥ 0,
(13)

To obtain the (N0+1)-th step of the modified Newton method (13), is equiv-
alent to solve the Lyapunov equation, [18]:

LA−DX0(Xn+1) = Xn+1(A − DX0) + (A − DX0)∗Xn+1

= C + XnD

(
Xn

2
+ X0

)
+

(
Xn

2
+ X0

)
DXn, (14)

where PD : H → H, is the operator defined by PD(X) := XDX.
Therefore, the modified Newton method given in (13) has a low oper-

ational cost, the cost of solving a Lyapunov equation (14) with N0 different
independent terms. Hence, we show that it has a good accessibility region,
although smaller than that of Newton’s method. But, it has a problem, its
linear convergence, whose influence will depend on the number of iterations
to perform in the first stage of the predictor–corrector method.

Next, we study the accessibility region of the method.

Theorem 9. Let X̂ be a Hermitian solution of (2) and A − DX̂ is stable.
If X0 ∈ B(X̂, S) with β‖D‖S < 0.2, then the sequence the sequence {Xk},
given by the modified Newton method (13), converges to X̂.

Proof. Notice that, from Lemma 3, for n � 1 if Xn ∈ B(X̂, S), with β||D||S <
0.2, then there exists the operator [R′(Xn)]−1.

Now, from the algorithm of the modified Newton method (13), we have:

Xn+1 − X̂ = (Xn − X̂) − [R′(X0)]−1R(Xn)

= [R′(X0)]−1
(
[R′(X0)](Xn − X̂) − R(Xn)

)
.

Next, taking into account the Taylor series, we have:

R(Xn) = R(X̂) + R′(X̂)(Xn − X̂) + (Xn − X̂)D(Xn − X̂).

Thus, the following decomposition is verified:

Xn+1 − X̂ = [R′(X0)]−1
((

[R′(X0)] − [R′(X̂)]
)

(Xn − X̂) − (Xn − X̂)D(Xn − X̂)
)
.

Thus, taking norms, if Xn ∈ B(X̂, S), we obtain

‖Xn+1 − X̂‖ ≤ 3β||D||S
1 − 2β||D||S ‖Xn − X̂‖ = 3Δ(S)‖Xn − X̂‖.

Hence, if we consider n = 0, we obtain that

‖X1 − X̂‖ ≤ 3β||D||S
1 − 2β||D||S ‖X0 − X̂‖ = 3Δ(S)‖X0 − X̂‖,
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Figure 5. Domains of parameters of the M5, the modified
Newton and Newton methods

and as 3Δ(S) < 1, since β||D||S < 0.2, then X1 ∈ B(X̂, S) with ‖X1 − X̂‖ <

‖X0 − X̂‖. To continue, by applying an inductive procedure, it follows that
Xn+1 ∈ B(X̂, S) and ‖Xn+1 − X̂‖ < ‖Xn − X̂‖ for all n � 1. Therefore,
{‖Xn+1 − X̂‖} is a strictly decreasing sequence of positive real numbers and
then the result is proved. �

From the previous Theorem, we obtain that the domain of parameters
for the modified Newton method is given by

DMN = {(x, y) ∈ R
2 : xy < 0.2}.

Therefore, the domain of parameters for the modified Newton method is
smaller than the domain of parameters for Newton’s method given in (10), but
it is greater than that of the M5 method. In this case, DM5 ⊂ DMN ⊂ DN ,
see Fig. 5.

Therefore, the modified Newton method is an interesting iterative scheme
to consider as a predictor scheme. It has better accessibility than the M5
method and also has a lower operating cost than the Newton method.

4.1. A Predictor–Corrector Iterative Scheme

From the previous comments, to obtain an efficient iterative scheme with a
suitable region of accessibility, we consider the predictor–corrector iterative
scheme given by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Given an initial guess X0 ∈ H,

Xj+1 = Xj − [R′(X0)]−1R(Xj), j = 0, 1, . . . , N0,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W0 = XN0+1,

Yk = Wk − [R′(Wk)]−1R(Wk),

Zk = Yk − 5[R′(Wk)]−1R(Yk),

Wk+1 = Zk − 1
5
[R′(Wk)]−1(R(Zk) − 16R(Yk)), k � 0.

(15)

whose expression, according to the practical application by solving Lya-
punov equations, is given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

Given an initial guess X0 ∈ H,

LA−DX0(Xj+1) = C + XjD
(

Xj

2 + X0

)
+

(
Xj

2 + X0

)
DXj , j = 0, 1, . . . , N0,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

W0 = XN0+1,

LA−DWk
(Yk) = (PD(Wk) + C),

LA−DWk
(Zk) = (PD(Wk) + C) + 5PD(Yk − Wk),

LA−DWk
(Wk+1) = (PD(Wk) + C) + PD(Yk − Wk)

−1
5

[(Yk − Wk)D(Zk − Yk) + (Zk − Yk)D(Yk − Wk)

+PD(Zk − Yk)] , k � 0.

(16)

Next, we study the local convergence of this iterative scheme (15). If
X0 ∈ B(X̂, S) satisfies condition β||D||S < 0.2, and W0 = XN0 ∈ B(X̂, S̃)
satisfies the condition β||D||S̃ < 0.14, in this situation, the sequence {Wn},
given by the M5 method, converges to X̂ a solution of symmetric ARE (2).
To continue, we show how to do this procedure.

Theorem 10. Let X̂ be a Hermitian solution of (2) and A − DX̂ is stable.
Then, the sequence {Wn} generated by the iterative scheme (15) converges to
X̂ from every matrix X0 ∈ B(X̂, S), with β‖D‖S < 0.2.

Proof. Notice that, from Lemma 3, if X0 ∈ B(X̂, S), with β||D||S < 0.2, then
there exists the operator [R′(X0)]−1. Moreover, from Lemma 5, we have

‖X1 − X̂‖ ≤ 3Δ(S)‖X0 − X̂‖,

then X1 ∈ B(X̂, 3Δ(S)S) ⊂ B(X̂, S) since 3Δ(S) < 1.

To continue, by applying an inductive procedure, as in the proof of The-
orem 10, it follows that Xn+1 ∈ B(X̂, (3Δ(S))n+1S) for all n � 1. Therefore,
there exists N0 ∈ N such that XN0+1 ∈ B(X̂, S̃) with β||D||S̃ < 0.14, then
XN0+1 ∈ DM5. Thus, the sequence {Wn}, given by M5 method, converges to
X̂.

�
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Table 1. Iterations, errors, residuals and operational cost
for the Newton method and the predictor–corrector method

(12), with X0 = −‖A‖+
√

‖A‖2−‖D‖‖C‖
‖D‖

Newton Predictor–corrector (12), N0 = 1

k = 1
‖X∗ − X1‖F 1.122921 · · · × 10−1 1.122921 · · · × 10−1

‖R(X1)‖F 9.60105 · · · × 10−2 9.60105 · · · × 10−2

k = 2
‖X∗ − X2‖F 3.05419 · · · × 10−4 8.055049 · · · × 10−11

‖R(X2)‖F 2.11094 · · · × 10−4 2.793471 · · · × 10−10

k = 3
‖X∗ − X3‖F 2.15855 · · · × 10−9 8.449394 · · · × 10−47

‖R(X3)‖F 1.45823 · · · × 10−9 3.584262 · · · × 10−46

k = 4
‖X∗ − X4‖F 1.06562 · · · × 10−19

‖R(X4)‖F 7.17809 · · · × 10−20

k = 5
‖X∗ − X5‖F 2.59235 · · · × 10−40

‖R(X5)‖F 1.74539 · · · × 10−40

Operational cost 105705 op 75087 op

Table 2. Iterations, errors, residuals and operational cost for
the Newton method and predictor–corrector method (16),
with X0 = 3I9/2

Newton Predictor–corrector (16), N0 = 2

k = 1
‖X∗ − X1‖F 1.012691 · · · × 10−1 5.312541 · · · × 10−1

‖R(X1)‖F 7.823195 · · · × 10−2 5.122230 · · · × 10−1

k = 2
‖X∗ − X2‖F 1.530537 · · · × 10−4 8.694400 · · · × 10−3

‖R(X2)‖F 1.198386 · · · × 10−4 1.089917 · · · × 10−2

k = 3
‖X∗ − X3‖F 5.601085 · · · × 10−10 4.339912 · · · × 10−16

‖R(X3)‖F 3.842866 · · · × 10−10 1.473121 · · · × 10−15

k = 4
‖X∗ − X4‖F 7.225912 · · · × 10−21 3.964463 · · · × 10−70

‖R(X4)‖F 4.879639 · · · × 10−21 1.628817 · · · × 10−69

k = 5
‖X∗ − X5‖F 1.193389 · · · × 10−42

‖R(X5)‖F 8.038753 · · · × 10−43

Operational cost 105705 op 78003 op
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5. Numerical Experiments

We show a numerical experiment related to the control for a tubular ammonia
reactor, which can be found in the benchmark collection for CARE [22]. We
apply the Newton method and the constructed predictor–corrector methods,
to approximate a solution of equation (2) related with a ninth-order discrete
state-space model of a tubular ammonia reactor, where the matrices A and
B are the following:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4.019 5.12 0 0 −2.082 0 0 0 0.87
−0.346 0.986 0 0 −2.34 0 0 0 0.97
−7.909 15.407 −4.069 0 −6.45 0 0 0 2.68
−21.816 35.606 −0.339 −3.87 −17.8 0 0 0 7.39
−60.196 98.188 −7.907 0.34 −53.008 0 0 0 20.4

0 0 0 0 94.0 −147.2 0 53.2 0
0 0 0 0 0 94.0 −147.2 0 0
0 0 0 0 0 12.8 0 −31.6 0
0 0 0 0 12.8 0 0 18.8 −31.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

BT =

⎛
⎝ 0.010 0.003 0.009 0.024 0.068 0 0 0 0

−0.011 −0.021 −0.059 −0.162 −0.445 0 0 0 0
−0.151 0 0 0 0 0 0 0 0

⎞
⎠ ,

D = BBT and C is the identity matrix of size 9.
Numerical experiment shows the high precision and accuracy of the con-

structed predictor–corrector methods compared to the well-known Newton’s
method. The Newton method is the iterative process commonly used to ap-
proximate solutions of nonlinear equations, in particular Eq. (2). In tables
1 and 2, is showed the number of iterations, errors ‖X∗ − Xk‖F , with stop-
ping criteria ‖X∗ − Xk‖F < 10−40, and residuals ‖R(Xk)‖F , of the iterative
processes considered.

First, we consider the starting matrix X0 = −‖A‖+
√

‖A‖2−‖D‖‖C‖
‖D‖ . This

starting matrix is found in the accessibility domain of the Newton Method
Thus, performing a step with the Newton method, we already obtain a ma-
trix that is found in the accessibility domain of the M5 method. Therefore,
we obtain N0 = 1 for predictor–corrector method (12). In Table 1, we can
verify that the predictor–corrector method (12) obtains greater precision in
a smaller number of iterations than Newton’s method. In addition, we see
that it uses a smaller number of operations. Therefore, we can say that the
predictor–corrector method (12) improves Newton’s method.

Second, we consider X0 = 3I9/2, where I9 is the identity matrix of size
9. This matrix is found in the accessibility domain of the modified Newton
method. And, performing two step with the modified Newton method, we
already obtain a matrix that is found in the accessibility domain of the M5
method. Therefore, we obtain N0 = 2 for the predictor–corrector method
(16). In Table 2, we can observe that with fewer iterations, the predictor–
corrector method (16) provides us with greater precision, requiring a smaller



261 Page 20 of 22 M. A. Hernández-Verón and N. Romero MJOM

number of operations. Therefore, we can say that the predictor–corrector
method (16) improves Newton’s method.

Finally, we can state that the constructed predictor–corrector methods,
(12) and (16), improve Newton’s method for approximating a solution of the
equation (2).
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