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Abstract. In this paper, we give various lower and upper bounds for the
energy of graphs in terms of several topological indices of graphs: the
first general multiplicative Zagreb index, the general Randić index, the
general zeroth-order Randić index, the redefined Zagreb indices, and the
atom-bond connectivity index. Moreover, we obtain new bounds for the
energy in terms of certain graph invariants as diameter, girth, algebraic
connectivity and radius.
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1. Introduction

Let G = (V,E) be a simple undirected graph and let n = |V (G)| and m =
|E(G)| be the order and the size of the graph G, respectively. The open
neighborhood of vertex v is the set NG(v) = {u ∈ V (G) | uv ∈ E(G)} and the
degree of vi is defined as dvi

= |N(vi)|. Let Δ and δ be the maximum and
the minimum degree of G, respectively. A simple undirected graph in which
every pair of distinct vertices is connected by a unique edge, we call complete
graph and is denoted by Kn.

For a vertex v in a connected nontrivial graph G, with eccG(v) =
max{dG(v, u) | u ∈ V (G)} we denote the eccentricity of v. The radius r(G)
of G is defined as r(G) = min{eccG(v) | v ∈ V (G)}. The diameter of a graph
G is the maximum distance between two vertices of G; denoted by D(G). A
girth g(G) of a graph G is the length of the shortest cycle in the graph.

Topological indices represent an important type of molecular descrip-
tors. They have gained considerable popularity and many new topological
indices have been proposed and studied in the mathematical chemistry liter-
ature in recent years.
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Various generalizations of the Zagreb indices have been proposed. In [18]
a so-called general zeroth-order Randić index was introduced. It is defined as

0Rα(G) =
∑

v∈V (G)

dα
v

where α is a real number. Note that 0R−1 is the inverse index ID(G), 0R2(G)
is the first Zagreb index M1(G), 0R3(G) is the forgotten topological index
F (G).

The general Randić index, Rα(G), is a generalization of the second Za-
greb index, reported in [5]. This index is defined as

Rα(G) =
∑

uv∈E(G)

(dudv)α.

Note that R−1/2(G) is the usual Randić index R(G).
The general redefined first Zagreb index is defined as

ReZgα(G) =
∑

uv∈E(G)

(
du + dv

dudv

)α

,

for any real number α.
The first general multiplicative Zagreb index of a graph G is defined in

[27] as

Pα(G) =
∏

v∈V (G)

dα
v .

These indices are a generalization of the well-known multiplicative Zagreb
indices. If α = 1, then P 1(G) is the Narumi-Katayama index NK(G), see
[23].

The atom-bond connectivity index of G, denoted by ABC(G), is defined
in [9] as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

The Laplacian matrix L of the graph G is defined as follows: Luv = 1
if (u, v) ∈ E(G), Luv = 0 if (u, v) /∈ E(G) and u �= v, and Luu = −du. The
algebraic connectivity α of a graph G is the second smallest eigenvalue of the
Laplacian matrix L.

The adjacency matrix A(G) of G is defined by its entries as aij = 1
if (vi, vj) ∈ E(G) and 0 otherwise. Let λ1 � λ2 � · · · � λn denote the
eigenvalues of A(G). The largest eigenvalues of A, λ1, is called a spectral
radius of the graph G.

The energy of the graph G is defined as

E = E(G) =
n∑

i=1

|λi|, (1)

where λi, i = 1, 2, . . . , n, are the eigenvalues of the graph G.
This concept was introduced by I. Gutman and is intensively studied in
chemistry, since it can be used to approximate the total π-electron energy
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of a molecule (see, e.g. [12,13,15]). Since then, numerous bounds for the
energy were found (see, e.g. [24,25]).

In the last years, the energy of graphs was related to vertex-degree-based
topological indices [3].

Definition 1. The energy of the vertex vi with respect to G, which is denoted
by EG(vi), is given by

EG(vi) = |A(G)|ii
for i = 1, . . . , n, where |A| = (AA∗)1/2 and A is the adjacency matrix of G.

In this way, the energy of a graph is given by the sum of the individual
energies of the vertices of G,

E(G) =
n∑

i=1

EG(vi).

The energy of a vertex should be understood as the contribution of
the vertex to the energy of the graph, in terms of how it interacts with
other vertices. It can be seen that the energy of a vertex only depends on
the vertices that are in the same component as v. Among graph descriptors
used in mathematical chemistry, two of them play a rather important role
and have the attention of many researchers around the world: the energy
and topological indices of a graph. There are many inequalities for each of
these descriptors. However, just a few relationship between them have been
established, see in [4]. In this paper, we establish new relations between the
energy and some of the topological indices of graphs.

For a graph G with Randić index R(G), Arizmendi et al. [4] recently
proved that E(G) ≥ 2R(G), where the equality holds if and only if G is
the union of complete bipartite graphs. Yan et al. [28] showed that E(G) ≤
2
√

ΔR(G). Filipovski [10] obtained relations between the energy of graphs
and the Randić index. Gutman et al. [14] obtained a relation between a
vertex-degree-based topological index and its energy. In this paper, we give
various lower and upper bounds for the energy of graphs in terms of some
topological indices of graphs as the first general multiplicative Zagreb in-
dex, the general Randić index, the general zeroth-order Randić index, the
redefined Zagreb index, and the atom-bond connectivity index.

2. Preliminaries and Known Results

In this section, we recall some well-known results from chemical graph theory
that will be used in the proofs of the upcoming sections. In [1], the authors
established a relation between the Randić index and the diameter of a given
graph.

Observation 1. [1] For any connected graph G on n ≥ 3 vertices with Randić
index R(G) and diameter D(G), it holds

R(G)D(G) ≤ (n − 1)(n − 3 + 2
√

2)
2

.



264 Page 4 of 16 A. Jahanbani et al. MJOM

The next result gives a relationship between the Randić index R(G) and
the maximum degree Δ(G) of a given graph. This result is published in [1].

Observation 2. [1] For any connected graph G on n ≥ 3 vertices with Randić
index R(G) and maximum degree Δ(G),

R(G)Δ(G) ≤ n(n − 1)
2

.

The following result appears in [1] as well.

Observation 3. [1] For any connected graph G on n ≥ 3 vertices with Randić
index R(G) and girth g(G),

R(G)g(G) ≤ n2

2
.

In [21], the authors give a relation between the Randić index and the
algebraic connectivity of a given graph.

Observation 4. [21] For any connected graph G on n ≥ 3 vertices with Randić
index R(G) and algebraic connectivity α,

R(G) ≤ α
(
n − 3 + 2

√
2
)

4
(
1 − cos π

n

) .

The first result concerns the energy of the graph in terms of its order
and size. This result is given the following upper bound obtained in 1971 by
McClelland [22]:

E(G) ≤
√

2mn. (2)

In [20], the following theorem is proved.

Theorem 1. [20] Let G be a non-regular n-vertex graph without isolated ver-
tices and α �= 0. Then

0R2α+1(G) ≤ 2Rα(G) − (
0Rα(G)

)2
+ n

(
0R2α(G)

)
.

In this paper, we apply the following two algebraic inequalities.

Lemma 1. [17] Let a and b (a ≥ b) be two non-negative real numbers. Then
1√
2

(√
a +

√
b
)

≤ √
a + b ≤ √

a +
(√

2 − 1
) √

b.

Lemma 2. [26] Let a and b be positive numbers. Then
(√

a +
√

b

2

) (√
a + b

2

)
≤

√
a2 + b2

2
.

The following lemma plays a key role in this paper.

Lemma 3. [2] For a graph G and a vertex vi ∈ V (G),

E(G) ≤
n∑

i=1

√
di

with equality if and only if the connected component containing vi is isomor-
phic to Sn and vi is its center.
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Lemma 4. [11] If G is a non-empty graph with maximum degree Δ, then
λ1 ≥ √

Δ with equality if and only if G is n
2K2.

3. Main Results

In this section, we establish new relations between the energy of graphs and
some well-known topological indices. The first result gives a relation between
the energy and the Narumi-Katayama index of graphs.

Theorem 2. Let G be a connected graph of order n and size m. Then

E(G) ≤
√

2m(n − 1) + n (NK(G))
1
n . (3)

The equality holds if and only if G ∼= K2.

Proof. We use the following well-known inequality published in [16]. For non-
negative numbers a1, a2, . . . , an, it holds

n

⎛

⎝ 1
n

n∑

i=1

ai −
(

n∏

i=1

ai

) 1
n

⎞

⎠ ≤ n

n∑

i=1

ai −
(

n∑

i=1

√
ai

)2

. (4)

Setting ai = di, the inequality (4) becomes

n

⎛

⎝ 1
n

n∑

i=1

di −
(

n∏

i=1

di

) 1
n

⎞

⎠ ≤ n

n∑

i=1

di −
(

n∑

i=1

√
di

)2

.

Hence

n∑

i=1

√
di ≤

√√√√2m(n − 1) + n

(
n∏

i=1

di

) 1
n

.

Therefore, by Lemma 3 we get

E(G) ≤
n∑

i=1

√
di ≤

√√√√2m(n − 1) + n

(
n∏

i=1

di

) 1
n

.

If G ∼= K2 it is easy to check that the equality in (3) holds. Conversely, if the
equality in (3) holds, according to the above argument, the equality in (4)
holds. Thus d1 = d2 = . . . = dn, that is, G is a k-regular graph. In this case∑n

i=1

√
di = n

√
k =

√
2mn. In order to get an equality in E(G) ≤ ∑n

i=1

√
di,

we consider those regular graphs where the equality between E(G) and the
McClelland bound

√
2mn holds. It is already known that such graphs are

n
2K2. Since G is a connected graph, we get G ∼= K2. �

Remark 1. Using the inequality between the arithmetic and geometric means
for the numbers d1, d2, . . . , dn we get
√√√√

2m(n − 1) + n

(
n∏

i=1

di

) 1
n

≤
√

2m(n − 1) + n

(
d1 + d2 + · · · + dn

n

)
=

√
2mn

that is, the bound in (3) is better than the bound in (2).
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Theorem 1 has the following consequence for α = 1
2 .

Corollary 1. Let G is a non-regular n-vertex graph without isolated vertices.
Then

E(G) ≤
√

2R1/2(G) − M1(G) + 2mn. (5)

Remark 2. From R1/2(G) =
∑

(u,v)∈E(G)

√
dudv and from the inequality

2
√

dudv ≤ du + dv we get 2R1/2(G) ≤ M1(G). Thus

2R1/2(G) =
∑

(u,v)∈E(G)

2
√

dudv ≤
∑

(u,v)∈E(G)

(du + dv) = M1(G).

Hence

E(G) ≤
√

2R1/2(G) − M1(G) + 2mn ≤
√

2mn.

Therefore, the bound in (5) is better than the well-known bound
√

2mn.

Proposition 3. For any graph with δ > 1, we have

E(G) ≤ 2m√
δ
.

Proof. We have

E(G) ≤
∑

u∈V (G)

√
du =

∑

u∈V (G)

du
1√
du

≤ 2m√
δ
. (6)

That is, for δ > 1, the bound in (6) is better than the well-known upper
bound 2m. �

In the next proposition we reprove the bound E(G) ≤ 2
√

Δ proven in
[28].

Proposition 4. Let G be a connected graph with n vertices and maximum
degree Δ. Then

E(G) ≤ 2
√

ΔR(G).

Proof. We have

2R(G) = 2
∑

uv∈E(G)

d−1/2
u d−1/2

v

=
∑

u∈E(G)

d−1/2
u

∑

v∈N(u)

d−1/2
v

≥
∑

u∈E(G)

d−1/2
u

∑

v∈N(u)

Δ−1/2 =
∑

u∈E(G)

d−1/2
u duΔ−1/2

=
∑

u∈E(G)

d1/2
u Δ−1/2 ≥ E(G)√

Δ
.

�
The next theorem reveals a connection between the energy and the

redefined first general Zagreb index of graphs.
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Theorem 5. Let G be a connected graph of order n > 2. Then

E(G) ≤
√

2ReZg1/2. (7)

The equality is attained if and only if G ∼= K2.

Proof. By using Lemmas 1 and 3, we have

E(G) ≤
∑

u∈V (G)

√
du =

∑

uv∈E(G)

(
1√
du

+
1√
dv

)
=

∑

uv∈E(G)

√
du +

√
dv√

dudv

≤
∑

uv∈E(G)

√
2
√

du + dv√
dudv

=
∑

uv∈E(G)

√
2 (du + dv)

dudv
. (8)

This implies the result stated in the theorem. If G ∼= K2 it is easy to check
that the equality in (7) holds. Conversely, if the equality in (7) holds, then
the equality in (8) holds, which is possible only if du = dv. Thus G is a regular
graph. As before, we proved that the unique regular graph which satisfies the
identity E(G) =

∑
v∈V (G)

√
dv is K2. �

Remark 3. By Lemma 1 we have

√
2ReZg1/2 =

∑

uv∈E(G)

√
2 (du + dv)

dudv

≤
∑

uv∈E(G)

√
2

(√
du + (

√
2 − 1)

√
dv

)
√

dudv

≤
∑

uv∈E(G)

√
2

(√
Δ + (

√
2 − 1)

√
Δ

)

√
dudv

= 2
√

ΔR(G).

Thus, the bound in (7) is better than the bound in Proposition 5.

The next result concerns the energy of graphs in terms of the Randić
index and the maximum and the minimum degree of G.

Theorem 6. Let G be a connected graph with maximum degree Δ and mini-
mum degree δ. If |√dv − √

du| ≥ 1 for each edge (u, v) ∈ E(G), then

E(G) ≤ (Δ − δ) R(G). (9)

Proof. From
(

1√
du

+ 1√
dv

)(
1√
du

− 1√
dv

)
= 1

du
− 1

dv
we get

1√
du

+
1√
dv

=
dv − du(√

dv − √
du

) √
dudv

.
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Since for any edge uv ∈ E(G) it holds 1√
dv−√

du
≤ 1 we get

E(G) ≤
∑

u∈V (G)

√
du

=
∑

uv∈E(G)

(
1√
du

+
1√
dv

)

=
∑

uv∈E(G)

dv − du(√
dv − √

du

) √
dudv

≤
∑

uv∈E(G)

|dv − du|√
dudv

≤ (Δ − δ) R(G).

This implies the result stated in the theorem. �

The next theorem reveals a connection between the energy and the
atom-bond connectivity (ABC) index of graphs.

Theorem 7. Let G be a graph of order n with no isolated vertices. If δ ≥ 2,
then

E(G) ≤ 2ABC(G).

Proof. By using the definitions and Lemma 3, we have

E(G) ≤
∑

v∈V (G)

√
di

=
∑

uv∈E(G)

(
1√
du

+
1√
dv

)
(as du, dv ≥ δ ≥ 2)

≤
∑

uv∈E(G)

(√
1
du

+
du − 2
dudv

+
√

1
dv

+
dv − 2
dudv

)

= 2
∑

uv∈E(G)

√
1
du

+
1
du

− 2
dudv

= 2ABC(G).

�

In the next theorem, we determine an upper bound for the energy of
graphs in terms of the maximum eigenvalues λ1 and the inverse degree of G.

Theorem 8. Let G be a non-trivial connected graph of order n and maximum
eigenvalue λ1. Then

E(G) ≤ λ1

√
nID(G). (10)

The equality is attained if and only if G ∼= K2.
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Proof. For 1 ≤ i ≤ n let ai and bi be real numbers. In this proof we use
Cauchy-Schwarz inequality (see [16]):

(
n∑

i=1

aibi

)2

≤
(

n∑

i=1

a2
i

) (
n∑

i=1

b2i

)
. (11)

If we take ai = di and bi = 1√
di

in inequality (11), we have
(

n∑

i=1

√
di

)2

≤
(

n∑

i=1

d2i

)(
n∑

i=1

1
di

)
. (12)

In [11], it is proved that

λ1 ≥
√∑n

i=1 d2i
n

. (13)

From the above inequality and (12) we obtain (10).
If G ∼= K2 it is easy to check that the equality in (10) holds. Conversely, if the
equality in (10) holds, then the equality in Cauchy-Schwarz inequality holds,
that is, di

1√
di

= dj
1√
dj

for each i �= j. Hence di = dj , i.e., G is a regular graph.

In this case holds equality in (13), since λ1 = k. We already prove that the
unique regular graph which satisfies E(G) =

∑n
i=1

√
di is the complete graph

on two vertices K2. �

Now we present a relationship between the energy and the general
zeroth-order Randić index of graphs.

Theorem 9. Let G be a graph of order n, maximum degree Δ and minimum
degree δ. Then

E(G) ≤ 0R1/4(G)[δ1/4 + Δ1/4] − nδ1/4Δ1/4.

The equality is attained if and only if G ∼= K2.

Proof. Let a1, a2, . . . , an be real numbers such that a ≤ ai ≤ A for all 1 ≤
i ≤ n. Let μ =

∑n
i=1 ai

n . Then from [6], the following inequality occurs:
n∑

i=1

a2
i ≤ n (μ[A + a] − Aa) . (14)

Let ai = d
1/4
i , μ =

∑n
i=1 d

1/4
i

n and δ1/4 ≤ ai ≤ Δ1/4. The inequality (14)
is equivalent to

n∑

i=1

√
di ≤ n

(∑n
i=1 d

1/4
i

n
[δ1/4 + Δ1/4] − δ1/4Δ1/4

)

= 0R1/4(G)[δ1/4 + Δ1/4] − nδ1/4Δ1/4.

Now Lemma 3 implies the required result. By the same argument as before,
we can prove that the equality holds if and only if G ∼= K2. �

In the next result, we give a relation between the energy, the inverse
degree and the general zeroth-order Randić index of graphs.
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Theorem 10. If G is a graph without isolated vertices, of order n, size m,
minimum degree δ and maximum degree Δ, then

E(G) ≤
√

(2m − n)(n − ID(G)) +0 R−1/2(G). (15)

The equality is attained if and only if G ∼= K2.

Proof. Let w1, w2, . . . , wn be non-negative real numbers (weights). We use
the weighted version of the Cauchy-Schwarz inequality

n∑

i=1

wia
2
i

n∑

i=1

wib
2
i ≥

(
n∑

i=1

wiaibi

)2

.

Let wi = di − 1, ai = 1 and bi = 1√
di

, for each i = 1, 2, . . . , n. Thus the above
inequality is equivalent to

n∑

i=1

(di − 1)
n∑

i=1

(di − 1) · 1
di

≥
(

n∑

i=1

di − 1√
di

)2

and this if and only if

(2m − n)(n − ID(G)) ≥
(

n∑

i=1

√
di − 0R−1/2(G)

)2

.

From E(G) ≤ ∑n
i=1

√
di we get

E(G) ≤
√

(2m − n)(n − ID(G)) +0 R−1/2(G).

If G ∼= K2 it is easy to check that the equality in (15) holds. On the other
hand, since the weighted Cauchy-Schwarz inequality becomes equality when
ai

bi
=

√
di is a constant for each i, we get that d1 = d2 = · · · = dn, that is, G

is a regular graph. As before we conclude that G ∼= K2. �

The next result gives a relationship between the energy, the general
zeroth-order Randić index and the first general multiplicative Zagreb index
of graphs.

Theorem 11. Let G be a graph of order n. Then

E(G) ≤ (
0R1/4(G)

)2 − n(n − 1)
(
P

1/2
1 (G)

)1/n

.

The equality is attained if and only if G ∼= K2.

Proof. Let a1, a2, . . . , an be positive real numbers. We apply the next inequal-
ity proved in [19]

(
n∑

i=1

√
ai

)2

≥
n∑

i=1

ai + n(n − 1)

(
n∏

i=1

ai

)1/n

. (16)

Setting ai =
√

di for i = 1, . . . , n, the inequality (16) becomes
(

n∑

i=1

d
1/4
i

)2

≥
n∑

i=1

√
di + n(n − 1)

(
n∏

i=1

√
di

)1/n
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that is
n∑

i=1

√
di ≤ (

0R1/4(G)
)2 − n(n − 1)

(
P

1/2
1 (G)

)1/n

.

Lemma 3 implies the result stated in the theorem. By the same argument as
before, we can prove that equality holds if and only if G ∼= K2. �

Let G be a graph without isolated vertices. In the next theorem, we
determine an upper bound on the energy of a graph in terms of its size,
minimum degree, maximum degree, and general Randić index.

Theorem 12. Let G be a graph of size m, with no isolated vertices, maximum
degree Δ and minimum degree δ. Then

E(G) ≤ m

(
1
4
√

δ
− 1

4
√

Δ

)2

+ 2R−1/4(G). (17)

The equality is attained if and only if G ∼= K2.

Proof. For e = (u, v) ∈ E(G) we use the following identity
(

1√
du

+
1√
dv

)
=

(
1

4
√

du

− 1
4
√

dv

)2

+
2

4
√

dudv

. (18)

Hence, by the definitions, we get

E(G) ≤
∑

uv∈E(G)

(
1√
du

+
1√
dv

)

=
∑

uv∈E(G)

(
1

4
√

du

− 1
4
√

dv

)2

+
∑

uv∈E(G)

2
4
√

dudv

(19)

≤
∑

uv∈E(G)

(
1
4
√

δ
− 1

4
√

Δ

)2

+
∑

uv∈E(G)

2
4
√

dudv

(20)

= m

(
1
4
√

δ
− 1

4
√

Δ

)2

+ 2R−1/4(G).

�

Note that
(

1√
du

+ 1√
dv

)
=

(
1

4√du
+ 1

4√dv

)2

− 2
4√dudv

. By this identity we
get the following result.

Corollary 2. Let G be a graph of size m with no isolated vertices and mini-
mum degree δ. Then

E(G) ≤ 4m√
δ

− 2R−1/4(G).

In the next two theorems, we provide a relationship between the energy
and the general zeroth-order Randić index of graphs.
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Theorem 13. If G is a non-trivial graph of size m, then

E(G) ≤ 2m0R3/4(G) + 0R1/4(G)F (G)
2M1(G)

.

The equality is attained if and only if G ∼= K2.

Proof. If ai and bi are nonnegative real numbers, then the following inequality
holds ([8], p. 4).

1
2

[
n∑

i=1

a3
i

n∑

i=1

bi +
n∑

i=1

ai

n∑

i=1

b3i

]
≥

n∑

i=1

a2
i

n∑

i=1

b2i . (21)

For ai = d
1/4
i and bi = di, the inequality (21) becomes

1
2

[
n∑

i=1

d
3/4
i

n∑

i=1

di +
n∑

i=1

d
1/4
i

n∑

i=1

d3i

]
≥

n∑

i=1

√
di

n∑

i=1

d2i

from where we get
n∑

i=1

√
di ≤ 2m0R3/4(G) + 0R1/4(G)F (G)

2M1(G)
.

Lemma 3 leads to the desired bound. By the same argument as before, we
can prove that equality holds if and only if G ∼= K2. �

Theorem 14. Let G be a graph without isolated vertices, of order n, minimum
degree δ and maximum degree Δ. Then

E(G) ≤ ( 4
√

δ + 4
√

Δ)0R1/4(G) − n
4
√

δΔ. (22)

The equality is attained if and only if G ∼= K2.

Proof. Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers such that there
exist real constants a and A so that for each i = 1, 2, . . . , n holds axi ≤ yi ≤
Axi. Then the following inequality is valid (see [7])

n∑

i=1

y2
i + Aa

n∑

i=1

x2
i ≤ (a + A)

n∑

i=1

xiyi. (23)

For yi = d
1/4
i , xi = 1, a = 4

√
δ and A = 4

√
Δ, i = 1, 2, . . . , n the inequality (23)

becomes
n∑

i=1

√
di + 4

√
δΔ

n∑

i=1

1 ≤ ( 4
√

δ + 4
√

Δ)
n∑

i=1

d
1/4
i ,

that is,
n∑

i=1

√
di ≤ ( 4

√
δ + 4

√
Δ)0R1/4(G) − n

4
√

δΔ.

The last inequality leads to the desired bound. By the same argument as
before, we can prove that the equality holds if and only if G ∼= K2.

�
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The following result gives a relation between the energy, the first Zagreb
index and the maximum degree of G.

Theorem 15. Let G be a non-trivial connected graph of order n and maximum
degree Δ. Then

E(G) ≤ M1(G) +
√

Δ − Δ2 − ln
(

NK(G)
Δ

)
.

The equality is attained if and only if G ∼= K2.

Proof. We consider the following function for x > 0

g(x) = x2 − √
x − ln(x).

The first derivative of g(x) is g′(x) = 2x− 1
2
√

x
− 1

x . It is easy to note that for

x ≥ 1, g(x) is increasing, thus g(x) = x2 −√
x− ln(x) ≥ 12 −√

1− ln(1) = 0.
Hence

√
x ≤ x2 − ln(x). Using this result and Lemma 3, we get

E(G) ≤
n∑

i=1

√
di

=
√

d1 +
n∑

i=2

√
di ≤

√
d1 +

n∑

i=2

(
d2i − ln(di)

)

= M1(G) +
√

Δ − Δ2 − ln

(
n∏

i=2

di

)

= M1(G) +
√

Δ − Δ2 − ln
(

NK(G)
Δ

)
.

This completes the proof of the theorem. By the same argument as before,
we can prove that equality holds if and only if G ∼= K2. �

4. Applications

In this section, we present several results which relate the energy of the graph
and its diameter, girth, algebraic connectivity and its radius. The results are
based on Observation 1–4.

By E(G) ≤ 2
√

ΔR(G) and Observation 1, we obtain a relation between
the energy and the diameter of the graph.

Lemma 5. Let G be a connected graph of order n ≥ 3, maximum degree Δ
and diameter D. Then

E(G) ≤
√

Δ(n − 1)(n − 3 + 2
√

2)
D(G)

.

Based on Observation 2, we obtain a result that gives a relation between
the energy, the maximum and the minimum degree of graphs.

Lemma 6. Let G be a connected graph of order n ≥ 3, maximum degree Δ
and minimum degree δ. Then

E(G) ≤ n(n − 1)
2

− δn(n − 1)
2Δ

.
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By Observation 3 we obtain a relation between the energy and the girth
of a given graph.

Lemma 7. Let G be a connected graph of order n ≥ 3, maximum degree Δ
and girth g. Then

E(G) ≤
√

Δn2

g(G)
.

By Observation 4, we obtain a relation between the energy and the
algebraic connectivity of a graph.

Lemma 8. Let G be a connected graph of order n ≥ 3, maximum degree Δ
and algebraic connectivity α. Then

E(G) ≤
√

Δα
(
n − 3 + 2

√
2
)

2
(
1 − cos π

n

) .

Lemma 9. Let G be a non-trivial connected graph of order n. Then

E(G) ≤ n
√

n − r.

Proof. For each vertex v ∈ V (G), we have dv ≤ n − eccG(v). According to
the definition of the energy, we obtain

E(G) ≤
∑

v∈V (G)

√
dv ≤

∑

v∈V (G)

√
n − eccG(v) ≤ n

√
n − r.

�
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