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The Tjurina Number for Sebastiani–Thom
Type Isolated Hypersurface Singularities

Patricio Almirón

Abstract. In this note, we provide a formula for the Tjurina number of
a join of isolated hypersurface singularities in separated variables. From
this, we are able to provide a characterization of isolated hypersurface
singularities whose difference between the Milnor and Tjurina numbers
is less or equal than two arising as the join of isolated hypersurface
singularities in separated variables. Also, we are able to provide new
upper bounds for the quotient of Milnor and Tjurina numbers of certain
join of isolated hypersurface singularities. Finally, we deduce an upper
bound for the quotient of Milnor and Tjurina numbers in terms of the
singularity index of any isolated hypersurface singularity, not necessarily
a join of singularities.

Mathematics Subject Classification. Primary 14H20, 14J17; Secondary
14H50, 32S05, 32S25.

1. Introduction

Let f ∈ C{x0, . . . , xn} be a germ of holmorphic function defining an isolated
hypersurface singularity and let us denote by Jf = (∂f/∂x0, . . . , ∂f/∂xn)
the Jacobian ideal. The Tjurina number

τf := dimC

C{x0, . . . , xn}
f + Jf

is one of the most important analytic invariants of an hypersurface singu-
larity. Being certainly not the finer analytic invariant of an isolated singu-
larity, the deepening on its natural comparison with the Milnor number,
μf := dimC C{x0, . . . , xn}/Jf , and its generalizations have provided several
interesting results in Singularity Theory during the last 50 years.
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In this note, we will focus on the comparison of these two invariants
in the particular case of the join of two isolated hypersurface singularities
in separated variables, i.e. an isolated hypersurface singularity defined by
f + g ∈ C{x;y} = C{x0, . . . , xn; y0, . . . , ym} with f ∈ C{x} and g ∈ C{y}.
In this case, it is then easy to see that μf+g = μfμg. Moreover, in 1971, Sebas-
tiani and Thom [21] proved that the local monodromy of f + g is equivalent
to the tensor product of the local monodromies of f and g. Thus, after 1971,
it has been frequent in the literature to call a Sebastiani–Thom type isolated
hypersurface singularity to a join of two isolated hypersurface singularities in
separated variables.

While the original Sebastiani–Thom Theorem is of topological nature, it
is also natural to study up to what extent one can compute the main analytic
invariants of a Sebastiani–Thom type singularity f + g from the analytic
invariants of f and g. In this direction, the main results concern the mixed
Hodge structure on the cohomology of the Milnor fiber [20] and its related
invariants, such as the spectrum of the singularity [15,20,23]. Also, there are
several Sebastiani–Thom type theorems for other objects of analytic nature
related to a hypersurface singularity such as the kappa invariant, multiplier
ideals and Hodge ideals, see [6,12,13].

From this point of view, with an eye on the nice expression of the Milnor
number of a Sebastiani–Thom type singularity, it is natural to ask for an
expression of τf+g in terms of the Tjurina numbers τf and τg. Surprisingly,
as far as the author knows, it does not exist any explicit result concerning a
formula for the Tjurina number in the Sebastiani–Thom case. Our main result
provides the following formula for the Tjurina number of a Sebastiani–Thom
type singularity.

Theorem 1. Let f1(x) ∈ C{x} = C{x0, . . . , xn} and f2(y) ∈ C{y} = C

{y0, . . . , yn} be germs of isolated hypersurface singularities in different vari-
ables. Then, we have

τf1+f2 = τf1τf2 + (μf1 − τf1 )(μf2 − τf2 )

− ν
(f2)
1 (μf1 − τf1 − ν

(f1)
1 ) − ν

(f1)
1 (μf2 − τf2 − ν

(f2)
1 ) − bf1+f2 + uf1+f2 .

In particular,

τf1τf2 ≤ τf1+f2 ≤ τf1τf2 + (μf1 − τf1)(μf2 − τf2).

Here, the numbers ν
(f1)
1 , ν

(f2)
1 , bf1+f2 , uf1+f2 are nonnegative integers

associated to certain dimensions of C–vector spaces, which will be defined in
Sect. 2. It is important to remark that the numbers ν

(f1)
1 , ν

(f2)
1 , bf1+f2 , uf1+f2

are in general difficult to manage, moreover, as we will see in the proof of
Theorem 1 the numbers bf1+f2 , uf1+f2 seems to strongly depend on f1 + f2
rather than the separated f1, f2.

In contrast with the formula, the bounds provided by Theorem 1 are
quite simple and also they are sharp. For that reason, we think that the
important part of Theorem 1 is precisely the lower and upper bounds; and
more specifically the upper bound. That estimates will allow us to charac-
terize Sebastiani–Thom type singularities with μ − τ ≤ 2 (Corollary 1 and
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Corollary 3). Also, from Theorem 1, we can deduce that we cannot expect a
“nice”expression for the Tjurina subspectrum for this family of singularities
(see Sect. 2).

The motivation to tackle the problem of finding a formula for the Tjurina
number of a Sebastiani–Thom type singularity is to provide new particular
cases of the following problem proposed by the author in [2].

Problem 1. [2, Problem 1] Let (X, 0) ⊂ (CN , 0) be an isolated complete in-
tersection singularity of dimension n and codimension k = N − n. Is there
an optimal b

a ∈ Q with b < a such that

μ − τ <
b

a
μ ?

Here, optimal means that there exist a family of singularities such that μ/τ
tends to a

a−b when the multiplicity at the origin tends to infinity.

Problem 1 was originated as an extension of a question posed by Dimca
and Greuel about the quotient of the Milnor and Tjurina numbers of a plane
curve singularity [4]. In [2], we showed the following solutions for k=1: in
the case of plane curve singularities, we have (a, b) = (1, 4) and in the case
of surface singularities satisfying Durfee’s conjecture, we have (a, b) = (1, 3).
Combining those result together with Theorem 1, we are able to give a solu-
tion to Problem 1 in the case of a join of surface singularities or plane curves
with quasi-homogeneous functions (Proposition 3). Also, in the case of the
join of a plane curve singularity with a surface singularity (Proposition 4),
we will provide an upper bound for b/a (Proposition 4). In another vein, we
will use a result of Varchenko, in order to show an upper bound for μ/τ of an
hypersurface singularity, not necessarily of Sebastiani–Thom type, in terms
of the embedding dimension and the minimal spectral value (Proposition 1).

The paper is organized as follows: in Sect. 2, we will prove the formula
for the Tjurina number of a Sebastiani–Thom type singularity and we will
show some of its consequences. In Sect. 3, we will study the quotient μ/τ
for any isolated hypersurface singularity, not necessarily of Sebastiani–Thom
type; we will present an upper bound in terms of the minimal spectral value
(Proposition 1). Finally, we will discuss the new cases of Problem 1 that can
be obtained as a consequence of our formula for the Tjurina number of a
Sebastiani–Thom type singularity.

2. Tjurina Number in the Sebastiani–Thom Case

Let f ∈ C{x0, . . . , xn} be a germ of isolated hypersurface singularity. Let us
denote by

Mf :=
C{x0, . . . , xn}
( ∂f

∂x0
, . . . , ∂f

∂xn
)
, Tf :=

C{x0, . . . , xn}
(f, ∂f

∂x0
, . . . , ∂f

∂xn
)
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the Milnor and Tjurina algebras respectively. Recall that, since multiplication
by f in Mf is a C–linear map, we can see the Tjurina algebra as the cokernel
of this map, i.e.

0 → Ker(f) → Mf
·f−→ Mf → Tf → 0.

In the case of a Sebastiani–Thom type singularity f1 + f2 with f1(x) ∈
C{x} = C{x0, . . . , xn} and f2(y) ∈ C{y} = C{y0, . . . , yn}, the Milnor al-
gebra Mf1+f2 decomposes as the tensor product of the Milnor algebras Mf1

and Mf2 . Therefore, we have the following exact sequence

0 → Ker(f1 + f2) → Mf1 ⊗ Mf2

f1⊗1Mf2
+1Mf1

⊗f2−−−−−−−−−−−−−→ Mf1 ⊗ Mf2 → Tf1+f2 → 0.

In order to simplify notation, for two C–vector spaces V ⊂ W , we will
denote W\V to the complement of V in W, i.e V ⊕ (W\V ) = W ; which
means that {0} = (W\V ) ∩ V. Also, we will denote dim := dimC since all
vector spaces to be considered are over C.

Let us denote by Ai := Mfi
\(Ker(fi)+Im(fi)) and Bi := Im(fi)\(Im(fi)

∩ Ker(fi)). Then we have the following decomposition of the Milnor algebra
Mfi

= Ker(fi) ⊕ Bi ⊕ Ai. Using the decomposition in direct sum of the Mil-
nor algebras, we are able to provide the proof of Theorem 1

Proof of Theorem 1. In order to simplify notation, let us denote by μi := μfi

and τi := τfi
. Also let us denote by

ν
(fi)
1 := dim(Ker(fi) ∩ Im(fi)).

Our aim is to describe Im(f1 + f2). To do so observe that

(f1 + f2)(Mf1 ⊗ Mf2 ) = f1(Mf1 ) ⊗ Mf2 + Mf1 ⊗ f2(Mf2 )

= f1(Ker(f1) ⊕ B1 ⊕ A1) ⊗ Mf2 + Mf1 ⊗ f2(Ker(f2) ⊕ B2 ⊕ A2)

(2.1)

where

f1(Ker(f1) ⊕ B1 ⊕ A1) ⊗ Mf2 = (f1(B1) ⊗ Ker(f2)) ⊕ (f1(B1) ⊗ B2) ⊕ (f1(B1) ⊗ A2)

⊕ (f1(A1) ⊗ Ker(f2)) ⊕ (f1(A1) ⊗ B2) ⊕ (f1(A1) ⊗ A2)

and

Mf1 ⊗ f2(Ker(f2) ⊕ B2 ⊕ A2) = (Ker(f1) ⊗ f2(B2)) ⊕ (B1 ⊗ f2(B2)) ⊕ (A1 ⊗ f2(B2))

⊕ (Ker(f1) ⊗ A2) ⊕ (B1 ⊗ f2(A2)) ⊕ (A1 ⊗ f2(A2)).

Before to continue, observe that we have the following equality

U := (f1(B1) ⊗ Ker(f2) ⊕ f1(A1) ⊗ Ker(f2)) + (Ker(f1) ⊗ f2(B2) ⊕ Ker(f1) ⊗ f1(A1))

‖
U ′ := Ker(f1) ⊗ Im(f2) + Im(f1) ⊗ Ker(f2). (2.2)

In order to check Eq. (2.2), we will show that the obvious inclusions

(f1(B1) ⊗ Ker(f2)) ⊕ (f1(A1) ⊗ Ker(f2)) ⊂ Im(f1) ⊗ Ker(f2) and

(Ker(f1) ⊗ f2(B2)) ⊕ (Ker(f1) ⊗ f2(A2)) ⊂ Ker(f1) ⊗ Im(f2)
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are in fact equalities by a dimension argument. Since by definition (B1 ⊕
A1) ∩ Ker(f1) = {0}, then it is straightforward to check

((B1 ⊕ A1) ⊗ Ker(f2)) ∩ Ker(f1 + f2) = {0}.

Thus, we have dim(f1(B1 ⊕ A1) ⊗Ker(f2)) = (μ1 − τ1)τ2 and in this way, we
obtain the following equality

(f1(B1) ⊗ Ker(f2)) ⊕ (f1(A1) ⊗ Ker(f2)) = Im(f1) ⊗ Ker(f2).

A similar argument shows that (Ker(f1) ⊗ f2(B2)) ⊕ (Ker(f1) ⊗ f2(A2)) =
Ker(f1) ⊗ Im(f2). Therefore, U = U ′. Moreover, we can easily compute its
dimension as

dim U = (μ1 − τ1)τ2 + (μ2 − τ2)τ1 − ν
(f1)
1 ν

(f2)
1 .

since dim((Ker(f1) ∩ Im(f1)) ⊗ (Ker(f2) ∩ Im(f2))) = ν
(f1)
1 ν

(f2)
1 .

We can now rewrite Eq. (2.1) as follows

(f1 + f2)(Mf1 ⊗ Mf2) = (f1 + f2)(A1 ⊗ A2) + (f1 + f2)(A1 ⊗ B2)

+ (f1 + f2)(B1 ⊗ A2) + U + (f1 + f2)(B1 ⊗ B2)

At this point, we are going to show that the previous sum has the following
decomposition as direct sum:

(f1 + f2)(Mf1 ⊗ Mf2 ) = (f1 + f2)(A1 ⊗ A2) ⊕ (f1 + f2)(A1 ⊗ B2) ⊕ (f1 + f2)(B1 ⊗ A2)

⊕ (U + (f1 + f2)(B1 ⊗ B2))
(2.3)

In order to do that, let us consider a basis Bi = {bi
1, . . . , b

i
μi

} of Mfi
such

that {bi
1, . . . , b

i
τi

} is a basis of ker(fi), {bi
τi+1, . . . , b

i

μi−ν
(fi)
1

} is a basis of Bi and

{bi

μi−ν
(fi)
1 +1

, . . . , bi
μi

} is a basis of Ai. We start with U ∩ (f1 +f2)(A1 ⊗B2) =

{0}, and similar arguments work for U∩(f1+f2)(A1⊗A2) = {0} and U∩(f1+
f2)(B1 ⊗A2) = {0}. Assume that there exist 0 	= u ∈ U ∩ (f1 + f2)(A1 ⊗B2),
then

u =

τ1∑

j=1

μ2∑

k=τ2+1

βj,kb
1
j ⊗ f2(b

2
k) +

μ1∑

j=τ1+1

τ2∑

k=1

γj,kf1(b
1
j ) ⊗ b

2
k and

u = (f1 + f2)

⎛

⎜⎜⎝

μ1∑

j=μ1−ν
(f1)
1 +1

μ2−ν
(f2)
1∑

k=τ2+1

αj,kb
1
j ⊗ b

2
k

⎞

⎟⎟⎠

=

μ1∑

j=μ1−ν
(f1)
1 +1

μ2−ν
(f2)
1∑

k=τ2+1

αj,kf1(b
1
j ) ⊗ b

2
k +

μ1∑

j=μ1−ν
(f1)
1 +1

μ2−ν
(f2)
1∑

k=τ2+1

αj,kb
1
j ⊗ f2(b

2
k).

Thus,

μ1∑

j=μ1−ν
(f1)
1 +1

μ2−ν
(f2)
1∑

k=τ2+1

αj,kb1j ⊗ f2(b2k) ∈ ((Ker(f1) + Im(f1)) ⊗ Mf2)(2.4)

∩(A1 ⊗ Im(f2)) = {0}.

Since 1⊗ f2 is an injective linear map on A1 ⊗B2 then Eq. (2.4) implies that
αj,k = 0 for all j, k. Therefore, it provides a contradiction with the fact that
u 	= 0.
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Finally, we check (f1 + f2)(A1 ⊗ A2) ∩ (f1 + f2)(B1 ⊗ A2) = {0}, and
similar arguments work for the rest of intersections that remain to check.
Assume that there exists 0 	= u ∈ (f1 + f2)(A1 ⊗ A2) ∩ (f1 + f2)(B1 ⊗ A2),
then

(f1 + f2)

⎛

⎜⎝
μ1∑

j=μ1−ν
(f1)
1 +1,

μ2∑

k=μ2−ν
(f2)
1 +1

αj,kb1j ⊗ b2k

⎞

⎟⎠ = u

= (f1 + f2)

⎛

⎜⎝
μ1−ν

(f1)
1∑

j=τ1+1,

μ2∑

k=μ2−ν
(f2)
1 +1

βj,kb1j ⊗ b2k

⎞

⎟⎠ .

Thus,

μ1∑

j=μ1−ν
(f1)
1 +1,

μ2∑

k=μ2−ν
(f2)
1 +1

αj,kb1j ⊗ f2(b2k) ∈ (A1 ∩ Im(f1)) ⊗ Mf2 = {0}.

As 1 ⊗ f2 is an injective linear map on A1 ⊗ A2 then αj,k = 0 for all j, k.
Therefore it provides a contradiction with the fact that u 	= 0.

To finish, we only need to compute the dimension of each summand as
follows

dim(f1 + f2)(A1 ⊗ A2) = dim(A1 ⊗ A2) = ν
(f1)
1 ν

(f2)
1

dim(f1 + f2)(A1 ⊗ B2) = dim(A1 ⊗ B2) = ν
(f1)
1 (μ2 − τ2 − ν

(f2)
1 )

dim(f1 + f2)(B1 ⊗ A2) = dim(B1 ⊗ A2) = ν
(f2)
1 (μ1 − τ1 − ν

(f1)
1 )

dim U = (μ1 − τ1)τ2 + (μ2 − τ2)τ1 − dim(Ker(f1) ∩ Im(f1) ⊗ Ker(f2) ∩ Im(f2))

(2.5)

Let us denote by bf1+f2 := dim((f1 + f2)(B1 ⊗ B2)) and by uf1+f2 :=
dim(U ∩ (f1 + f2(B1 ⊗B2))). Then, combining Eqs. (2.3) and (2.5), we have

dim Im(f1 + f2) = ν
(f1)
1 ν

(f2)
1 + ν

(f1)
1 (μ2 − τ2 − ν

(f2)
1 ) + ν

(f2)
1 (μ1 − τ1 − ν

(f1)
1 )

+ dimU + bf1+f2 − uf1+f2

= (μ1 − τ1)τ2 + (μ2 − τ2)τ1 + ν
(f1)
1 (μ2 − τ2)

+ ν
(f2)
1 (μ1 − τ1) − 2ν

(f2)
1 ν

(f1)
1 + bf1+f2 − uf1+f2 .

Then,

τf1+f2 = dim Coker(f1 + f2) = μf1+f2 − dim Im(f1 + f2)
= τ1τ2 + (μ1 − τ1)τ2 + (μ2 − τ2)τ1 + (μ1 − τ1)(μ2 − τ2) − dim Im(f1 + f2)

= τ1τ2 + (μ1 − τ1)(μ2 − τ2) − ν
(f2)
1 (μ1 − τ1) − ν

(f1)
1 (μ2 − τ2)

+2ν
(f2)
1 ν

(f1)
1 − bf1+f2 + uf1+f2 ,

(2.6)

as claimed. Let us finally show the “in particular ”statement. First, observe
that
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bf1+f2 ≤ dim(B1 ⊗ B2) = (μ1 − τ1 − ν
(f1)
1 )(μ2 − τ2 − ν

(f2)
1 ).

Then,

τf1+f2 ≥ τ1τ2 + ν
(f2)
1 ν

(f1)
1 + uf1+f2 ≥ τ1τ2,

where the last inequality follows from the fact that ν
(f1)
1 ≥ 0 and uf1+f2 ≥ 0.

In order to show the upper bound, we recall that ν
(fi)
1 ≤ (μi − τi) and

uf1+f2 ≤ bf1+f2 . Therefore,

τf1+f2 ≤ τ1τ2 + (μ1 − τ1)(μ2 − τ2) + ν
(f2)
1 (ν

(f1)
1 − (μ1 − τ1)) + ν

(f1)
1 (ν

(f2)
1 − (μ2 − τ2))

from which the desire bound follows. �

Remark 1. Our proof provides not only a formula for the Tjurina number
for the Sebastiani–Thom type singularities but also provides an explicit ex-
pression of the structure of Im(f1 + f2). In particular, by means of the good
basis considered by Scherk [19], Saito [17] and Hertling [7,8] one can describe
a basis of Im(f1 + f2) which behaves well with respect to the V –filtration
associated to Jf1+f2 + (f1 + f2).

Remark 2. A point of interest in this setting is the Tjurina subspectrum. In
[9], Jung et al. defined the Tjurina subspectrum {αTj

i }i∈A of f . This subspec-
trum is a subset of the spectrum of f such that |A| = τ where the indexes
are chosen carefully with respect to certain properties of the Hodge ideal V –
filtration associated to Jf + f. Recall that if {α1, . . . , αμf

} and {β1, . . . , βμg
}

are the spectral numbers of f and g, respectively, then

{αi + βk| 1 ≤ i ≤ μf , 1 ≤ k ≤ μg}
are the spectral numbers of f+g. However, Theorem 1 shows that the Tjurina
subspectrum does not behave so well with respect to the Sebastiani–Thom
property since otherwise τf+g would be the product of τf and τg. Being
obvious one of the implications, we wonder whether the Sebastiani–Thom
property on the Tjurina subspectrum is equivalent to the fact that τf+g =
τfτg; where by the Sebastiani–Thom property on the Tjurina subspectrum
we mean that if {αTj

i }i∈Af
and {βTj

k }i∈Ag
are the Tjurina subspectrum of f

and g respectively then

{αTj
i + βTj

k | 1 ≤ i ≤ τf , 1 ≤ k ≤ τg}
is the Tjurina spectrum of f + g.

A first consequence of Theorem 1 is the following characterization of
quasi-homogeneous singularities arising as the join of two functions.

Corollary 1. Let F = f + g ∈ C{x0, . . . , xn; y0, . . . , ym} be a germ of isolated
hypersurface singularity defined as the join of f(x) ∈ C{x} = C{x0, . . . , xn}
and g(y) ∈ C{y} = C{y0, . . . , yn}. Then, the following are equivalent

1. F is quasi-homogeneous,
2. f and g are quasi-homogeneous.
3. τF = μfμg.
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Proof. (1) ⇒ (2), we assume F to be a quasi-homogeneous function. Let
us suppose f being quasi-homogeneous and g not quasi-homogeneous. By
Theorem 1 and K. Saito’s Theorem [14], we have

τF = τfμg � μfμg = μF .

Now, assume F to be a quasi-homogeneous function and f and g not
quasi-homogeneous. By Theorem 1

τF ≤ τfτg + (μf − τf )(μg − τg) = μfμg + (τf − μf )τg + (τg − μg)τf � μfμg,

where the last inequality is strict because by Saito’s Theorem [14] (τf −
μf )τg + (τg − μg)τf � 0. Therefore, in both cases, we have a contradiction
since by Saito’s Theorem μF = τF .

(2) ⇒ (3) is a direct consequence of Theorem 1 and K. Saito’s Theorem
[14].

(3) ⇔ (1) follows from Saito’s Theorem [14].
�

If we denote by eBS(f) := min{k ∈ N | fk ∈ (∂f/∂x0, . . . , ∂f/∂xn)},
the case where one of the singularities has eBS(f) = 2 is of special interest
since in that case ν1 = μ − τ. A particular example of this situation is a join
where one of the functions defines a plane curve singularity. In those cases,
we have the following simplified expression of the Tjurina number.

Corollary 2. Let f1(x) ∈ C{x} = C{x0, . . . , xn} and f2(y) ∈ C{y} =
C{y0, . . . , yn} be germs of isolated hypersurface singularities in separated vari-
ables. Assume that eBS(f1) = 2 or eBS(f2) = 2. Then,

τf1+f2 = τf1τf2 + ν
(f1)
1 ν

(f2)
1 .

Proof. Assume that eBS(f1) = 2, and the case eBS(f2) = 2 follows from
similar arguments. Observe that if eBS(f1) = 2 then ν

(f1)
1 = μf1 − τf1 , which

in particular implies B1 = Im(f1)\(Im(f1)∩Ker(f1)) = {0}. Thus, the claim
follows from Theorem 1. �

Example 1. Let us consider the isolated hypersurface singularity in
C{x1, x2, x3, x4, x5, x6} defined by

f(x1, x2, x3, x4, x5, x6) = x4
2 − x5

1 + x3
1x

2
2 + x4

4 − x5
3 + x3

3x
2
4 + x4

6 − x5
5 + x3

5x
2
6,

which is the join of three irreducible plane curve singularities of the form
G(x, y) = y4 − x5 + x3y2.

We can compute the Milnor and Tjurina numbers of G, μ(G) = 12 and
τ(G) = 11. By Corollary 2, if we consider the hypersurface in C{x1, x2, x3, x4}
defined by H = G(x1, x2) + G(x3, x4), we have that

τ(G(x1, x2) + G(x3, x4)) = 112 + 1 = 122.

With the help of SINGULAR [3], we can compute ν
(H)
1 = 21. Therefore, by

Corollary 2, we can compute

τf = τHτG + ν
(H)
1 ν

(G)
1 = 122 · 11 + 21 · 1 = 1363.
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To finish, we can provide a characterization of Sebastiani–Thom type
singularities with μ − τ ≤ 2.

Corollary 3. Let f1(x) ∈ C{x} = C{x0, . . . , xn} and f2(y) ∈ C{y} =
C{y0, . . . , yn} be germs of isolated hypersurface singularities in separated vari-
ables. Then,

(1) τf1+f2 = μf1+f2 − 1 if and only if μf1 = τf1 = 1 and μf2 − 1 = τf2 or
μf2 = τf2 = 1 and μf1 − 1 = τf1 .

(2) τf1+f2 = μf1+f2 −2 if and only if f1, f2 are in one of the following cases:
(a) μf1 = τf1 = 1 and μf2 − 2 = τf2 .
(b) μf2 = τf2 = 1 and μf1 − 2 = τf1 .
(c) μf1 = μf2 = 2 and τf1 = τf2 = 1.
(d) μf1 = τf1 = 2 and μf2 − 1 = τf2 .
(e) μf2 = τf2 = 2 and μf1 − 1 = τf1 .

Proof. Let us start with (1). By Theorem 1, we have the following inequality

τf1τf2 + (μf1 − τf2)(μf2 − τf2) ≥ μf1+f2 − 1 = μf1μf2 − 1.

Therefore, we have

0 ≥ τf1(τf2 − μf2) + τf2(τf1 − μf1) ≥ −1.

Since τfi
(τfi

− μfi
) are integers numbers, then the inequality is satisfied

if at least one of the fi is a quasi-homogeneous singularity. Observe that
by Corollary 1 both cannot be quasi-homogeneous since we are assuming
τf1+f2 	= μf1+f2 . Also, at least one of the fi must be quasi-homogeneous
since otherwise τf1(τf2 − μf2) + τf2(τf1 − μf1) ≤ −2. Let us assume f1 is
quasi-homogeneous, the case f2 will follow mutatis mutandis. In that case,
since μf2 	= τf2 we have

τf1(τf2 − μf2) = −1

which implies τf1 = 1 = τf2 − μf2 . The converse implication is obviously
trivial.

Let us move to the case (2). As before, by Theorem 1, we have the
following inequality

0 ≥ τf1(τf2 − μf2) + τf2(τf1 − μf1) ≥ −2.

As in the proof of part (1), we have the following subcases: τf1(τf2 − μf2) =
−2 and τf1 = μf1 , τf2(τf1 − μf1) = −2 and τf2 = μf2 , τf2(τf1 − μf1) =
τf1(τf2 − μf2) = −1. The claim now easily follows from the casuistic of each
subcase. �

3. The Quotient of Milnor and Tjurina Numbers

In 2017, Liu [11] showed that for any isolated hypersurface singularity defined
by f : C

n+1 → C one has μ/τ ≤ n + 1. However, following his proof, we are
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going to show that we can actually be more precise about this upper bound.
Recall that the Briançon–Skoda exponent of f is defined by

eBS(f) := min{k ∈ N | fk ∈ (∂f/∂x0, . . . , ∂f/∂xn)}.

According to the Briançon–Skoda Theorem [18], we know that eBS(f) ≤
n + 1. However, one can slightly improve that bound by using the spectrum
of f. Recall that the spectrum is a discrete invariant formed by μ rational
spectral numbers (see [10, II.8.1])

α1, . . . , αμ ∈ Q ∩ (0, n + 1).

They are certain logarithms of the eigenvalues of the monodromy on the mid-
dle cohomology of the Milnor fibre which correspond to the equivariant Hodge
numbers of Steenbrink’s mixed Hodge structure. From this set of invariants,
Varchenko [23, Theorem 1.3] proved the following result.

Theorem 2. Let f ∈ C{x0, . . . , xn} be a germ of holmorphic function defining
an isolated hypersurface singularity. Let αmin be the minimal spectral number,
then

eBS(f) ≤ n + 1 − 2αmin� + 1

Remark 3. Our definition of spectral numbers follows K. Saito and M. Saito’s
definition [15,16] in contrast with Steenbrink and Varchenko’s definition [22,
23]. This means that α′ is a spectral number with Steenbrink and Varchenko’s
definition if and only if α′ + 1 is a spectral number with Saito’s definition.

Therefore, Varchenko’s Theorem 2 allows to slightly improve the general
upper bound provided by Liu in [11].

Proposition 1. Let f be a holomorphic function in C{x0, . . . , xn}. Let αmin

be the minimal spectral number of f . Then,
μ

τ
< eBS(f).

In particular, μ/τ < n + 1 − 2αmin� + 1.

Proof. If we denote by (f i) the ideal of Mf generated by (f i), those ideals
define a decreasing filtration

(0) = (feBS(f)) ⊂ · · · ⊂ (f2) ⊂ (f) ⊂ Mf .

Then, one can consider the following long exact sequence:

0 → Ker(f) ∩ (f i) → (f i)
f−→ (f i) → (f i)/(f i+1) → 0

where the middle map is the multiplication by f . Then,

dimC

{
(f i)

(f i+1)

}
= dimC Ker(f) ∩ (f i) ≤ τ.

Therefore,
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μ = dimC Mf = dimC Tf +
eBS(f)−1∑

i=1

dimC

{
(f i)Mf

(f i+1)Mf

}
≤ eBS(f)τ.

Applying Varchenko’s Theorem 2, we obtain μ/τ < n+1−2αmin�+1. �

Remark 4. Since αmin > 0 then n + 1 − 2αmin < n + 1 from which we have
n + 1 − 2αmin� ≤ n. Therefore, in the worst case, we have Liu’s result.
In the case where αmin > 1/2, as for example rational singularities, then
n + 1 − 2αmin� ≤ n − 1 and we obtain a strictly better upper bound than
the one coming from Briançon–Skoda Theorem.

After Proposition 1, one can then estimate the b/a of Problem 1. Unfor-
tunately, it is easy to check that the bound provided by Proposition 1 is not
sharp. In [2], we showed that for any plane curve singularity μ/τ < 4/3 and
moreover, it is asymptotically sharp. This result provided a full answer to a
question posed by Dimca and Greuel in [4]. The techniques used to prove that
bound were based on the theory of surface singularities. More concretely, we
showed the relation of Problem 1 with the long standing Durfee’s conjecture
[5] and its generalization [15], which claims that if f ∈ C{x0, . . . , xn} defines
an isolated hypersurface singularity then (n+1)!pg < μ, where pg is the geo-
metric genus. With the help of Durfee’s conjecture, we were also able to show
an asymptotically sharp upper bound in the case of surface singularities in
C

3. Those results are collected in the following

Proposition 2. [2, Theorem 6 and Proposition 3]

(1) If f(x, y) is a plane curve then μ/τ < 4/3.
(2) If f(x, y, z) is a surface singularity satisfying Durfee’s conjecture then

μ/τ < 3/2.

Therefore, the combination of Theorem 1 and Proposition 2 allow us to
generalize our previous results to the following Sebastiani–Thom type singu-
larities.

Proposition 3. Let g(z0, . . . , zn) be a quasi-homogeneous function. Then,

(1) If f(x, y) is an isolated plane curve singularity, then

μf+g

τf+g
<

4
3
.

(2) If f(x1, x2, x3) is an isolated surface singularity in C
3 satisfying Durfee’s

conjecture, then

μf+g

τf+g
<

3
2
.

Proof. Since g is quasi-homogeneous then τg = μg and τf+g = τfμg. Then,
in both cases, we have μf+g/τf+g = μf/τf . Therefore, the claim follows from
Proposition 2. �
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Moreover, it is easy to find families for which the bounds of Proposition
3 are asymptotically sharp. In the case of plane curve singularities, consider
f(x, y) = yn − xn+1 + g(x, y) with degw(f) < degw(g) with respect to the
weights w = (n, n + 1). Moreover, choose g such that τf = τmin, i.e. the
Tjurina number of f is minimal over all possible Tjurina numbers in a μ–
constant deformation of yn − xn+1. Then, [1],

τmin =
3n2

4
− 1 if n is even, τmin =

3
4
(n2 − 1) if n is odd.

Therefore, the join of f with any quasi-homogeneous function h in separated
variables gives

lim
n→∞ μf+h/τf+h = 4/3.

In [2, Example 3], we showed a family of surface singularities in C
3 with

μ/τ → 3/2. Using that example, the same reasoning as before allows to
construct an example where the bound of Proposition 3 (2) is asymptotically
sharp.

To finish, the following Proposition also follows from a direct application
of Theorem 1 and Proposition 2.
Proposition 4. Let f(x1, x2, x3) be an isolated surface singularity in C

3 sat-
isfying Durfee’s conjecture and g(z1, z2) be a plane curve singularity. Then,

μf+g

τf+g
< 2.

Proof. By Theorem 1, we have τf+g ≥ τfτg. Then, μf+g/τf+g ≤ (μfμg)/(τfτg)
< 2 where the last inequality follows by Proposition 2. �

In the case of Proposition 4, since g is a plane curve singularity, Corollary
2 shows that in fact we have

μf+g

τf+g
=

μfμg

τfτg + ν
(f)
1 (μg − τg)

.

In order to find a family where the bound of Proposition 4 is asymptotically
sharp one should deal with the uncomfortable term ν

(f)
1 (μg−τg). Moreover, it

is reasonable to think that the bound of Proposition 4 should not be asymp-
totically sharp.
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Viu-Sos for the useful comments and suggestions during the preparation of
this work. I would also like to thank the anonymous referee for the careful
reading of the manuscript. Funding for open access publishing: Universidad
de Granada/CBUA

Funding Funding for open access publishing: Universidad de Granada/CBUA
The author is supported by Spanish Ministerio de Ciencia, Innovación y Uni-
versidades PID2020-114750GB-C32 and by the IMAG-Maria de Maeztu grant
CEX2020-001105-M / AEI / 10.13039/501100011033, through a postdoctoral
contract in the ‘Maria de Maeztu Programme for Centres of Excellence’.



MJOM Tjurina Number for Sebastiani–Thom Singularities Page 13 of 14 258

Data Availability All data generated or analyzed during this study are in-
cluded in this published article.

Declarations

Conflict of Interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References
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