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Abstract. We present an EdDSA-compatible multi-party digital signa-
ture scheme that supports an offline participant during the key-generation
phase, without relying on a trusted third party. Under standard as-
sumptions, we prove our scheme secure against adaptive malicious ad-
versaries. Using a classical game-based argument, we prove that if there
is an adversary capable of forging the scheme with non-negligible prob-
ability, then we can build a forger for the original EdDSA scheme with
non-negligible probability. The scheme requires only two communication
rounds in the signature generation phase and avoids expensive multi-
party evaluation of cryptographic hash functions. We present our so-
lution in a setting where two parties generate the keys and compute
signatures, with a third party which can be brought online after the
key generation when one of the other parties becomes unavailable. This
setting is a perfect fit for custodial solutions where partially trusted ser-
vices are employed by a user to increase resiliency. We provide also a
possible solution to retain the resiliency of the recovery in the presence
of a malicious party.
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1. Introduction

A (t, n)-threshold signature scheme is a multi-party computation protocol
that enables a subset of at least t among n authorized players to jointly per-
form digital signatures. The flexibility and security advantages of threshold
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protocols have become of central importance in the research for new cryp-
tographic primitives [1] with particular attention to threshold versions of
EdDSA and Schnorr Signature Schemes [2].
Starting from the highly influential work of Gennaro et al. [3], several authors
proposed both novel schemes [4–6] and improvements to existing protocols
[7–14].

Usually, threshold schemes translate in the multi-party setting a well-
established signature scheme, while producing signatures that are compatible
with the original version. Then their security is proved with a reduction to the
original scheme, like the proof presented in Refs. [15,16]. The key-generation
and signature algorithms are replaced by a communication protocol between
the parties, while the compatibility is achieved by keeping the verification
algorithm of the original algorithm. This approach streamlines the insertion
of the new protocol in the cryptographic landscape, because verification is
compatible with established solutions and the resulting security derives from
standard assumptions.

Recently, in Ref. [15], the authors propose an ECDSA-compatible (2, 3)-
threshold multi-signature protocol in which one of the users plays the role of
recovery party: a user involved only once in a preliminary setup prior even to
the key-generation step of the protocol. More precisely, only two parties are
active in the key-generation step of the protocol, and by a secure multi-party
protocol, they create their own private keys together with some additional
data to be eventually sent to the third non-active player. In case of need, the
third player receives and uses this additional data to generate its private key
and can, therefore, eventually participate in the signature phase with one of
the other two. In this paper, we propose an EdDSA-compatible variant of
Ref. [15] where again the key-generation algorithm of the protocol does not
require the active involvement of all three players.

The (2, 3)-threshold setting is limited, but is the first step towards a
generalized (t, n)-threshold and a good fit for custodial services. These kind
of services offer to a user the possibility to improve the resiliency of signature
generation. This is particularly important in the world of cryptocurrencies,
where digital signatures determine ownership rights and control over assets.
This means that resiliency against key loss is essential to retain ownership of
the assets, since there is no central authority that can restore ownership of a
digital token once the private key of the wallet is lost.

To avoid relying on a trusted third-party custodian that takes full re-
sponsibility and control of keys (which exposes them to criminal takeovers,
with plenty of incidents already happened [17]), or multi-sig wallets (whose
availability is very blockchain-dependent, moreover, such wallets are very
easily identifiable), a threshold signature compatible with the original digital
signature scheme is a perfect solution. In this approach, the key is generated
in collaboration with a partially trusted custodial service and a partially
trusted recovery service. The custodial service collaborates with the user to
compute the signatures, and if the user loses their private-key material, the
custodial and recovery services can collaborate to restore ownership.
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However, in real-life applications, the recovery service is usually not
willing to sustain the cost of frequent online collaboration: for example, a
bank may safely guard a piece of the secret key, but it is inconvenient and
quite costly to make the bank participate in the enrollment of every user. For
this very reason, our setting, where a party can stay offline during the key
generation and only participate in the recovery, is a perfect fit. More details
on how (2, 3)-threshold multi-signatures with offline parties are applied in
custody services for crypto-assets can be found in Ref. [18].

EdDSA offers better performance than ECDSA, but the latter is at first
glance better suited for a multi-party environment: the presence of hash com-
putations in EdDSA is indeed not readily-compatible with an MPC setting.
In order to work around the problem, we work with a variant of EdDSA
whose outputs are indistinguishable from those of the standard version, and
we adopt some techniques similar to those in Ref. [19] to deal with the de-
terministic nature of the protocol.

We prove the protocol secure against adaptive adversaries by reducing
it to the classical EdDSA scheme, assuming the security of a non-malleable
commitment scheme, the strength of the underlying hash function and an
IND-CPA encryption scheme. Moreover, we make some considerations about
the resiliency of the recovery, an interesting aspect due to the presence of an
offline party, analyzing possible changes that allow us to achieve this higher
level of security.
Our Contribution and Related Works As noted in the recent NIST roadmap
[2], one of the most challenging task of designing a threshold version of Ed-
DSA is the distributed deterministic nonce generation. In particular, in Sec-
tions 4.3.2 and 4.3.3, the authors suggested the usage of MPC techniques or
ZKP to overcome the problem of checking the correct computation of the
nonce.

In Ref. [20], the authors propose an elegant MPC-based solution suitable
for HashEdDSA, a variant of EdDSA where the message to be signed is
hashed in advance using a collision-resistant hash function. To obtain an
efficient threshold EdDSA, the authors also propose to replace SHA512 and
SHAKE256 with an MPC-friendly hash function such as Rescue. Notice that
the authors rely on Q2 access structures, thus t is bounded to be small enough
to guarantee that no union of two unqualified sets covers the whole set of
parties, in particular t < n

2 + 1.
Following the footsteps of previous works about Schnorr signatures with

deterministic nonce generation, such as Ref. [21] and particularly Ref. [19],
in this paper, we move away from MPC techniques and instead we use ZKP
to prove that the random nonce is indeed generated correctly. This allows us
to design a threshold version of EdDSA without the need to distribute the
computation of any hash function.

It is worth mentioning that dropping the deterministic nonce generation
requirement leads to the possibility of having more straightforward schemes,
such as Refs. [22,23].
Organization We present some preliminaries in Sect. 2. We describe our pro-
tocol in Sect. 3, in particular in Sect. 3.6, we provide a protocol extension that
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includes key derivation. In Sect. 4, we state and prove the security properties
of our protocol. Finally in Sect. 5, we draw our conclusions.

2. Preliminaries

In this section, we present some preliminary definitions and primitives that
will be used in the protocol and its proof of security.
Notation We use the symbol || to indicate the concatenation of bit-strings.
Sometimes we slightly abuse the notation and concatenate a bit-string M
with an elliptic curve point P, in those cases, we assume that there has
been fixed an encoding ϕ that maps elliptic curve points into bit-strings, so
M ||P := M ||ϕ(P).

In the following, when we say that an algorithm is efficient, we mean
that it runs in (expected) polynomial time in the size of the input, possibly
using a random source.

We use a blackboard-bold font to indicate algebraic structure (i.e., sets,
groups, rings, fields and elliptic curves), and a calligraphic font to denote
points over elliptic curves. About elliptic curves, we distinguish the nota-
tion for the curve used for the signature and for the auxiliary curve used in
the deterministic nonce generation: the latter are characterized by a prime
symbol.

2.1. Decisional Diffie–Hellman Assumption

Our proof is based on the Decisional Diffie–Hellman [24] (from now on DDH).

Definition 2.1. (Group Families) A group family is a set of finite cyclic groups
{Gp} where p ranges over an infinite index set. We assume there is a poly-
nomial time (in |p|) algorithm that given p and two elements in Gp outputs
their sum.

Definition 2.2. (Instance Generator) An instance generator InstanceGen for
a group family {Gp} is a randomized algorithm that, given an integer n, runs
in polynomial time in n and outputs some random index p and a generator
B of Gp. Note that for each n, InstanceGen induces a distribution on the set
of indexes p.

The index p encodes the group parameters, for example, in the case of
the group of points of elliptic curves p = (q, a, b) denotes the elliptic curve
Ea,b/Fq.

Definition 2.3. (DDH Assumption) Let {Gp} be a family of (additive) cyclic
group with parameters p. A Decisional Diffie–Hellman (DDH) algorithm for
{Gp} is a probabilistic polynomial algorithm ADDH satisfying, for some fixed
α > 0 and sufficiently large n:

|P(ADDH(p,B, xB, yB, xyB) = 1) − |P(ADDH(p,B, xB, yB, zB) = 1)| >
1

nα

where B is a generator of Gp and the probability is over the random choice
of p and B according to the distribution induced be InstanceGen(n), the
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random choice of x, y, z in the range [1, |Gp|], and the random bits used by
ADDH.

The group family {Gp} satisfies the DDH assumption is there is no DDH
algorithm for it.

2.2. Cryptographic Hash Functions

In the EdDSA scheme (and therefore, in our threshold protocol), a cryp-
tographic hash function H is used as a Pseudo-Random Number Generator
(PRNG), employed to derive secret scalars and nonces.

For this reason, we map the output of the hash function onto the field
Zq where q is a prime and the order of the base point B used in EdDSA (i.e.,
B generates a subgroup of elliptic curve points with prime order q), and we
require H to behave like a Random Oracle. We formalize our requirements
with the following definition.

Definition 2.4. (Good PRNG) Let H : {0, 1}∗ → Zq be a function that maps
bit-strings of arbitrary length into elements of Zq. H is a Good PRNG if
no efficient algorithm can distinguish between the distributions of H(S) and
x, where both x ∈ Zq is chosen uniformly at random, and S ∈ {0, 1}∗ is a
bit-string that embeds at least n bits of entropy, with 2n < q < 2n+1.

This definition is not standard, but precisely captures exactly what we
need from a hash function to generate a good nonce. Also note that the
stronger classical definition of a Random Oracle, that is usually used to study
the security of EdDSA, perfectly satisfies our definition.

For secret scalars, EdDSA uses the hash function in a slightly more
complicated way, in order to prevent timing leaks in poor implementations,
put a lower bound on standard attacks, and embed the curve cofactor into
the scalar, so that even a multiplication by an adversary-controlled point
would not leak information about the secret (although note that this does
not happen in the EdDSA scheme). More precisely, EdDSA uses the following
PRNG.
Let H : {0, 1}b → {0, 1}n be a function that maps bit-strings of length b
into bit-strings of length c ≤ n ≤ b, with q < 2n+2−c, and c ∈ {2, 3}, and
ψ : {0, 1}n → Zq is defined as

ψ(h) = 2n+1 +
n∑

i=c

2ihi mod q. (1)

EdDSA generates some scalars as ψ(H(k)) ∈ Zq, where k ∈ {0, 1}b is chosen
uniformly at random.

Note that if B is the generator of an additive group of order q in which
the discrete logarithm problem is hard, it is infeasible to distinguish A =
ψ(H(k))B and xB if both k ∈ {0, 1}b, x ∈ Zq are chosen uniformly at random
and H is a PRF [25].

2.3. EdDSA

Edwards-curve Digital Signature Algorithm (EdDSA) [25] is a digital signa-
ture scheme based on twisted Edwards curves. It is designed to be faster than
the previously developed schemes without sacrificing security.
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EdDSA has several parameters: a prime field Fp; an integer b with
2b−1 > p; a (b − 1)-bit encoding of elements of the finite field Fp (if omitted
it is assumed to be the classical little-endian encoding); a cryptographic hash
function H producing 2b-bit outputs; an integer c ∈ {2, 3} associated to the
cofactor of the curve, an integer n with c ≤ n ≤ b (secret scalars are n + 1
bits long); a non-zero square element a ∈ Fp; a non-square element d of Fp;
a point B �= (0, 1) of the curve described by the equation:

ax2 + y2 = 1 + dx2y2, (2)

and a prime q such that qB = 0 and 2cq is the number of points of the curve.
Elliptic curve points are encoded as b-bit strings that are the (b − 1)-bit
encoding of their second coordinate y, followed by a sign bit that is set if the
(b − 1)-bit encoding of the first coordinate x is lexicographically larger than
the (b−1)-bit encoding of −x. When we concatenate a point and a bit-string
(e.g., P||S), we implicitly encode the point into a bit-string as explained
above.
Given the parameters (p, b,H, c, n, a, d,B, q) described above, the protocol
works as follows:

1. Choose a random b − bit string k, that will be the secret key.
2. Compute H(k) = (h0, ..., h2b−1).
3. Compute a = ψ(h0|| . . . ||hn−1) (where ψ is the same as Eq. (1)), the

public key is set to be A = aB.
4. To sign a message M compute r = H(hb||...||h2b−1||M) (interpreting

the digest as an integer), and R = rB.
5. The signature is (R, S), where S = (r + aH(R||A||M)) mod q.
6. to verify the signature check if 2cSB = 2cR + 2cH(R||A||M)A.

2.4. Encryption Scheme

In our protocol, we need an asymmetric encryption scheme to communicate
with the offline party. The minimum requirement we ask for our protocol to
be secure is that the encryption scheme chosen by the offline party has the
property of IND-CPA [26,27], i.e.,

Definition 2.5. Let Π = (Gen,Enc,Dec) be a public key encryption scheme.
Let us define the following experiment between an adversary A and a chal-
lenger Cb parametrized by a bit b:

1. The challenger runs Gen(1k) to get sk and pk, the secret and public keys.
Then it gives pk to A.

2. A outputs two messages (m0,m1) of the same length.
3. The challenger computes Enc(pk,mb) and gives it to A.
4. A outputs a bit b′(if it aborts without giving any output, we just set

b′ = 0). The challenger returns b′ as the output of the game.
We say that Π is secure against a chosen plaintext attack if for any k and
any probabilistic polynomial time adversary A the function

Adv(A) = P[C1(A, k) = 1] − P[C0(A, k) = 1], (3)

i.e., Adv(A) = P[b′ = b] − P[b′ �= b], is negligible.
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This hypothesis will be enough to prove the unforgeability of the pro-
tocol, but it is possible to achieve an higher notion of security using more
sophisticated encryption scheme that supports ZKP for the Discrete Loga-
rithm. This will be more clearly explained in Sect. 4.1.

2.5. Commitment Schemes

A commitment scheme [28] is composed by two algorithms:
• Com(M) : {0, 1}∗ → {0, 1}∗ × {0, 1}∗: takes in input the value M to

commit1 and, using a random source, outputs the commitment string
C and the decommitment string D.

• Ver(C,D) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥}: takes the commitment
and decommitment strings C,D and outputs a message M ′ if the input
pair is valid, ⊥ otherwise.2

We require a commitment scheme to have the following properties:
• Correctness: for every value M , it holds Ver(Com(M)) = M .
• Binding: for every commitment string C it is infeasible to find M �= M ′

and D �= D′ such that Ver(C,D) = M and Ver(C,D′) = M ′ with both
M,M ′ �= ⊥.

• Hiding: Let (C,D) = Com(Mb) with b ∈ {0, 1}, M0 �= M1, then it is
infeasible for an attacker that may choose M0 �= M1 and sees only C,
to correctly guess b with more than negligible advantage.

• Non-malleability: Given (C,D) = Com(M) such that Ver(C,D) =
M , it is infeasible for an adversary A to produce C ′, D′ such that
Ver(C ′,D′) = M ′ with M ′ related to M , that is A can only create
commitments to values that are independent from M .

2.6. Zero-Knowledge Proofs

In the protocol, various Zero-Knowledge Proofs (ZKP) [29] are used to enforce
the respect of the passages prescribed by the specifications. In fact in the proof
of security we can exploit the soundness of these sub-protocols to extract
valuable information from the adversary, and their zero-knowledge property
to simulate correct executions even without knowing some secrets. We can
do so because we see the adversary as a (black-box) algorithm that we can
call on arbitrary input, and crucially, we have the faculty of rewinding its
execution.

In particular, we use ZKP of Knowledge (ZKPoK) to guarantee the
usage of secret values that properly correspond to the public counterpart,
specifically the Schnorr protocol for discrete logarithms, and its variant that
proves that two public values are linked to the same secret (see Refs. [30,
31] and Appendix A.1). The soundness property of a ZKPoK guarantees
that the adversary must know the secret input, and opportune rewinds and
manipulations of the adversary’s execution during the proof allows us to

1In the protocol and the simulations we implicitly encode every value we need to commit
into a bit-string, assuming there is a standard encoding understood by all parties.
2Again, in the protocol we implicitly decode valid decommitment outputs (i.e., �=⊥) into

the original value, assuming that the decoding is also standard and understood by all

parties.
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extract those secrets and use them in the simulation. Conversely, by exploiting
the zero-knowledge property we can trick the adversary in believing that we
know our secrets even if we do not, thus we still obtain a correct simulation
of our protocol from the adversary’s point of view.

However, Schnorr protocol requires a prime order group, so we implicitly
use the Ristretto technique [32] for constructing prime order elliptic curve
groups, and we transform elliptic curve points in Ristretto points for these
computations. This method extends Mike Hamburg’s Decaf [33] approach to
cofactor elimination to support cofactor-8 curves such as Curve25519 [34,35]
(the standard EdDSA curve). We refer to the original sources for more details
about this approach.

2.7. Feldman VSS

Feldman-VSS scheme [36] is a verifiable secret sharing scheme built on top
of Shamir’s scheme [37]. A secret sharing scheme is verifiable if auxiliary in-
formation is included, that allows players to verify the consistency of their
shares. We use a simplified version of Feldman’s protocol: if the verification
fails the protocol does not attempt to recover excluding malicious partici-
pants, instead it aborts altogether. In a sense, we consider somewhat honest
participants; for this reason, we do not need stronger schemes such as Refs.
[38,39].
The scheme works as follows:

1. A cyclic group G of prime order q is chosen, as well as a generator
B ∈ G. The group G must be chosen such that the discrete logarithm is
hard to compute.

2. The dealer computes a random polynomial P of degree t − 1 with co-
efficients in Zq, such that P (0) = s where s ∈ Zq is the secret to be
shared.

3. Each of the n share holders receive a value P (i) ∈ Zq. So far, this is
exactly Shamir’s scheme.

4. To make these shares verifiable, the dealer distributes commitments to
the coefficients of P . Let P (X) = s+

∑t−1
i=1 aiX

i, then the commitments
are C0 = sB and Ci = aiB for i ∈ {1, . . . , t − 1}.

5. Any party can verify its share in the following way: let α be the share
received by the i-th party, then it can check if α = P (i) by verifying if
the following equality holds:

αB =
t−1∑

j=0

(ij)Cj = sB +
t−1∑

j=1

aj(ij)B =

⎛

⎝s +
t−1∑

j=1

aj(ij)

⎞

⎠ B = P (i)B.

In the proof, we will need to simulate a (2, 2)-threshold instance of this pro-
tocol without knowing the secret value s.

Let us use an additive group with generator B, and let Y = sB, the
simulation proceeds as follows:

• The dealer selects two random values a, b and forces P (1) = a, P (2) = b;
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• then sets C0 = Y and, depending on whether the adversary is P1 or P2,
it computes:

C1 = aB − Y; (4)

in the case the adversary is P1, or

C1 = 1
2 (bB − Y); (5)

in the case the adversary is P2.
• In either case, the other player can successfully verify their shards, per-

forming the corresponding check:

aB = Y + C1 = Y + aB − Y (6)

or

bB = Y + 2C1 = Y + 2 · 1
2 (bB − Y). (7)

2.8. Deterministic Nonce Generation

One of the peculiar features of EdDSA is that it is a deterministic signature
algorithm, in the sense that it does not require the generation of a random
nonce.

To achieve the same feature, we rely on a verifiable random nonce gener-
ator: roughly each player chooses a random seed during the Key Generation
algorithm, and each time a signature is produced, it is proven that the nonce
used in the signature algorithm is coherent with the seed.

In particular, we use Purify [19], a Pseudo-Random Function (PRF)
purely based on elliptic curves.

Let E be an Edwards curve for the EdDSA algorithm, with a point B
of order q, Purify requires the choice of a second elliptic curve E

′ over Fq2

whose group of points is cyclic of order q′ is generated by a point B′ and
is such that the DDH assumption holds. In particular the participants fix a
quadratic non-residue δ ∈ F

∗
q and find a, b ∈ Fq such that

• The equation y2 = x3 + ax + b defines an elliptic curve E1 over Fq of a
prime order q1 in which the DDH assumption holds;

• The equation y2 = x3 + aδ2x + bδ3 defines an elliptic curve E2 over Fq

of a prime order q2 �= q1 in which the DDH assumption holds;

Then define E
′ as the elliptic curve defined by the equation y2 = x3 + ax + b

over Fq2 . It is possible to prove that there is an efficiently computable and
invertible isomorphism φ : E′ → E1 × E2.

Let z ∈ {0, 1}∗ be a string, we define the hash function

HPur(z) = φ−1(H1(z),H2(z)) (8)

where H1 and H2 are hash functions onto E1 and E2, respectively.
Now let f : E′ → Zq be the function defined as follows:

f(Q) =

{
0 if Q = 0E′

x0 if Q = (x0 + x1

√
δ, y0 + y1

√
δ)

(9)
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It is possible to prove that the uniform distribution over Zq is statistically
close to f(UE′), where UE′ is the uniform distribution over E

′. So, if z is a
random uniformly distributed string, u is distributed uniformly in Zq′ , and
H1,H2 behave like random oracles, we have that f(uHPur(z)) is uniformly
distributed in Zq.

The crucial aspect of this construction is that it allows the possibility of
building a non-interactive ZKP for the relation U ′ = u′B′ and R = f(uV ′)B
where B,B′ are defined as before, V ′ is a public random point of E′ and u′

is the private input of the prover. This allows the construction of a verifiable
pseudo-random nonce generator. In particular the ZKP is described in Ref.
[19] and makes use of the Bulletproof framework [40].

Formally, the security of Purify is stated in the following Lemma:

Lemma 2.1. Let E′ be an elliptic curve over Fq2 whose group of points gener-
ated by a point B′ is cyclic of order q′ and is such that the DDH assumption
holds. Let u be a random element of Zq′ and HPur and f be defined as, respec-
tively, in Eqs. (8) and (9). Then, HPur is indistinguishable from a random
oracle onto E

′ and thus also f(uHPur(·)) is indistinguishable from a random
oracle onto Zq.

Moreover, it is possible to build a secure non-interactive ZKP for the
relation U ′ = u′B′ and R = f(uV ′)B where B,B′ are public data defined as
before, V ′ is a public random point of E

′ and u′ is the private input of the
prover.

Observation 1. As it will be clear later, in our construction, the signature is
deterministic as long as the set of signers is fixed. To achieve a determin-
istic signature that depends only on the message, an alternative solution is
the usage of a multi-party symmetric cipher with authenticated MAC key
such as MiMC [41] and the Marvellous [42] family combined with a thresh-
old secret sharing of the key. However, while being suited for multi-party
nonce generation, these protocols have the drawback of requiring expensive
precomputation steps, that are cumbersome in our settings.

3. Protocol Description

In this section, we describe the details of our protocol. After some common
parameters are established, one player chooses a long-term asymmetric key
and then can go offline, leaving the proper generation of the signing key to
the remaining two participants. For this reason, the signature algorithm is
presented in two variants, one used jointly by the two players (called P1 and
P2) who performed the key generation, and one used by the offline player
(P3) and one of the others.
More specifically the protocol is comprised by four phases:

1. Setup Phase (Sect. 3.1): played by all the parties, it is used to decide
common parameters. Note that in many contexts these parameters are
mandated by the application, so the parties merely acknowledge them,
possibly checking they respect the required security level.
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2. Key Generation (Sect. 3.2): played by only two parties, from now on P1

and P2. It is used to create a public key and the private shards for each
player.

3. Ordinary Signature (Sect. 3.4): played by P1 and P2. As the name sug-
gests this is the normal use-case of the protocol.

4. Recovery Signature (Sect. 3.5): played by P3 and one between P1 and
P2. This models the unavailability of one player, with P3 stepping up
as a replacement.

In order to obtain a deterministic signature scheme, we need to rely on
a verifiable nonces generation algorithm. We choose to use Purify, described
in Ref. [19]. Starting from some secrete parameters and their committed
value, this algorithm allows every party to check whether the other party has
computed the correct random value or not.

From here on with the notation “Pi does something”, we mean that both
P1 and P2 perform the prescribed task independently. Similarly, the notation
“Pi sends something to Pj” means that P1 sends to P2 and P2 sends to P1. We
also assume that every communication between parties is made on a private
and authenticated channel.

3.1. Setup Phase

This phase involves all the participants and is used to decide the parameters
of the algorithm.
The parameters involved are the following:

Player 1 and 2 Player 3

Input: − Input: −
Private Output: − Private Output: sk3

Public Output: E,B, q,H Public Output: pk3

E
′,B′, q′,

P3 chooses an asymmetric encryption algorithm and a key pair (pk3, sk3),
then it publishes pk3, keeping sk3 secret. pk3 is the key that P1 and P2 will
use to communicate with P3.

The algorithm which generates the key pair (sk3, pk3) and the encryp-
tion algorithm itself are unrelated to the signature algorithm, but it is im-
portant that both of them are secure. We require the encryption protocol to
be IND-CPA, see Sect. 2.4 and Sect. 4.1 for more details.

Then P1 and P2 need to agree on a secure hash function H whose
outputs we interpret as elements of Zq, a twisted Edwards elliptic curve E

with cofactor 2c, and a generator B ∈ E of a subgroup of points of prime
order q. The order identifies the ring Zq used for scalar values. Lastly they
need to agree on the Purify parameters, in particular they choose a second
elliptic curve E

′ over Fq2 and a base point B′ ∈ E
′ which generates a group

of points of order q′.
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3.2. Key Generation

The parameters involved are:

Player 1 Player 2

Input: pk3 Input: pk3

Private Output: ω1, r
′
1 Private Output: ω2, r

′
2

Shared Secret: D Shared Secret: D
Public Output: rec1,3, rec2,3, Public Output: rec1,3, rec2,3,

A, X1,X2 A, X1,X2

The protocol proceeds as follows:

1. Secret key generation and communication:
a. Pi picks randomly ai, y3,i,mi ∈ Zq, r′

i ∈ Zq′ , and sets Ai = aiB,
Y3,i = y3,iB, R′

i = r′
iB′, Mi = miB.

b. Pi computes [KGCi,KGDi] = Com((Ai,Y3,i,R′
i,Mi)).

c. Pi sends KGCi to Pj .
d. Pi sends KGDi to Pj .
e. Pi gets (Aj ,Y3,j ,R′

j ,Mj) = Ver(KGCj ,KGDj), and saves the pairs
X1 = (A1,R′

1) and X2 = (A2,R′
2).

2. Feldman VSS and generation of P3’s data:
a. Pi sets fi(x) = ai +mix and computes yi,j = fi(j) for j ∈ {1, 2, 3}.
b. Pi encrypts yi,3, y3,i with pk3, let reci,3 be the pair of ciphertexts

obtained.
c. Pi sends yi,j , reci,3 to Pj .
d. If the asymmetric encryption algorithm supports DLOG verifica-

tion, the encryption reci,3 is accompanied by two NIZKPs: the first
one proves that the first ciphertext in reci,3 is the encryption of
the DLOG of Yi,3 = Ai +3Mi, the second NIZKP proves that the
second ciphertext is the encryption of the DLOG of Y3,i. Pi checks
the NIZKPs attached to recj,3.

e. Pi checks, as in the Feldman-VSS described in Sect. 2.7, the in-
tegrity and consistency of the shards yj,i, by verifying whether
Yj,i = Aj + iMj , where Yj,i = yj,iB.

f. Pi computes xi = y1,i + y2,i + y3,i.
3. Pi proves in ZK the knowledge of xi using Schnorr’s protocol of Appen-

dix A.1.
4. Public key and shards generation:

a. the public key is A =
∑3

i=1 Ai, where A3 = 2Y3,1 − Y3,2, so that
a3 = 2y3,1 − y3,2. From now on we will set a =

∑3
i=1 ai, obviously

aB = A.
b. P1 computes ω1 = 2x1, while P2 computes ω2 = −x2.
c. Pi computes the common secret D = y3,iY3,j .

Observation 2. We define a3 = 2y3,1 − y3,2 because we need to be consistent
with the Feldman-VSS protocol. Indeed, suppose that y3,2 and y3,1 are valid
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shards of a Feldman-VSS protocol where the secret is a3. In this way, we have
that y3,2 = a3 + 2m3 and y3,1 = a3 + m3, so:

2y3,1 − y3,2 = 2a3 + 2m3 − a3 − 2m3 = a3.

Note that A3 = a3B can be computed by both P1 and P2, but they cannot
compute a3.

3.3. Signature Algorithm

This protocol is used by two players, called PA and PB, to sign messages.
P1, P2, and P3 take the role of either PA or PB depending on the situation,
see Sects. 3.4 and 3.5.

The participants agree on a message M to sign and the goal of this
protocol is to produce a valid EdDSA signature (R, S) for the public key A.
The parameters involved are:

Player A Player B

Input: M,ωA,A, r′
A Input: M,ωB ,A, r′

B

XA,XB XA,XB

Public Output: (R, S) Public Output: (R, S)

The protocol works as follows:
1. Generation of R:

a. Pi computes K = H(XA,XB).
b. Pi computes V ′ = HPur(K,M) ∈ E

′.
c. Pi computes ri = f(r′

iV ′).
d. Pi computes Ri = riB.
e. Pi sends Ri to Pj alongside a non-interactive zero-knowledge proof

that it is correct given R′
i (see Sect. 2.8).

f. Pi checks the correctness of the value Rj received by verifying the
attached NIZKP.

g. Pi computes R = RA + RB .
2. Generation of S:

a. Pi computes Si = ri + ωiH(R||A||M)
b. Pi sends Si to Pj .
c. Pi computes S = SA + SB .

3. Pi checks that SB = R + H(R||A||M)A.

If any check fails the protocol aborts, otherwise the output signature is (R, S).
Notice that the last step is the signature verification of the original EdDSA,
and that if the parties are honest the signature verifies with probability 1 by
design, thus the protocol is correct.

3.4. Ordinary Signature

This is the case where P1 and P2 wants to sign a message m. They run the
signature algorithm with the following parameters (suppose wlog that P1

plays the roles of PA and P2 of PB):
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Player A Player B

Input: ω1, r
′
1, Input: ω2, r

′
2,

M,A,X1,X2 M,A,X1,X2

Public Output: (R, S) Public Output: (R, S)

3.5. Recovery Signature

If one between P1 and P2 is unable to sign, then P3 has to come back online
and a recovery signature is performed (the method used by either P1 or P2

to contact P3 is out of the scope of this paper and it is not relevant for the
security discussion).

We have to consider two different cases, depending on who is offline.
First we consider the case in which P2 is offline, therefore, P1 and P3 sign.
The parameters involved are:

Player 1 Player 3

Input: ω1, r
′
1, Input: sk3,

M,A,X1, rec1,3, rec2,3 M
Public Output: (R, S) Public Output: (R, S)

The workflow in this case is:
1. Communication:

a. P1 contacts P3 and sends A, rec1,3, rec2,3,X1.
b. P3 decrypts everything with the private key sk3 to recover the

values y1,3, y3,1, y2,3, y3,2.
c. P3 computes a3 = 2y3,1 − y3,2 and A3 = a3B.
d. P3 picks randomly r′

3 ∈ Zq′ and computes R′
3 = r′

3B′.
e. P3 sends X3 = (A3,R′

3) to P1.
2. P3’s key creation:

a. P3 computes x3 = y1,3 + y2,3 + 2y3,2 − y3,1.
b. Pi proves in ZK the knowledge of xi using Schnorr’s protocol (note

that x1 = ω1/2).
3. Signature generation:

a. P1 computes ω̃1 = 3
4ω1.

b. P3 computes ω3 = − 1
2x3.

c. P1 and P3 perform the Signature Algorithm as PA and PB, re-
spectively, where P1 uses ω̃1 instead of ωA and X1 instead of XA,
while P3 uses ω3 in place of ωB and X3 in place of XB (the other
parameters are straightforward).

We consider now the second case in which P1 is offline, therefore, P2

and P3 sign. The parameters involved are:
The first two steps are identical to the previous case (for the ZKP of x2

note that x2 = −ω2).
3. The Signature generation step proceeds as follows:
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Player 2 Player 3

Input: ω2, r
′
2, Input: sk3,

M,A,X2, rec1,3, rec2,3 M
Public Output: (R, S) Public Output: (R, S)

a. P2 computes ω̃2 = −3ω2.
b. P3 computes ω3 = −2x3.
c. P2 and P3 perform the Signature Algorithm as PA and PB, re-

spectively, where P2 uses ω̃2 instead of ωA and X2 instead of XA

and P3 uses ω3 in place of ωB and X3 in place of XB (the other
parameters are straightforward).

Observation 3. R′
3 could be generated and published ahead of time (e.g.,

during the setup phase), and used for all subsequent recovery signatures. In
this case, after P3 computes X3 for the first time then the value is fixed for
all the successive executions.

The reasons why it is necessary to have a different Xi for each player will
be more clear later, during the security discussion of the protocol in Sect. 4.

3.6. Key Derivation

Using the common secret D created during the key-generation phase, it is
possible to perform key derivation, starting from ω1, ω2 and ω3. This allows
to update the private key of each user and the global public key, thus allowing
to create more instances of the protocol, without needing further communi-
cation.

Starting from a common derivation index i, the derivation is performed
as follows:

• P1 and P2 perform the key derivation:

	 ω1 → ωi
1 = ω1 + 2H(D||i),

	 ω2 → ωi
2 = ω2 − H(D||i);

• P1 and P3 perform the key derivation:

	 ω1 → ωi
1 = ω1 + 3

2H(D||i),
	 ω3 → ωi

3 = ω3 − 1
2H(D||i);

• P2 and P3 perform the key derivation:

	 ω2 → ωi
2 = ω2 + 3H(D||i),

	 ω3 → ωi
3 = ω3 − 2H(D||i);

• the public key is always updated like this: A → Ai = A + H(D||i)B.

Observation 4. We observe that the algorithm outputs valid keys, such that,
for example:

(ωi
1 + ωi

2)B = Ai.

Since (ωi
1 + ωi

2) = ω1 + ω2 + H(D||i) we have that:

(ωi
1 + ωi

2)B = (ω1 + ω2 + H(D||i))B = A + H(D||i)B = Ai.
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With the same procedure, we can prove that also the other pairs of derived
keys are consistent.

4. Security Proof

As customary for digital signature protocols, we state the security of our
scheme as an unforgeability property, defined as follows:

Definition 4.1. We say that a (t, n)-threshold signature scheme is strongly
unforgeable if no malicious adversary who corrupts at most t − 1 players can
produce with non-negligible probability a new message-signature pair (m,σ),
given the view of Threshold-Sign on input messages m1, ...,m� (which the
adversary adaptively chooses), as well as the signatures (σ1, ..., σ�) on those
messages.

Referring to this definition, the security of our protocol derives from the
following theorem, whose proof is the topic of this section:

Theorem 4.1. Let ξ : {0, 1}2b → Zq be the encoding that maps bit-strings
into elements of Zq via little-endian encoding and reduction modulo q, let
π : {0, 1}2b → {0, 1}n be the function that truncates a bit-string to n bits:
π(h) = h0|| . . . ||hn−1. Then, assuming that:

• H ′ is a cryptographic hash function such that H = ξ ◦ H ′ is a good
PRNG as per Definition 2.4, and π ◦ H ′ is a PRF;

• the EdDSA signature scheme with parameters (p, b,H ′, c, n, a, d,B, q) is-
strongly unforgeable;

• Com,Ver is a non-malleable commitment scheme as defined in Sect. 2.5;
• the Decisional Diffie Hellman Assumption defined in Definition 2.3 holds

for both the curves E and E
′;

• the encryption algorithm used by P3 is IND-CPA, as per Sect. 2.4;

our threshold protocol built with the hash function H is unforgeable.

The proof will use a classical game-based argument, our goal is to show
that if there is an adversary A that forges the threshold scheme with a non-
negligible probability ε > λ(k)−t, where k is the security parameter, for a
polynomial λ(x) and t > 0, then we can build a forger F that forges the
original EdDSA scheme with non-negligible probability as well.

Since the algorithm presented is a (2, 3)-threshold signature scheme,
the adversary will control one player and F will simulate the remaining two.
Since the role of P3 is different than those of P2 and P3, we have to consider
two distinct cases: one where A controls P3 and one where A controls one
between P1 and P2 (whose roles are symmetrical). The second case is way
more interesting and difficult, so it will be discussed first, and for now we
suppose without loss of generality that A controls P2.

The adversary A interacts in our protocol as follows: it first participates
in the key-generation protocol to generate a public key A for the threshold
scheme, then it requests the signature on some messages m1, ...,m�. During
this phase it can participate in the signature generation or it can query for



MJOM Provably Unforgeable Threshold EdDSA with an Offline... Page 17 of 30 253

signatures generated by P1, P3. Eventually the adversary outputs a message
m �= mi ∀i and a valid signature on m with probability at least ε. If we
denote with τA the adversary’s tape and with τi the tape of the honest player
Pi, we can write

Pτi,τA [A(τA)Pi(τi) = forgery] ≥ ε, (10)

where Pτi,τA means that the probability is taken over the random tape τA of
the adversary and the random tape τi of the honest player, while A(τA)Pi(τi)

is the output of the iteration between the adversary A, running on tape τA,
and the player Pi, running on tape τi.

Definition 4.2. (Good Tape) We say that an adversary’s random tape τA is
good if:

Pτi [A(τA)Pi(τi) = forgery] ≥ ε

2
. (11)

Now, we have the following Lemma, introduced in Ref. [16]:

Lemma 4.1. If τA is a tape chosen uniformly at random, the probability that
it is a good one is at least ε

2 .

Proof. In the proof, we will simplify the notation writing A(τA, τi) = forgery
instead of A(τA)Pi(τi) = forgery. In the context of this proof, we will write
b to identify a good tape, while c will be a bad one. We can rewrite Eq. 10 in
this way:

A = Pτi,τA(τA = b,A(τA, τi) = forgery) + Pτi,τA(τA = c,A(τA, τi) = forgery)
= Pτi,τA(τA = b)Pτi,τA(A(τA, τi) = forgery|τA = b)
+Pτi,τA(τA = c)Pτi,τA(A(τA, τi) = forgery|τA = c). (12)

Trivially, we have that Pτi,τA(A(τA, τi) = forgery|τA = b) < 1, and from the
definition of good tape in equation 11, we get

Pτi,τA(A(τA, τi) = forgery|τA = c) <
ε

2
. (13)

Now, we want to solve for x = Pτi,τA(τA = b), so we get

ε ≤ A < x · 1 + (1 − x) · ε

2
= x

(
1 − ε

2

)
+

ε

2
, (14)

that leads us to the conclusion:

x ≥ ε − ε
2

1 − ε
2

≥ ε

2 − ε
≥ ε

2
. (15)

�

From now on, we will suppose that the adversary is running on a good
random tape.

Rushing Adversary In the proof, we consider also the case of a rushing ad-
versary, i.e., an adversary that has the additional power of choosing its data
after seeing the honest parties’ data. In particular, in each communication
round, the party corrupted by the adversary waits until it sees all the honest
parties’ messages and then decides what to send. In the proof, we deal with



253 Page 18 of 30 M. Battagliola et al. MJOM

the case of rushing adversary separately, showing in details how to change
the protocol to adapt to this enhanced security model.

Key-Generation Simulation First, we need to deal with the key-generation
algorithm. The simulator F plays the role of P1 and A plays the role of P2.
Before starting the simulation, F receives from its challenger a public key for
the IND-CPA encryption algorithm and an EdDSA public key. The goal is to
trick A in order to force the public key output by the multi-party computation
to match the EdDSA key given by the challenger.
The simulation works as follows:

1. F receives from the challenger an EdDSA public key Ac and the public
encryption key pk3.

2. Pi picks randomly ai, y3,i,mi ∈ Zq, r′
i ∈ Zq′ , and sets Ai = aiB,

Y3,i = y3,iB, R′
i = r′

iB′, Mi = miB.
3. Pi computes [KGCi,KGDi] = Com((Ai,Y3,i,R′

i,Mi)).
4. P2 sends KGC2 to P1.
5. P1 sends KGC1 to P2. It is important that P2 sends its commitment

before P1, see Observation 5.
6. Pi sends KGDi to Pj .
7. Pi gets (Aj ,Y3,j ,R′

j ,Mj) = Ver(KGCj ,KGDj).
8. At this point F knows all the parameters involved in the computation

of A, the first part of the key. So it rewinds A to the step 5, after the
commitment of A, with the aim to make A = Ac.

9. F computes Â = Ac − A2 − 2Y3,1 + Y3,2.
10. F picks randomly y1,2 ∈ Zq and computes M̂ = 1

2 (y1,2B−Â) to simulate
the VSS (since F is not able to compute the random polynomial f(x))
as explained in Sect. 2.7.

11. F computes the commitment [ ˆKGCi, ˆKGDi] = Com((Â,Y3,i,R′
i,M̂))

and sends it to A as P1.
12. P1 sends ˆKGD to P2.
13. Pi picks randomly y1,3 ∈ Zq and encrypts y1,3, y3,1 with pk3, obtaining

reci,3 (F has to simulate the NIZKPs if the encryption supports DLOG
verification).

14. Pi sends yi,j , reci,3 to Pj .
15. Since F does not know the discrete logarithm of Â it can not compute

x1, so it simulates the ZKP with A.
16. P2 can calculate x2 and execute the ZKP, from which F extracts the

value of x2.
17. Pi can compute the key A, moreover P2 can compute ω2 (for F it is

impossible, since it does not know x1).

Observation 5. In the simulation, it is crucial that the adversary broadcasts
KGC2 before F. Inverting the order will cause this simulation to fail, since
after the rewind A could change its commitment. Due to the non-malleability
property, we are assured that A can not deduce anything about the content
of these commitments, but nevertheless, it could use it as a seed for the
random generation of its values. In this case, F guesses the right Â only



MJOM Provably Unforgeable Threshold EdDSA with an Offline... Page 19 of 30 253

with probability 1
q where q is the size of the group, so the expected time is

exponential.
It is possible to swap the order in the first step using an equivocable

commitment scheme with a secret trapdoor. In this case we only need to
rewind at the decommitment step, we change KCD1 in order to match Â and
M̂. In this way, we could prove the security of the protocol also in the presence
of a rushing adversary, but we need an additional hypothesis regarding the
commitment scheme.

Lemma 4.2. The simulation terminates in expected polynomial time and it is
indistinguishable from the real protocol.

Proof. The proof of the Lemma is the same as Lemma 1 in Ref. [11], with a the
only difference that in our protocol F also needs to simulate the computation
of rec1,3.

In particular, since A is running on a good random tape we know that
it will correctly decommit with probability at least ε

2 ≥ λ(k)−t, then we need
to rewind only a polynomial number of times.

About the indistinguishability, notice that there are only two differences
between the real protocol and the simulated one. The first difference is that
F does not know the discrete logarithm of Â and so it needs to simulate both
the Feldman-VSS and the Schnorr protocols. Under the DDH assumption,
both of them can be easily simulated in an indistinguishable way as shown
in Sect. 2.7 and Appendix A.1.

The second difference is that F does not correctly computes rec1,3 and
instead sends a random encryption. This falls perfectly into the definition
of IND-CPA security Sect. 2.4 and thus the simulated execution is indistin-
guishable from the real one.

With these considerations, we can conclude that the simulation of the
key-generation protocol is perfect. �

Lemma 4.3. For a polynomially large fraction of inputs Ac the simulation
terminates with output Ac, except with negligible probability.

Proof. First, we prove that if the simulation terminates correctly (i.e., with
output different from ⊥) then it terminates with output Ac except with
negligible probability.

This is a consequence of the non-malleability property of the commit-
ment scheme. Indeed, if A correctly decommits twice it must do so with the
same string, no matter what P1 decommits to (except with negligible prob-
ability). Therefore, due to our choice for Â, we have that the output is Ac.

Now, we prove that the simulation ends correctly for a polynomially
large fractions of input. Since A is running on a good random tape, it de-
commits correctly for at least ε

2 > λk−t inputs. Moreover, since Ac is chosen
uniformly at random and Â = Ac − A2 − 2Y3,1 + Y3,2 is fully determined
after the rewind, we have that Â has also uniform distribution, then we can
conclude that for at least a fraction ε

2 > λk−t of input the protocol will
correctly terminate. �
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Signature Simulation Now, we have to deal with the ordinary signature algo-
rithm. Here, F can fully predict what A will output and then it can choose its
shards in order to match the signature it received from its oracle. Comparing
to the proofs of ECDSA threshold protocols in Refs. [10,43], we do not need
to make a distinction between semi-correct and non-semi-correct executions,
since we can always provide a perfect simulation that ends with the desired
result (except with negligible probability).

It is important to remember that F does not know the secret key of
P1 but it knows everything about P2, since it was able to extract the secret
values during the ZKPs.
The simulation works as follows:

1. A chooses a message M to sign.
2. F queries its signing oracle for a signature for M corresponding to the

public key A, and gets (Rf , Sf ).
3. Pi follows the protocol normally and computes R = R1 + R2. We can

notice that F is able to follow the protocol normally since it knows r′
1

and, therefore, can compute R1.
4. F computes R̂ = Rf − R2 and rewinds the adversary at the end of

Step 2.
5. F sets R1 = R̂.
6. Pi follows the protocol normally to get R = R1 + R2.
7. F simulates the ZKP using as input R′

1 and R̂.
8. From the ZKP given by the adversary on behalf of P2, F is able to

extract r′
2 from the adversary, and therefore, also r2.

9. Since F knows both r2 and ω2, P1 can compute S1 as:
S1 = Sf − r2 − ω2H(R||A||M).

10. Pi follows the protocol normally to get S = S1 + S2.
11. Pi checks that SB = R + H(R||A||M)A.

If any check fails the protocol aborts, otherwise the output signature is (R, S).

Lemma 4.4. If Purify is secure in the sense of Lemma 2.1, then the protocol
above is a perfect simulation of a real execution and terminates correctly with
output (Rf , Sf ).

Proof. The differences between the simulation and the real protocol is that
F does not know the secret key ω1 when computing S1, and the computation
of R1 uses a different PRF.

The lack of knowledge of the secret key is not a problem since F is able
to retrieve the correct values to output knowing ahead of time what A should
output.

About the different method used to compute R1, notice that the as-
sumptions on Purify mean that in a real execution of the protocol ri has a
distribution that is indistinguishable from the uniform distribution over Zq,
i.e., the distribution of Ri. In the simulation R1 = Rf − R2, where the dis-
tribution of R2 is indistinguishable from the uniform distribution over the
group generated by B (as in the real protocol) and Rf comes from the Ed-
DSA oracle. From our assumptions on the hash function used in EdDSA,
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the distribution of Rf is also indistinguishable from the uniform distribution
over the group generated by B, consequently so is the distribution of R1.

It is straightforward that if the protocol terminates it will do so with
output (R, S) = (Rf , Sf ), in fact if A does not act honestly the check in the
last step will fail with high probability.

Finally, the only other way that the protocol does not terminate is when
the NIZKP of R2 does not verify. In this case, the simulation simply aborts,
like in a real execution of the protocol. �

Now, we have to deal with the recovery signature. Since the core algo-
rithm remains the same, we can use the proof just explained, we only need
to change the setup phase during which the third player recovers its secret
material.

First, we will examine what happens if A controls one between P1 or P2

and F controls P3. Then, we will deal with the case in which A controls P3,
that will be easier since the whole enrollment phase can be avoided.

Trivially, if A asks for a recovery signature between the two honest
parties F can simply ask its oracle and output whatever it received from
the oracle. Therefore, we can limit ourselves to deal with the case where A
participates in the signing process.
If A controls P2 the simulation proceeds as follows:

1. P2 sends to P3 A,X2, rec1,3, rec2,3.
2. F has participated in the key-generation phase, so knows Y3,1 and Y3,2,

so can compute on behalf of P3 the value A3 = 2Y3,1 − Y3,2.
3. P3 picks randomly r′

3 ∈ Zq′ and computes R′
3 = r′

3B′.
4. P3 sends X3 = (A3,R′

3) to P1.
5. Note that P3 can not decrypt the values received in the first step, so it

simulates the ZKP about x3, conversely F can extract x2 from P2.
6. P2 computes ω̃2 = −3ω2. P3 can not compute its secret key ω3, but this

is not a problem as we explained before.
7. They perform the signing algorithm with the above simulation. Also in

this case F does not know its own secret key, but we remark that this
is fine since it knows P2’s secrets and it can use the signing oracle.

In the same way, we can deal with the case of A controlling P1.
Now, we have to deal with the last case, i.e., when P3 is the dishonest party.

During the enrollment phase, F can produce random shards, which will
be sent to P3 during the recovery signature phase, and output the public key
given by the EdDSA challenger. These random shards simulate correctly the
protocol for the properties of the secret sharing. In fact the only difference is
that once again F does not know the corresponding secret keys of one between
P1 and P2 (one player’s keys can be chosen freely, but the others are forced by
the challenge public keys), but as before this is not a problem because, thanks
to the oracle and the secrets it extracts from P3, F can simulate signatures
with the same simulation described above.

Now, we are ready to prove Theorem 4.1.

Proof. As we previously proved, our simulator produces a view of the protocol
indistinguishable from the real one for the adversary, so A will produce a
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forgery with the same probability as in a real execution. Then, the probability
of success of our forger F is at least ε3

8 , since F has to succeed in
• choosing a good random tape for A, whose probability is at least ε

2 , as
shown in Lemma 4.1,

• hitting a good public key, whose probability also is at least ε
2 as shown

in Lemma 4.2 and Lemma 4.3.

Under those conditions, A successfully produces a forgery with probability at
least ε

2 as per Eq. (11). Under the security of the EdDSA signature scheme,
the probability of success of F must be negligible, which implies that ε must
negligible too, contradicting the hypothesis that A has non-negligible proba-
bility of forging the scheme. �

Observation 6. As we said in the Signature Algorithm description, at point 1a.,
we need to have a different K for each pair of signers, otherwise an adversary
having access to all the messages exchanged by the honest parties could steal
the secret key. It suffices to ask for the signature of the same message, first
the signature is performed by the honest parties, then by the adversary and
a honest party, as explained in Section 4 of Ref. [19].

4.1. Resilience of the Recovery

In our security analysis, we focused on the unforgeability of the signature,
however with an offline party another security aspect is worthy of consid-
eration: the resiliency of recovery in the presence of a malicious adversary.
Of course if the offline party is malicious and unwilling to cooperate there
is nothing we can do about it, however, the security can be strengthened if
we consider that one of the online parties may corrupt the recovery material.
In this case a generic CPA asymmetric encryption scheme is not sufficient to
prevent malicious behavior, because we need a verifiable encryption scheme
that allows the parties to prove that the recovery material is consistent, just
like they prove that they computed the shards correctly.

In particular, we need an encryption scheme that support DLOG veri-
fication as explained in point 2f. of the key-generation algorithm. A suitable
candidate is a variant of the Cramer-Shoup cryptosystem presented in Ref.
[44]. This algorithm equipped with a ZKP that allow the sender to prove
that the plaintext he encrypted is the discrete logarithm of a public value.
In particular, since the protocol is a three-step ZKP with special soundness,
completness and honest-verifier zero knowledge, it is possible to build a non-
interactive ZKP using the Fiat–Shamir heuristic.

5. Conclusions

Although decentralized signature algorithms have been known for a while,
we are aware of only few proposals for algorithms that are able to produce
signatures indistinguishable from a standard one. The protocol described in
this work is, as far as we know, the first example of threshold multi-signature
allowing the presence of an offline participant during key generation and
whose signatures are indistinguishable from EdDSA ones.
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The approach we have taken is very similar to the one presented in Refs.
[10,15], although there are some key differences between the works. First of all
our main idea is to have two active participants to simulate the action of the
third one. This step is possible due to the uniqueness property of polynomial
interpolation that gives a bijection between points and coefficients, which
allows us to “invert” the generation of the shares, thanks to the preserved
uniform distribution in Zp. These shares are later recovered by the offline
party exploiting an asymmetric encryption scheme. A second difference is that
we have managed to avoid equivocable commitments, under the assumption
that in some specific steps (see Observation 5) we can consider the adversary
not to be rushing.

The focus of this work was to shift away from DSA-like protocols and
study a more recent standard like EdDSA. We remark that ECDSA is more
suited to be used in a multi-party environment: the absence of hash functions
to be computed on private data allows a more straightforward adaption to a
multi-party setting. Indeed, a joint computation of a standard hash function is
difficult in a reasonable time. Therefore, when creating an EdDSA-compatible
threshold multi-signature scheme, there is the necessity of working around
this issue. Our solution is to build a variant of the EdDSA protocol, whose
outputs are indistinguishable from those of the original scheme (and therefore,
it preserves the security properties), thus avoiding joint hash computations.

On the other hand, multi-party EdDSA requires less message exchanges
between the participants than the amount required for the threshold ECDSA
protocol in Ref. [15], since less checks are needed to avoid malicious computa-
tions. In particular, the threshold ECDSA protocol requires 10 communica-
tion rounds for the signature generation, while this EdDSA protocol requires
only 2. Given that efficiency is one of the reasons for preferring EdDSA over
ECDSA, we have that our solution maintains this property.

A last remark worth to be mentioned is in the work-around made on
the Zero-Knowledge proofs of our EdDSA scheme (as explained in Ref. [32]),
which are required to work around the usage of elliptic curves whose group
of points does not have prime order.

Similarly to its ECDSA counterpart, in order to guarantee the security
of the signature itself against black-box adversaries, the protocol involves
a large utilization of ZKPs. Despite the consequent drawbacks in terms of
efficiency, our protocols has been successfully implemented and adopted in
the management of Libra wallets [45].

Other future research steps involve the generalization to (t, n)-threshold
schemes with more than one offline party and the extension of our notion of
security. The techniques introduced in Ref. [46] are a direct evolution of the
approach used in this paper to achieve the threshold key generation, so it is
very likely that those techniques could be used to achieve a general (t, n)-
threshold EdDSA scheme where multiple parties can be brought online after
key generation.
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Although our protocol is susceptible to DOS attacks on the offline party,
there are many ways to overcome this apparent weakness, such as the distribu-
tion of the role of the Recovery party to multiple servers or the generalization
of our scheme to more than three parties.
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Appendix A. Zero-Knowledge Proofs

A.1. Schnorr Protocol

The Schnorr Protocol is a zero-knowledge proof for the discrete logarithm.
Let G be a group of prime order q with generator B. Let K ∈ G be a random
element in G. The prover P wants to prove to a verifier V that it knows the
discrete logarithm of K, i.e., it knows x ∈ Zq such that xB = K.
So the common inputs are G,B and K, while the secret input of P is x.
The protocol works as follows:

1. P picks r ∈ Zq uniformly at random in and computes U = rB. Then P
sends U to V.

2. V picks c ∈ Zq uniformly at random and sends it to P.
3. P computes z = r + cx and sends z to V.
4. V computes zB. If P really knows x it holds that zB = U + cK. If the

equality does not hold, the verifier rejects.
A detailed proof about the security of the algorithm can be found in Ref.
[30].

A.1.1. Schnorr Protocol Simulation. We need to simulate the Schnorr pro-
tocol in two different ways: first we need to use it to extract the adversary’s
secret value, then we need to simulate it without knowing our secret value,
tricking the opponent.

We can use the Schnorr protocol to extract the value x from the adver-
sary in this way:

1. Follow the standard protocol until the third point, obtaining z.
2. Rewind the adversary to the second point and pick c̃ �= c.
3. Follow the remaining part of the protocol, obtaining z̃.
4. We can compute z−z̃

c−c̃ = (c−c̃)x
c−c̃ = x.

Proof. (Sketch) Since the only extra hypothesis for c̃ is that c̃ �= c we can
suppose that c̃ has uniform distribution as well. Moreover z, once the verifier
sent c the value of z is fixed, so the rewinding technique does not cause any
problem. �

At the same time we need to be able to simulate the protocol without
knowing x. The simulation works as follows:

1. Follow the protocol until the second point, obtaining c.
2. Rewind the adversary to the first point. The simulator picks r randomly

and computes Ũ = (−xc + r)B = −c(xB) + rB. Under the discrete log-
arithm assumption and since r, c are random element, this is indistin-
guishable from rB.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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3. The simulator sends Ũ and the adversary sends c again.
4. The simulator sends z = r − cx + cx = r.
5. The adversary checks that zB = rB = Ũ + c(xB) = −xcB + rB + xcB.

Proof. (Sketch) The tricky point of the simulation is the third point, when we
need that the adversary sends the same c it has previously sent, since sending
a different r could change the random choice of c. In general it is not possible
to ensure that the same c is sent in both executions. The most common way
to resolve this issue is to consider only a binary challenge space, thus the
probability of getting the same c twice in a row is 1

2 . If the challenge space
grows the probability decreases and we need an exponentially large number of
repetitions. Indeed, the Schnorr Protocol is Zero Knowledge only for a binary
challenge space, in the general case it is only Honest Verifier Zero Knowledge
(HVZK). It is worth noticing that HVZK is a strong enough property to allow
the usage of non-interactive zero-knowledge proofs, that drastically decrease
the communication complexity of the protocol. For a deeper discussion about
non-interactive zero knowledge proofs and their simulation, see Ref. [47]. �

A.1.2. Equality of Discrete Logarithms. This simple variant of the protocol
allows to prove that two public elements are linked to the same secret value.

More formally, let G be a cyclic group of prime order q, let B, B̄ be
generators of G, and finally let K, K̄ ∈ G, x ∈ Zq. The prover knows x and
wants to convince the verifier that:

xB = K and xB̄ = K̄, (16)

without disclosing x. The values of B, K, B̄ and K̄ are publicly known.
The protocol proceeds as follows:

1. The prover generates a random r and computes U = rB and Ū = rB̄,
then sends (U , Ū) to the verifier.

2. The verifier computes a random c ∈ {0, 1} and sends it to the prover.
3. The prover creates a response s = r + c · x and sends s to the verifier.
4. The verifier checks that sB = cK + U , sB̄ = cK̄ + Ū . If the check fails

the proof fails and the protocols aborts.
5. The previous steps are repeated τ = poly(log2(q)) times, i.e., the num-

ber of repetitions is polynomial in the length of q (the security param-
eter).

A detailed analysis of the protocol and its security can be found in Ref. [48].
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