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Abstract. In this paper, we introduce an interlacing condition on the
elements of a family of operators that allows us to gather together a
number of results on fixed points and common fixed points for single and
families of mappings defined on metric spaces. The innovative concept
studied here deals with nonexpansivity conditions with respect to orbits
and under assumptions that only depend on the features of the closed
balls of the metric space.
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1. Introduction

Given (M,d) a metric space, a mapping T : M → M is said to be nonexpan-
sive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ M . Nonexpansive operators arose as a forthright generaliza-
tion of contractive mappings introduced by S. Banach. Easy examples show
that nonexpansive self-mappings defined on a complete metric space may fail
to have a fixed point. However, in the framework of Banach spaces, W. A.
Kirk proved the existence of fixed points for every nonexpansive self-mapping
defined from a convex weakly compact subset under the additional assump-
tion of normal structure [18]. The notion of normal structure was defined by
Brodskĭi and Milman [3] as a key tool to show the existence of a common
fixed point for the group of (onto) isometries defined on a convex weakly
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compact subset of a Banach space. Since then, a vast literature has appeared
connecting geometry properties of Banach spaces with the existence of fixed
points for nonexpansive mappings as well as with the existence of common
fixed points for families of operators satisfying nonexpansivity and some extra
requirement.

As it is the case for contractions and isometries, being nonexpansive for
a mapping is a pure metric feature that does not call for the definition of
any underlying linear structure: it only depends on the relationship between
the distance of points and the distance of their images. Therefore, it is not
surprising that many authors have studied some types of extensions when it
comes to the existence of fixed points for nonexpansive operators on complete
metric spaces (see, for instance, [7–9,15–17,21,24,29] and references therein).

In this paper, our general framework will be a metric space and our
main purpose is the analysis of the existence of (common) fixed points for
operators that verify a nonexpansivity condition with respect to orbits and
for which continuity assumptions are not needed. These operators were firstly
introduced by Nicolae [24] (see also [1]) and include nonexpansive mappings
as a particular case. The precise definitions will be given in the next section.
A similar notion requiring continuity was initially considered in [19] in re-
lation to mappings with diminishing orbital diameters. More recently, orbit
conditions have been considered in the study of existence of best proximity
points for cyclic and noncyclic mappings [4,10,27].

With tools relying only upon features of the closed balls of the metric
space, we will be able to extend some previous results in the Banach frame-
work for orbit-nonexpansive mappings and, additionally, in the much wider
setting of metric spaces. As a particular case, we will deduce the common
fixed point result for bounded hyperconvex metric spaces given in [16,21]
as well as those obtained for CAT(0) metric spaces in [24]. New directions
beyond the prior scopes will also be provided throughout the article.

The organization of the paper is the following. In Sect. 2 we will estab-
lish some basic definitions as well as the metric framework on which we are
going to work. We will introduce the notion of orbit-nonexpansive mapping
and provide examples of such mappings emphasizing the lack of continuity. In
Sect. 3, we will focus on the existence of fixed points for orbit-nonexpansive
operators. With the purpose of analyzing simultaneously the case of a single
mapping and the action of a group, we will introduce an interlaced condition
for a family of operators defined on a metric space, upon which our main
theorems will be proved. Although they do not generally form a group, fol-
lowing similar techniques as in [16], the existence of a common fixed point for
a family of commuting operators will also be achieved. The concept of metric
normal structure will be essential in our approach. Additionally, we will show
how our results generalize [1, Theorem 2.2], [24, Theorem 5.1], [16, Theorem
8] and some others, as well as they can be applied to other environments
which are not covered by the previously cited papers.

In Sect. 4, we will focus on the condition of uniform relative normal
structure, initially defined by Soardi [28] in the linear case, for obtaining fixed
points for nonexpansive operators defined in abstract M Banach lattices, and
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also used by Lau [23] for the action of isometries. Once more, our framework
will be a general metric space as in [8,17] and the interlaced condition will
be used to obtain fixed points for a single mapping and for the action of a
group likewise.

Some other interesting papers studying fixed-point theorems under met-
ric conditions involving some particular orbit features of a given operator are
[25,26].

2. Preliminaries

Throughout this paper, (M,d) will denote a metric space. Given a mapping
T : M → M and x ∈ M , the orbit of x under T is denoted by

oT (x) := {x} ∪ {Tnx : n ∈ N}.

Given a bounded subset A of M , we denote by δ(A) its diameter, that is,
δ(A) := sup{d(x, y) : x, y ∈ A}. Additionally, for x ∈ M, we set

D(x,A) := sup{d(x, a) : a ∈ A},

which gives the least radius of a closed ball centered at x containing A. (Note
that D(x,A) is also denoted by rx(A) in some other references.) The following
definition was initially introduced in [24]:

Definition 2.1. Given a metric space (M,d), a mapping T : M → M is said
to be orbit-nonexpansive (or nonexpansive with respect to orbits) if

d(Tx, Ty) ≤ D(x, oT (y)) ∀x, y ∈ M. (2.1)

It is clear that every nonexpansive mapping satisfies (2.1), since y ∈
oT (y) for all y ∈ M . On the other hand, it is not difficult to check that
condition (2.1) further implies: d(Tnx, Tny) ≤ D(x, oT (y)) for all x, y ∈ M
and n ∈ N. In the event that (M,d) is an unbounded metric space, the
following disjunctive follows: either all orbits of T are bounded or all orbits
of T are unbounded. If a mapping T verifies that all its orbits are unbounded,
condition (2.1) trivially holds and no fixed point can be assured as a simple
translation in R shows. We will exhibit later an example that no fixed point
can be guaranteed even if all of T’s orbits are bounded in an unbounded
metric space (see Remark 3.7). Thus, from this moment on we will assume
that the metric space (M,d) is bounded.

A. Nicolae proved that every self orbit-nonexpansive operator has a fixed
point when it is defined on a bounded complete CAT(0) space (and therefore
on a bounded closed and convex subset of a Hilbert space) [24, Theorem
5.1]. In a later paper, Amini-Harandi et al. [1] studied the existence of fixed
points for orbit-nonexpansive mappings in the Banach space setting under
weak normal structure. In fact, [1, Theorem 2.2] proves that a Banach space
X has weak normal structure if and only if for every convex weakly compact
subset C and for every T : C → C orbit-nonexpansive mapping, there exists
a fixed point. It should be highlighted that weak normal structure in Banach
spaces had previously been characterized by using fixed points for the so-
called Jaggi nonexpansive mappings (see [13,14]). Nevertheless the definition
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of this class of mappings introduced by Jaggi [13] strongly uses the linear
structure of the Banach space.

It is clear that nonexpansivity implies uniform continuity. However, be-
ing orbit-nonexpanse does not require continuity as the example given in
[24, Example 5.2] shows. We next display a further example of an orbit-
nonexpansive mapping for which it is not possible to find a non-trivial closed
T -invariant interval upon which the mapping T is continuous.

Example 2.2. Let T : [−1, 1] → [−1, 1] be given by

T (x) =

{
x
3 if x is irrational,

−x
3 if x is rational.

We prove that T is orbit-nonexpansive. Notice that 0 ∈ oT (x) for all x ∈
[−1, 1]. Take first x, y ≥ 0 such that x is irrational and y rational. We split
the proof into cases:

Case 1 0 ≤ x < y ≤ 1. In this case, D(x, oT (y)) = max
{

y − x, x +
y

3

}
and D(y, oT (x)) = y. Moreover,

d(Tx, Ty) =
x

3
+

y

3
≤ x +

y

3
≤ D(x, oT (y)) and

d(Ty, Tx) =
x

3
+

y

3
≤ 2

y

3
≤ D(y, oT (x)).

Case 2 0 ≤ y < x ≤ 1. In this case, D(x, oT (y)) = x +
y

3
and

D(y, oT (x)) = max{y, x − y}. Moreover,

d(Tx, Ty) =
x

3
+

y

3
≤ 2x

3
≤ x ≤ D(x, oT (y)).

Now, if y ≤ x

2
,

d(Ty, Tx) =
x

3
+

y

3
≤ x − y ≤ D(y, oT (x)),

and if
x

2
≤ y,

d(Ty, Tx) =
x

3
+

y

3
≤ 2y

3
+

y

3
= y ≤ D(y, oT (x)).

By symmetry, we can conclude that d(Tx, Ty) ≤ D(x, oT (y)) for all x, y ∈
[−1, 1] and T is orbit-nonexpansive. Additionally, T fails to be nonexpansive
on any T -invariant nontrivial closed interval of [−1, 1], which easily follows
from the fact that T is discontinuous everywhere except for the origin that
is fixed for T .

Remark 2.3. Notice that every orbit-nonexpansive mapping is continuous at
least at the set of fixed points (provided it is not empty). This is due to the
inequality d(Tx, y) ≤ d(x, y) for all x ∈ M and for y ∈ M verifying T (y) = y.

Mappings satisfying d(Tx, Ty) ≤ max{d(x, y), d(x, Ty)} for all x, y ∈ M
clearly lie within the scope of Definition 2.1. Another family of mappings that
fulfills the orbit-nonexpansivity is the class of mean nonexpansive mappings
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introduced in [31] as follows: a mapping T : M → M is said to be mean
nonexpansive if there exist nonnegative constants a, b ≥ 0 with a+ b ≤ 1 and
such that

d(Tx, Ty) ≤ ad(x, y) + bd(x, Ty)

for all x, y ∈ M (see [30–32] and references therein).
Since we are also interested in obtaining common fixed points for the

action of a group, we recall some standard notions: A set S is a group if there
is an inner product, ·, defined on it such that it is associative, there is an
element 1 ∈ S with s · 1 = 1 · s = s for all s ∈ S, and for every s ∈ S there is
s−1 ∈ S with s · s−1 = s−1 · s = 1. Given a set M and a group S, it is said
that S acts over M if every s ∈ S defines an operator from M into itself and
the following two properties are satisfied: the unit element 1 ∈ S defines the
identity over M and (s · t)(x) = s(tx) for all s, t ∈ S and x ∈ M .

Next, we recall some facts about convexity structures in metric spaces.

Definition 2.4. (i) A subset of a metric space (M,d) is said to be admissible
if it is an intersection of closed balls of M . The family of all admissible
sets of M is denoted by A(M).

(ii) A family F of subsets of M defines a convexity structure on M if it
contains all closed balls of M and is closed under intersection.

(iii) A convexity structure on M is said to be compact if the intersection of
any collection of elements of it is nonempty provided finite intersections
of such elements are nonempty.

In fact, it is known that compactness of the family of admissible sets
implies completeness of the metric space [9, Proposition 3.2]. It follows from
the definition that the family A(M) of admissible sets is a convexity structure
contained in every other convexity structure considered on M .

In the setting of a Banach space endowed with a topology τ for which the
closed balls are τ -closed, the family of all convex τ -closed bounded sets forms
a convexity structure. Standard examples are Banach spaces endowed with
the weak topology, the weak∗-topology (in case of a dual Banach space) or the
closed in measure topology in case of the Lebesgue space L1[0, 1]. In case that
a τ -compact convex subset M is considered for any of the previous topologies,
the resulting convexity structure formed by the convex τ -closed subsets of M
is also compact. These convexity structures turned out to be essential tools
to ensure the existence of fixed points for nonexpansive operators defined on
convex subsets which are weakly compact, weakly∗ compact or compact in
measure, respectively (see, for instance, [2,5,6] and references therein).

Abstract convexity structures in metric spaces have been extensively
studied in the last decades. A complete monograph on related topics was given
by Khamsi and Kirk [17], where Chapter 5 is devoted to normal structure in
the metric space setting.

Definition 2.5. A metric space (M,d) is said to have metric normal structure
if for every non-singleton admissible set A ∈ A(M), there exists some zA ∈ A
such that D(zA, A) < δ(A).
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Note that the previous definition only involves the closed balls of the
metric space (M,d). It says that for every admissible set A with positive
diameter, there exists a closed ball containing A, with radius strictly less
than the diameter of A and whose center zA is in A (in the last section we
will consider a modified version of the metric normal structure where the
center zA of the ball containing A is allowed to lie outside of A).

When the family of admissible sets A(M) is replaced in Definition 2.5
by some convexity structure as the ones introduced above for Banach spaces,
the concepts of weak normal structure, weak∗ normal structure or τ -normal
structure (when τ is the topology of the convergence in measure in L1[0, 1])
are just displayed. In fact, it was proved in [20] that convex compact in
measure subsets of L1[0, 1] have τ -normal structure. Actually, it is possible
to find closed convex bounded subsets of a Banach space failing to have weak
normal structure (when the convexity structure is the family of all convex
weakly compact subsets) but they still have metric normal structure [8,11].

Strongly connected with Definition 2.5 is the notion of uniform normal
structure (UNS).

Definition 2.6. A metric space (M,d) is said to have UNS if there exists some
c ∈ (0, 1) such that for every non-singleton admissible set A there exists some
xA ∈ A with D(xA, A) < c δ(A).

Remark 2.7. It is known that, in complete metric spaces, uniform normal
structure implies compactness of the family of admissible sets A(M) (see [15]
or [17, Theorem 5.4]).

We also recall the definition of a one-local retract of a metric space,
which will be useful in the next section to extend a fixed point result obtained
for a single mapping to a common fixed point result for a family of commuting
operators. More details about one-local retracts can be found in [16], where
it is shown that they can be considered as a generalization of nonexpansive
retracts, enjoying some structural properties of great interest.

Definition 2.8. A subset D of a metric space (M,d) is a one-local retract of M
if, for any family of closed balls centered at D with nonempty intersection, it is
the case that the intersection of all of them must have nonempty intersection
with D.

We finish this section by stating some fixed point theorems that will be
extended in what follows:

Theorem 2.9. [16, Theorem 8] Let (M,d) be a bounded metric space with
metric normal structure and such that A(M) is compact. Then any commut-
ing family of nonexpansive self-mappings on M has a common fixed point.
Moreover, the set of common fixed points is a one-local retract of M .

Theorem 2.10. [1, Theorem 2.2] Let M be a convex weakly compact subset of
a Banach space X with weak normal structure and T : M → M an orbit-
nonexpansive mapping. Then T has a fixed point.
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Theorem 2.11. [24, Theorem 5.1] Let (M,d) be a bounded complete CAT(0)
metric space and T : M → M an orbit-nonexpansive mapping. Then T has
a fixed point.

3. Metric Normal Structure and Fixed Points for
Orbit-Nonexpansive Mappings

In this section, we will study how the notion of metric normal structure
introduced in Definition 2.5 leads us to achieve positive results concerning the
existence of fixed points for orbit-nonexpansive mappings. With the purpose
of dealing simultaneously with the case of a single mapping and the case of
the action by a group, we introduce the following definition:

Definition 3.1. Let (M,d) be a bounded metric space and F a family of self-
mappings on M such that

d(Tx, Sy) ≤ sup{D(x, oR(y)) : R ∈ F}
for T, S ∈ F and x, y ∈ M . Then we say that F is a family of interlaced
orbit-nonexpansive mappings.

It is straightforward that a mapping T : M → M is orbit-nonexpansive
if and only if the singleton family F := {T} satisfies Definition 3.1. Next, we
prove a similar result for a group of operators acting over a metric space each
of which is orbit-nonexpansive.

Proposition 3.2. Let (M,d) be a bounded metric space and let S be a group
of self-operators acting on M , each of one is orbit-nonexpansive. Then, the
family S is interlaced orbit-nonexpansive.

Proof. Let s, t in S be orbit-nonexpansive mappings. Then,

d(tx, sy) = d(tx, tt−1sy) ≤ D(x, ot(t−1sy)).

But, t−1s ∈ S, so

D(x, ot(t−1sy)) ≤ sup{D(x, or(y)) : r ∈ S}.
Therefore, S is a family of interlaced orbit-nonexpansive operators. �

Now, we present the main result of this section.

Theorem 3.3. Let (M,d) be a bounded metric space with metric normal struc-
ture and such that A(M) is compact. Let F be a family of interlaced orbit-
nonexpansive self-mappings on M . Then, there exists a common fixed point
to all mappings in F . Moreover, the common fixed point set of F , Fix(F), is
a one-local retract of M .

Proof. Consider AF (M) the class of nonempty admissible subsets of M which
are T -invariant for every T ∈ F . This family is nonempty since M ∈ AF (M).
Zorn’s Lemma and compactness of A(M) imply that there exists a minimal
element with respect to set inclusion in AF (M). Let such a set be denoted
as A0. We claim that A0 is a singleton and so its element is a common fixed
point for all mappings in F .
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By contradiction, suppose that δ(A0) > 0. To simplify the notation, for
a subset C ⊂ M we denote

cov(C) :=
⋂

{B : B is a closed ball and C ⊆ B}.

In other words, cov(C) is the least admissible set containing C.
Since A0 is T -invariant for every T ∈ F , we have that⋃

T∈F
T (A0) ⊆ A0.

Since A0 is admissible,

cov

( ⋃
T∈F

T (A0)

)
⊆ A0.

Moreover, for S ∈ F ,

S

(
cov

( ⋃
T∈F

T (A0)

))
⊆ S(A0) ⊆ cov

( ⋃
T∈F

T (A0)

)
.

Therefore,

cov

( ⋃
T∈F

T (A0)

)
∈ AF (M),

and the minimality of A0 implies that

A0 = cov

( ⋃
T∈F

T (A0)

)
. (3.1)

Now, using the metric normal structure of the space, there exist a0 ∈ A0

such that D(a0, A0) < δ(A0), which implies that A0 ⊆ B(a0, r) where r :=
D(a0, A0) and

a0 ∈ Ã0 := A0 ∩
( ⋂

a∈A0

B(a, r)

)
.

Notice that Ã0 is a nonempty admissible set strictly contained in A0 since
δ(Ã0) ≤ r < δ(A0). If we show that Ã0 is T -invariant for every T ∈ F , we
will have met a contradiction with the minimality of A0:

Let T ∈ F . Since A0 ⊆ B(a0, r), we have that d(a0, a) ≤ r for a ∈ A0,
but, since A0 is T -invariant, we also have that d(a0, T

na) ≤ r for all n ∈ N.
Therefore,

D(a0, oT (a)) ≤ r

for any T ∈ F . Now, the interlacing property implies that

d(Sa0, Ta) ≤ r.

for any S, T ∈ F . In particular, T (A0) ⊆ B(Sa0, r) for T, S ∈ F , and so⋃
T∈F

T (A0) ⊆ B(Sa0, r).
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From (3.1),

A0 ⊆ B(Sa0, r),

and so

Sa0 ∈ Ã0 = A0 ∩
( ⋂

a∈A0

B(a, r)

)

for any S ∈ F . That is, Ã0 is S-invariant for every S ∈ F and as a conclusion
we deduce that Fix(F), the common fixed point set of all mappings in F , is
nonempty.

To complete the proof, we next show that Fix(F) is a one-local retract of
M . Indeed, let {B(xi, ri) : i ∈ I} be a family of closed balls with xi ∈ Fix(F),
for each i, such that B =

⋂
i∈I

B(xi, ri) �= ∅.
We claim that B ∩ Fix(F) �= ∅. In fact, since B is admissible, it turns

out that A(B) inherits compactness and B has metric normal structure.
Furthermore, B is T -invariant for any T ∈ F . Indeed, let y ∈ B, then for
each i ∈ I we have that

d(Ty, xi) = d(Ty, Txi) ≤ sup{D(y, oS(xi)) : S ∈ F} = d(y, xi) ≤ ri.

Repeating the first part of this proof for the metric space B, there is some
x ∈ B such that T (x) = x for every T ∈ F , which shows that B ∩ Fix(T )
�= ∅. �

If we put together Theorem 3.3 with Proposition 3.2, we obtain the next
common fixed point result for the action of a group. The result seems to be
unknown even for the case of nonexpansivity.

Corollary 3.4. Let (M,d) be a bounded metric space with metric normal struc-
ture such that A(M) is compact. Let S be a group action over M formed by
orbit-nonexpansive mappings. Then there is x ∈ M such that s(x) = x for all
s ∈ S.
Remark 3.5. Note that Corollary 3.4 clearly extends the common fixed point
results given for onto isometries defined on a convex weakly compact subset
of a Banach space with normal structure proved by Brodskĭi and Milman [3]
(see also [12]), and on a bounded hyperconvex metric space stated in [21,
Proposition 1.2].

When just a single mapping is considered, we can deduce the following:

Corollary 3.6. Let (M,d) be a bounded metric space with metric normal struc-
ture and such that A(M) is compact. Let T : M → M be orbit-nonexpansive.
Then T has a fixed point. Moreover, the fixed point set of T , Fix(T ), is a
one-local retract of M .

Remark 3.7. In the approach followed along the proof of Theorem 3.3, the
boundedness of the metric space was used to assure that M belongs to the
family of admissible sets. We could raise the question whether the bound-
edness of the metric space could be replaced by the boundedness of the
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orbits of the mapping T . The following example, due to S. Prus, shows
that this is not possible: Let T : �∞ → �∞ be given by T (x) = (1 +
lim supn xn, x1, x2, · · · , xn, · · · ). The mapping T is fixed point free, it is an
isometry, all its orbits are bounded and the space �∞ is hyperconvex, which
implies that it has uniform normal structure and then the family of the ad-
missible sets is compact (see for instance [9]).

Following the same arguments as in [16] and by using the fact that the
set of all fixed points is a one-local retract of M , we can derive the next
common fixed point theorem which is a strict generalization of [16, Theorem
8] (see also [9, Theorem 6.2] for the particular case of hyperconvex metric
spaces).

Corollary 3.8. Let (M,d) be a bounded metric space with metric normal struc-
ture such that A(M) is compact. Then any commutative family (Ti)i∈I of
orbit-nonexpansive self-mappings on M has a common fixed point. Moreover,
the set of the common fixed points is a one-local retract of M .

Proof. The proof of this corollary follows in the same way as those of Theo-
rems 7 and 8 in [16]. �

Corollary 3.8 extends Theorems 2.9, 2.10 and 2.11, since for every
bounded complete CAT(0) space the family of admissible sets is therefore
compact (see [22] and [17, Theorem 5.4]). Also, the more general class of
uniformly convex metric spaces studied in [7] satisfies conditions of Corol-
lary 3.8. We finish this section with some applications to the Banach space
setting:

Corollary 3.9. Let M be a convex closed bounded set of a Banach space X
satisfying one of the following conditions:

(i) X has weak normal structure and M is a weakly compact set,
(ii) X is a dual space with weak∗ normal structure and M is a weak∗ compact

set,
(iii) X = L1[0, 1] and M is a compact in measure set.
Then every commuting family (Ti)i∈I of orbit-nonexpansive self-mappings on
M has a common fixed point. Additionally, the set of common fixed points
of this family of mappings is a one-local retract of M . Furthermore, if S is
a group of orbit-nonexpansive operators defined on M , there is x ∈ M such
that s(x) = x for all s ∈ S.

4. Uniform Relative Normal Structure and Fixed Points for
Orbit-Nonexpansive Mappings

P. Soardi defined in [28] a geometric property in Banach spaces related to
the normal structure and providing fixed points for nonexpansive operators:
the uniform relative normal structure (URNS). This property was useful to
cover the case of L∞-spaces and, more generally, AM-spaces, where the stan-
dard normal structure or uniform normal structure does not generally work,
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in particular when complex Banach lattices are considered. The interested
reader can find more details in [28]. For the action of groups, the concept of
uniform relative normal structure was later used by Lau [23, Theorem 1] to
obtain a common fixed point for (onto) isometries defined on a closed convex
bounded subset of a Banach space. In [17, Chapter 5], the uniform relative
normal structure is defined for the general environment of metric spaces,
with only intersections of balls being considered for its definition. In this
section, we prove that this metric extension indeed implies the existence of
fixed points for orbit-nonexpansive mappings. In fact, we will extend Soardi
Theorem in [28], its metric version given in [17, Theorem 5.6] and its corre-
sponding generalization obtained in [8, Section 4] for a single mapping and
for the action of groups in the orbit-nonexpansive setting. Notice that some
arguments have to be redefined due to the lack of continuity assumptions.
We recall the metric definition of URNS that can be found in [17] and the
corresponding theorem proved there:

Definition 4.1. A metric space (M,d) is said to have uniform relative nor-
mal structure (URNS) if there exists some c ∈ (0, 1) such that, for every
admissible set A with δ (A) > 0, the following conditions are satisfied:

(i) There exists zA ∈ M such that D(zA, A) ≤ c δ (A) .
(ii) If x ∈ M is such that D(x,A) ≤ c δ (A) , then d (x, zA) ≤ c δ (A).

Theorem 4.2. [17, Theorem 5.6], [28] Let (M,d) be a bounded metric space
with URNS and such that A (M) is compact. Then every nonexpansive map-
ping T : M → M has a fixed point.

For a better handling of the uniform relative normal structure, we will
use the notation introduced in [8]: For A ⊂ M and r > 0, let us denote

B [A, r] :=
⋂
x∈A

B (x, r) = {y ∈ M : A ⊂ B (y, r)} .

The set B [A, r] is admissible and y ∈ B[A, r] if and only if A ⊂ B(y, r) if
and only if D(y,A) ≤ r. Besides, δ(A ∩ B[A, r]) ≤ r (although it can be an
empty set). Hence, condition (i) in Definition 4.1 can be equivalently written
as

B[A, c δ(A)] �= ∅.

Finally, conditions (i) and (ii) in Definition 4.1 can be expressed as a unique
statement given by

B [A, c δ (A)] ∩ B [B[A, c δ (A)], c δ (A)] �= ∅,

for every A ∈ A(M) with δ(A) > 0.
There is a subtle, but important difference between Definition 4.1 and

the concepts of metric normal structure and UNS introduced in Sect. 2. Note
that UNS can be reformulated by the existence of some c ∈ (0, 1) such that

A ∩ B[A, c δ(A)] �= ∅
for all admissible set A with positive diameter. The point zA given in Defini-
tion 4.1 belongs to B[A, c δ(A)], but it need not belong to the set A and that



182 Page 12 of 17 R. Espínola et al. MJOM

is why the extra condition (ii) is required. In particular, if a metric space
(M,d) has uniform normal structure, then it has uniform relative normal
structure by using the same parameter.

A new property that formally weakens URNS was introduced in [8] and
it was used to prove that, for some metric spaces, the original metric can be
slightly altered such that the following property is still preserved.

Definition 4.3. [8] A metric space (M,d) is said to have (p, q)-URNS for some
p > 0 and q ∈ (0, 1) if

B [A, p δ (A)] ∩ B [B [A, p δ (A)] , q δ (A)] �= ∅
for every A ∈ A (M) with δ(A) > 0.

Remark 4.4. Observe that when p = q ∈ (0, 1), Definition 4.3 is just Defi-
nition 4.1 for the parameter c := q. Hence, (p, q)-URNS provides a formal
extension of URNS. The advantage of considering (p, q)-URNS lies in the
fact that, playing with the parameters p and q, it is possible to prove that for
some metric spaces, as it is the case of hyperconvex spaces, the (p, q)-URNS
is stable when the hyperconvex metric is slightly altered to give place to a
second equivalent distance not too far enough from the original one (see [8,
Section 4] for a complete exposition of this fact).

We next extend the main theorem in [8, Section 4] to orbit-nonexpansive
mappings. The following notation will be needed: Given (M,d) a metric space
and F a family of self-mappings defined on M , the F-admissible cover of a
set E ⊂ M is defined as:

covF (E) =
⋂

{A ∈ A(M) : E ⊂ A, T (A) ⊂ A for all T ∈ F} .

It is immediate to see that covF (E) is admissible, contains E and is
T -invariant for all T ∈ F . Once more, the main theorem of this section will
be proved for the case of a general interlaced orbit-nonexpansive family and
we will obtain, as particular cases, a fixed point result for a single orbit-
nonexpansive mapping and a common fixed point result for the action of a
group.

Theorem 4.5. Let (M,d) be a bounded metric space with (p, q)-URNS for
some 0 < q < 1 and such that A (M) is compact. Let F be a family of
interlaced orbit-nonexpansive self-mappings on M . There exists a common
fixed point for all mappings in F .

Proof. Following similar arguments as in [17] (see also [8]), we pursue to
construct a sequence of subsets (An)n≥0 in A (M) which are T -invariant for
all T ∈ F and fulfilling the following properties:
(1) An ⊂ B [An−1, p δ (An−1)].
(2) δ (An) ≤ q δ (An−1).

Assume that (1) and (2) hold and, for each n ∈ N, choose xn ∈ An. Hence,

d(xn, xn−1) ≤ p δ(An−1) ≤ pqn δ(A0).

Therefore, (xn) is a Cauchy sequence in a complete metric space (since A(M)
is compact [9, Proposition 3.2]). Let x ∈ M be the limit of (xn). We cannot
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derive that x is a fixed point from continuity assumptions as in [8, Theorem
4.7].

Fix any T ∈ F . The T -invariance of the sets An for all n ≥ 0 allows us
to assure that

D(xn, oT (xn)) ≤ δ(An)

and

D(x, oT (xn)) ≤ d(x, xn) + D(xn, oT (xn)) ≤ d(x, xn) + δ(An).

Using that F is a family of interlaced nonexpansive self-mappings w.r.t.
orbits, for all S ∈ F we obtain:

d(Sx, Sxn) ≤ sup{D(x, oT (xn)) : T ∈ F} ≤ d(x, xn) + δ(An).

In conclusion,

d(x, Sx) ≤ d(x, xn) + d(xn, Sxn) + d(Sx, Sxn)
≤ d(x, xn) + δ(An) + d(x, xn) + δ(An) →n 0,

which implies that x is a fixed point of S for all S ∈ F .
Therefore, it remains to be shown that we can construct a sequence

(An)n≥0 of admissible sets verifying (1) and (2). The proof is inspired by the
one given in [8].

Let A0 ∈ A(M) be minimal T -invariant for all T ∈ F . Then, A0 =
cov(

⋃
T∈F T (A0)). Denote δ0 := δ(A0).

Let x ∈ M such that A0 ⊂ B(x, r) for some r > 0. For y ∈ A0,
oR(y) ⊂ A0 for all R ∈ F . Besides, for S, T ∈ F

d(Sy, Tx) ≤ sup{D(x, oR(y)) : R ∈ F} ≤ D(x,A0) ≤ r,

which implies that S(A0) ⊂ B(Tx, r) and A0 = cov(
⋃

S∈F S(A0)) ⊂ B(Tx, r).
This concludes that B[A0, p δ0] is a T -invariant admissible set for all T ∈ F
(by (p, q)-URNS we can set r := p δ0 in the previous argument).

Define

Ã0 := covF (B[A0, p δ0] ∩ B [B[A0, p δ0], q δ0]) , (4.1)

which is nonempty since (M,d) has (p, q)-URNS.
First notice that

B[A0, p δ0] ∩ B[B[A0, p δ0], q δ0] ⊂ Ã0 ⊂ B[A0, p δ0], (4.2)

where the last inclusion follows from the fact that B[A0, p δ0] is T -invariant
for all T ∈ F . Additionally, the above implies that

B [B[A0, p δ0], q δ0] ⊂ B[Ã0, q δ0]. (4.3)

We next claim that δ(Ã0) ≤ q δ0, that is, Ã0 ⊂ Ã0 ∩ B[Ã0, q δ0]. To
prove the claim, from (4.2) and (4.3), it can easily be checked that

B[A0, p δ0] ∩ B[B[A0, p δ0], qδ0] ⊂ Ã0 ∩ B[Ã0, q δ0].

If we prove that Ã0 ∩ B[Ã0, q δ0] is T -invariant for all T ∈ F , the claim
immediately follows. Let T ∈ F and

x ∈ Ã0 ∩ B[Ã0, q δ0],
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which implies that Tx ∈ Ã0. We want to prove that Tx ∈ B[Ã0, q δ0], which
is equivalent to proving Ã0 ⊂ B(Tx, q δ0) ∩ Ã0. Notice that

d(y, Tx) ≤ q δ0

for all y ∈ B[A0, p δ0] ∩ B[B[A0, p δ0], q δ0], by (4.2). Hence,

B[A0, p δ0] ∩ B[B[A0, p δ0], q δ0] ⊂ B(Tx, q δ0) ∩ Ã0.

The proof is complete after checking that B(Tx, q δ0) ∩ Ã0 is S invariant for
all S ∈ F .

Let z ∈ B(Tx, q δ0) ∩ Ã0. In particular, oR(z) ⊂ Ã0 for all R ∈ F .
Additionally, for any S ∈ F , we have that,

d(Tx, Sz) ≤ sup{D(x, oR(z)) : R ∈ F} ≤ D(x, Ã0) ≤ q δ0,

since x ∈ B[Ã0, q δ0].
The above implies that B(Tx, q δ0)∩Ã0 is S-invariant for all S ∈ F and

therefore that Ã0 ⊂ B(Tx, q δ0) ∩ Ã0. In particular, Tx ∈ Ã0 ∩ B[Ã0, q δ0]
and consequently the claim is proved.

Thus, we have found an admissible subset Ã0 ⊂ B[A0, p δ0], which is
T -invariant for all T ∈ F and such that diam(Ã0) ≤ q δ0. We proceed by
using Zorn’s Lemma and find A1 ⊂ Ã0 an admissible set. which is minimal
and T -invariant for all T ∈ F . Following the proof by recursion, we construct
the sequence (An)n≥0 as wished and so the proof is complete. �

Corollary 4.6. Let (M,d) be a bounded metric space with uniform relative
normal structure and such that A (M) is compact. Let T : M → M be an
orbit-nonexpansive mapping. Then T has a fixed point.

Corollary 4.7. Let (M,d) be a bounded metric space with uniform relative
normal structure and such that A (M) is compact. Let S be a group of orbit-
nonexpansive self-mappings on M . Then there is some x ∈ M such that
s(x) = x for all s ∈ S.

We would like to finish the article with the following remark. The com-
pactness of the family of admissible sets has been assumed along the paper to
obtain a minimal invariant set. In many occasions, this assumption is given
by the intrinsic conditions of the metric space. For instance, if the metric
space is endowed with a topology τ for which the closed balls are τ -closed,
the compactness of A(M) is straightforward whenever M is τ -compact. In
particular, this holds for weak compact or weak∗-compact domains in Ba-
nach spaces. Additionally, as it was mentioned before, the uniform normal
structure implies compactness of A(M) (see [15] or [17, Theorem 5.4]) for
complete metric spaces. Whether the compactness of the family of admissi-
ble sets can be deduced from the URNS in complete metric spaces is still an
open problem.
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