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Abstract. Working in the frame of variable bounded variation spaces
in the sense of Wiener, introduced by Castillo, Merentes, and Rafeiro,
we prove convergence in variable variation by means of the classical
convolution integral operators. In the proposed approach, a crucial step
is the convergence of the variable modulus of smoothness for absolutely
continuous functions. Several preliminary properties of the variable p(·)-
variation are also presented.
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1. Introduction

The study of variable exponent Lebesgue spaces has been a challenging topic
in the last 30 years. Such spaces, introduced by Orlicz [24] and then developed
by Nakano [22,23], are a generalization of the classical Lebesgue spaces: the
basic idea is that the constant exponent p of the Lp-spaces is replaced by a
variable function p(·). Such spaces share, with the classical Lp-spaces, several
properties, but nevertheless they also present some significant differences.
Among them, for example, the variable exponent spaces are not invariant
under translation. The study of such spaces had a wide development for
their intrinsic interest, and also for the important applications that they have
in partial differential equations, calculus of variations, harmonic analysis,
as well as in several applied problems such as, for example, digital image
processing (see, e.g., [11,15,28]) or the study of electrorheological fluids (see,
e.g., [25,26]).

Following the idea of variable spaces, in [14], Castillo, Merentes, and
Rafeiro introduced the variable bounded variation spaces in the sense of
Wiener (BV p(·)), a generalization of the spaces of bounded p-variation [27],
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that generalized in turn the classical BV-space in the sense of Jordan. We
recall that the space of bounded p-variation in the sense of Wiener is defined
as the space of functions for which the p-variation is finite, that is

V p[f ] := sup
n∑

i=1

|f(ti) − f(ti−1)|p < +∞,

where the supremum is taken over all the possible increasing sequences t0 <
t1 < · · · < tn in R. Taking p = 1, the above space reduces to the classical
BV-space in sense of Jordan. The idea of Castillo, Merentes, and Rafeiro
was to replace p by a variable function p(·) with suitable properties, defining
therefore the BV p(·)-spaces, namely the variable bounded variation spaces in
the sense of Wiener, that are the setting of the present paper. We recall that
a variable exponent version of the Riesz variation was introduced and studied
in [12,13], while we refer to [7] for an extensive treatment about classical and
non-classical BV-spaces.

Our main goal will be to obtain a convergence result for the classical con-
volution integral operators with respect to convergence in variable variation
in the sense of Wiener, recalling that convergence in variation is the natural
notion of convergence in BV-spaces. Convergence results for the convolution
integral operators within BV-spaces were obtained using several notions of
variation, besides the classical Jordan variation (see, e.g., [8,9]), such as the
ϕ-variation in the sense of Musielak–Orlicz [9,21], the Riesz ϕ-variation [1],
or, in the multidimensional setting, the Tonelli variation [8]. About variable
spaces, in [16], there are results about pointwise and norm convergence for
convolution operators in the variable Lebesgue spaces Lp(·).

As mentioned before, if variable spaces share several properties with
classical Lebesgue spaces, there are also significant differences and some im-
portant properties do not hold any more. As an example, it is not true that the
translation operator applied to a function belonging to a variable Lebesgue
space belongs to the same space, as it holds in Lp-spaces [16], and of course
the same happens in BV p(·)-spaces (see Example 3). Another delicate point
is about the additivity of the variation on intervals: analogously to what hap-
pens in the case of Musielak–Orlicz ϕ-variation (see [21, 1.17 and 1.18]), the
classical additivity property on intervals is replaced by suitable inequalities
(see Proposition 3.2). These facts make the problem of convergence in vari-
able variation much more delicate with respect to working with the classical
variation.

The paper is organized as follows. After a preliminary section in which
we state the main notations and preliminaries, we present some properties
of the variable variation in the sense of Wiener that will be useful in the
following (Sect. 3). Then, in Sect. 4, we present the main results: starting
from an estimate in variable variation for the convolution operators, we prove
a result of convergence for the modulus of smoothness, that is naturally
reformulated in the context of BV p(·)-spaces: to do this, several preliminary
results are necessary to provide a kind of approximation by means of step-
type functions (Proposition 4.3, Theorem 4.4). As a consequence, we obtain
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the convergence in variable variation by means of convolution operators. For
all these results, it is crucial the assumption of p(·)-absolute continuity on
the function, that is, the obvious reformulation of absolute continuity in the
context of variable bounded variation spaces. This is absolutely natural, since,
also in case of the classical Jordan variation, convergence in variation can be
obtained just in the subspace of BV of the absolutely continuous functions.
A similar situation occurs also working with other concepts of variation (see,
e.g., [21] for the Musielak–Orlicz ϕ-variation, [6] for the multidimensional
ϕ-variation in the sense of Tonelli) and with other kind of operators (see,
e.g., [2,10] for Mellin integral operators or [3–5] for sampling-type discrete
operators).

2. Notations and Preliminaries

We first recall the definition of variable bounded variation spaces in the sense
of Wiener, adapting to the case of functions defined on the whole real line
that one given in [14] for functions defined on an interval [a, b].

Definition 2.1. An admissible function is a function p : R → [1,+∞), such
that p+ := supx∈R

p(x) < +∞.

We will also use the notation p− := infx∈R p(x): notice that, obviously,
p− ≥ 1. From now on, p(·) will denote an admissible function.

Definition 2.2. Let f : R → R. The p(·)-variation in the Wiener’s sense of f
is defined as

V p(·)[f ] := sup
Π∗

n∑

i=1

|f(ti) − f(ti−1)|p(xi−1),

where Π∗ is a tagged sequence, i.e., an increasing sequence t0 < t1 < · · · < tn,
together with a finite sequence of numbers x0, x1, . . . , xn−1 subject to the
condition ti ≤ xi ≤ ti+1, ∀i = 0, . . . , n − 1.

Definition 2.3. By

BV p(·)(R) := {f : R → R : V p(·)[λf ] < +∞, for some λ > 0},

we denote the space of functions of bounded p(·)-variation on R.

The definition in case of functions defined on an interval [a, b] ⊂ R (or
on a halfline) is given in a similar way [14].

Definition 2.4. Let f : [a, b] → R. The p(·)-variation in the Wiener’s sense of
f is defined as

V p(·)[f, [a, b]] := sup
Π∗

n∑

i=1

|f(ti) − f(ti−1)|p(xi−1),

where Π∗ is a tagged partition, i.e., a partition t0 = a < t1 < · · · < tn = b of
[a, b] together with a finite sequence of numbers x0, x1, . . . , xn−1 subject to
the condition ti ≤ xi ≤ ti+1, ∀i = 0, . . . , n − 1.
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Definition 2.5. By

BV p(·)([a, b]) := {f : [a, b] → R : V p(·)[λf, [a, b]] < +∞, for some λ > 0},

we denote the space of functions of bounded p(·)-variation in the Wiener’s
sense on [a, b].

In [14], BV p(·)([a, b]) is actually defined by means of the norm

‖f‖BV p(·)([a,b]) := inf
{

λ > 0 : V p(·)
[
f

λ
, [a, b]

]
≤ 1

}
,

i.e., as the space of functions f : [a, b]→R for which ‖f‖BV p(·)([a,b])<+∞. The
reason is that, regarding such definitions in the theory of modular spaces, it
can be proved (see [14]) that ‖f‖BV p(·)([a,b]) is a Luxemburg norm; there-
fore, BV p(·)([a, b]) is a Banach space. Instead of the norm, we choose to use
V p(·)[λf ], that turns out to be a pseudomodular1 (see [14]), so that BV p(·)(R)
is a modular space (see, e.g., [20,21]).

The natural convergence is therefore the so-called “modular conver-
gence”.

Definition 2.6. A family of functions (fw)w>0 ⊂ BV p(·)([a, b]) is convergent
in variation (modular convergent) to f ∈ BV p(·)([a, b]) if there exists λ > 0,
such that

V p(·)[λ(fw − f), [a, b]] → 0, as w → +∞.

Besides modular convergence, that is the notion of convergence that we
will use in the present paper, the norm ‖f‖BV p(·)([a,b]) induces the usual norm
convergence. We recall that norm convergence (i.e., ‖fw − f‖BV p(·)([a,b]) → 0
as w → +∞) is equivalent to

V p(·)[λ(fw − f), [a, b]] → 0, as w → +∞, for every λ > 0.

In general, norm convergence is stronger than modular convergence: in
case of p+ < +∞, as assumed here, it can be proved that actually they are
equivalent (see also [16]).

Proposition 2.7. Given a family of functions (fw)w ⊂ BV p(·)([a, b]), then
(fw)w converges in variation to f ∈ BV p(·)([a, b]) if and only if (fw)w con-
verges in norm to f .

Proof. Being obvious that convergence in norm implies convergence in varia-
tion, we prove the converse. Let λ̄ > 0 be such that V p(·)[λ̄(fw−f), [a, b]] → 0,
as w → +∞. Let us fix any λ > 0 and assume w.l.g. that λ > λ̄, since in the

1We recall that, if X is a vector space on K (K = C or K = R), then a convex, left-
continuous function ρ : X → [0, ∞) is called a convex pseudomodular on X if, for every x
and y in X

(i) ρ(0) = 0,
(ii) ρ(αx) = ρ(x), for all α ∈ K, such that |α| = 1,
(iii) ρ(αx + (1 − α)y) ≤ αρ(x) + (1 − α)ρ(y) for all α ∈ [0, 1].

If ρ is a pseudomodular on X, then the set Xρ = {x ∈ X : limλ→0+ ρ(λx) = 0} is a

modular space.
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other case, the proof is obvious. For a fixed ε > 0, let w̄ > 0 be such that
V p(·)[λ̄(fw − f), [a, b]] < ε

(
λ̄
λ

)p+

, for every w ≥ w̄. Then

V p(·)[λ(fw − f), [a, b]] = V p(·)
[
λ

λ̄
λ̄(fw − f), [a, b]

]

≤
(

λ

λ̄

)p+

V p(·)[λ̄(fw − f), [a, b]] < ε,

for every w ≥ w̄. �

We recall that it is easy to prove that (see [14]), if p(·) ≤ q(·), then

V p(·)[λf ] ≥ V q(·)[λf ], (2.1)

and therefore, BV p(·)(R) ⊂ BV q(·)(R).
We will study approximation properties in BV p(·)(R) of the classical

convolution integral operators defined as

(Twf)(s) =
∫

R

Kw(t)f(s − t) dt, w > 0, s ∈ R,

for f : R → R of bounded p(·)-variation, where (Kw)w>0 is a family of kernel
functions that satisfy the usual assumptions of approximate identities, that
is
(K1) Kw ∈ L1(R), ‖Kw‖1 ≤ A, for some constant A > 0 and for every

w > 0 and
∫

R

Kw(t) dt = 1, for every w > 0;

(K2) for any fixed δ > 0,
∫

|t|>δ

|Kw(t)|dt → 0, as w → +∞.

To get the main convergence result, it is necessary to introduce the con-
cept of variable absolute continuity, adapted from [14] to the case of functions
defined on the whole real space.

Definition 2.8. A function f ∈ BV p(·)(R) is absolutely p(·)-continuous if

lim
δ→0+

sup
Πδ

n∑

i=1

|λ[f(ti) − f(ti−1)]|p(xi−1) = 0,

for some λ > 0, where Πδ is a tagged sequence with mesh not greater than δ
(max1≤i≤n |ti − ti−1| ≤ δ). By ACp(·)(R), we will denote the space of all the
absolutely p(·)-continuous functions f : R → R.

It is immediate to see that, in the particular case p(·) = 1, the above
definition reduces (for λ = 1) to the classical absolute continuity, expressed in
terms of convergence of the modulus of continuity, i.e., limδ→0+ ω1

δ (f) = 0. In
general, denoted by AC(R), the space of absolutely continuous functions on R,
i.e., the BV -functions on R for which limδ→0+ supSδ

∑n
i=1 |f(ti)− f(ti−1)| =

0, where the supremum is taken over all the increasing sequences Sδ on R

with mesh not greater than δ, we have that AC(R) ⊂ ACp(·)(R). Indeed,
first of all recall that p(·) ≥ 1 implies BV (R) ⊂ BV p(·)(R). Moreover, if
f ∈ AC(R), in correspondence to 0 < ε < 1 (w.l.g.), there exists δ̄ > 0, such
that, for every 0 < δ < δ̄, supSδ

∑n
i=1 |f(ti) − f(ti−1)| < ε < 1, and so, in
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particular, |f(ti) − f(ti−1)| ≤ ∑n
i=1 |f(ti) − f(ti−1)| < 1, for every sequence

t0 < t1 < · · · < tn with mesh not greater than δ. Now, if Πδ is a tagged
sequence with mesh not greater than δ

|f(ti) − f(ti−1)|p(xi−1) ≤ |f(ti) − f(ti−1)|,
since p(·) ≥ 1, and so

sup
Πδ

n∑

i=1

|f(ti) − f(ti−1)|p(xi−1) ≤ sup
Sδ

n∑

i=1

|f(ti) − f(ti−1)| < ε.

3. Some Properties of the p(·)-Variation
In this section, we will present some general results about the p(·)-variation
that will be useful to study the problem of convergence in variation by
means of convolution integral operators. For other basic properties of the
p(·)-variation, we refer to [17–19].

Proposition 3.1. If f ∈ BV p(·)(R), there exists λ > 0, such that

(a) V p(·)[λf ] ≤ 1;
(b) for every increasing sequence t0 < t1 < · · · < tn, λ|f(ti) − f(ti−1)| ≤ 1,

for every i = 1, . . . , n.

Proof. To prove (a), let μ > 0 be such that V p(·)[μf ] < +∞; if V p(·)[μf ] ≤ 1,

there is nothing to prove. If V p(·)[μf ] > 1, then
{

V p(·)[μf ]
}p(·)

≥ V p(·)[μf ],
since p(·) ≥ 1, and so, if t0 < t1 < · · · < tn, x0, . . . , xn−1 is a tagged sequence
n∑

i=1

[
μ

V p(·)[μf ]
|f(ti) − f(ti−1)|

]p(xi−1)

≤
∑n

i=1 [μ|f(ti) − f(ti−1)|]p(xi−1)

V p(·)[μf ]
≤ 1;

therefore, passing to the supremum over all the tagged sequences in R, we
conclude that

V p(·)[λf ] ≤ 1

for λ = μ
V p(·)[μf ]

. About (b), it is sufficient to notice that by (a)

[λ|f(ti) − f(ti−1)|]p(·) ≤ V p(·)[λf ] ≤ 1,

and hence

λ|f(ti) − f(ti−1)| ≤ 1,

for every i = 1, . . . , n. �

The following proposition is a generalization to the p(·)-variation of the
classical additivity of the variation on intervals.

Proposition 3.2. If f ∈ BV p(·)([a, b]) and a < c < b, then, for some λ > 0

(a) V p(·)[λf, [a, c]] + V p(·)[λf, [c, b]] ≤ V p(·)[λf, [a, b]];
(b) V p(·)p+/p− [λf, [a, b]] ≤ 2p2

+/p−−1
{
V p(·)[λf, [a, c]] + V p(·)[λf, [c, b]]

}
.
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Proof. Let λ > 0 be given by Proposition 3.1. For (a), it is sufficient to notice
that, if t0 = a < t1 < · · · < tm = c, x0, . . . , xm−1 is a tagged partition of [a, c]
and t

′
0 = c < t

′
1 < · · · < t

′
k = b, x

′
0, . . . , x

′
k−1 is a tagged partition of [c, b];

obviously, the union t0 = a < · · · < t
′
k = b, x0, . . . , x

′
k−1 is a tagged partition

of [a, b], and hence
m∑

j=1

[λ|f(tj) − f(tj−1)|]p(xj−1) +
k∑

j=1

[λ|f(t
′
j) − f(t

′
j−1)|]p(x

′
j−1) ≤ V p(·)[λf, [a, b]].

Therefore, passing to the supremum over all the tagged partitions of [a, c]
and [c, b]

V p(·)[λf, [a, c]] + V p(·)[λf, [c, b]] ≤ V p(·)[λf, [a, b]].

To prove (b), let us consider a tagged partition of [a, b] τ0 = a < · · · <
τm = b, x0, . . . , xm−1. There will be some interval, say [τj−1, τj ], that contains
c. By the convexity of the power function up(·)p+/p− , u ≥ 0, there holds

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

= [λ|f(τj) − f(c) + f(c) − f(τj−1)|]p(xj−1)p+/p−

≤ 1

2

{
[2λ|f(τj) − f(c)|]p(xj−1)p+/p− + [2λ|f(c) − f(τj−1)|]p(xj−1)p+/p−

}

≤ 2p2
+/p−−1

{
[λ|f(τj) − f(c)|]p(xj−1)p+/p− + [λ|f(c) − f(τj−1)|]p(xj−1)p+/p−

}
.

Now if, for example, xj−1 ∈ [τj−1, c[, taking into account that λ|f(τj) −
f(c)| ≤ 1 and λ|f(c) − f(τj−1)| ≤ 1, then for some x̄c ∈ [c, τj ], we have

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

≤ 2p2
+/p−−1

{
[λ|f(τj) − f(c)|]p(x̄c) + [λ|f(c) − f(τj−1)|]p(xj−1)

}
,

since p(xj−1)/p− ≥ 1 and p+ ≥ p(x̄c). Taking into account that λ|f(τi) −
f(τi−1)| ≤ 1, for every i, and that p(·)p+/p− ≥ p(·), this implies that

m∑

i=1

[λ|f(τi) − f(τi−1)|]p(xj−1)p+/p−

=
∑

i�=j

[λ|f(τi) − f(τi−1)|]p(xi−1)p+/p− + [λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

≤ 2p2
+/p−−1

∑

i�=j

[λ|f(τi) − f(τi−1)|]p(xi−1)

+ 2p2
+/p−−1

{
[λ|f(τj) − f(c)|]p(x̄c) + [λ|f(c) − f(τj−1)|]p(xj−1)

}

≤ 2p2
+/p−−1

{
V p(·)[λf, [a, c]] + V p(·)[λf, [c, b]]

}
,

and the thesis follows passing to the supremum over all the tagged partitions
of [a, b]. �

The following Proposition is a generalization of the previous result in
case of functions that vanish on a partition of [a, b].
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Proposition 3.3. Let f ∈ BV p(·)([a, b]) and let t0 = a < t1 < · · · < tn = b be
a partition of [a, b]. Then, for some λ > 0

(a)
∑n

i=1 V p(·)[λf, [ti−1, ti]] ≤ V p(·)[λf, [a, b]];
(b) V p(·)[λf, [a, b]] ≤ np2

+/p−−1
∑n

i=1 V p(·)[λf, [ti−1, ti]];
(c) if, in addition, f(ti) = 0 for every i = 0, . . . , n, V p(·)p+/p− [λf, [a, b]] ≤

2p2
+/p−−1

∑n
i=1 V p(·)[λf, [ti−1, ti]].

Proof. Let λ > 0 be given by Proposition 3.1. Part (a) follows with analogous
reasonings to (a) of Proposition 3.2.

To prove (b), let us consider a tagged partition of [a, b] τ0 = a < · · · <
τm = b, x0, . . . , xm−1. There will be some intervals [τj−1, τj ] that contain
some ti, say τj−1 ≤ ti < · · · < ti+νj

≤ τj : for such intervals, there holds, by
the convexity of the power function up(·)p+/p− , u ≥ 0

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

≤ 1
νj + 1

{
[(νj + 1)λ|f(τj−1) − f(ti)|]p(xj−1)p+/p−

+ [(νj + 1)λ|f(ti) − f(ti+1)|]p(xj−1)p+/p−

+ · · · + [(νj + 1)λ|f(ti+νj
) − f(τj)|]p(xj−1)p+/p−

}

≤ (νj + 1)p2
+/p−−1

{
[λ|f(τj−1) − f(ti)|]p(xj−1)p+/p−

+ [λ|f(ti) − f(ti+1)|]p(xj−1)p+/p−

+ · · · + [λ|f(ti+νj
) − f(τj)|]p(xj−1)p+/p−

}
.

(3.1)

Now, taking into account that λ|f(τj−1) − f(ti)| ≤ 1, λ|f(ti) − f(ti+1)| ≤
1, . . . , λ|f(ti+νj

) − f(τj)| ≤ 1, then

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p− ≤ (νj + 1)p2
+/p−−1

{
[λ|f(τj−1) − f(ti)|]p(x̄i−1)

+ [λ|f(ti+1) − f(ti)|]p(x̄i) + · · · + [λ|f(ti+νj
) − f(τj)|]p(x̄i+νj

)
}

for some x̄i−1 ∈ [τj−1, ti], x̄k−1 ∈ [tk−1, tk], k = i + 1, . . . , i + νj , x̄i+νj
∈

[tij+ν , τj ], since p(xj−1)/p− ≥ 1 for every j = 1, . . . , n, and p+ ≥ p(·). This
implies that

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

≤ (νj + 1)p2
+/p−−1

{
V p(·)[λf, [τj−1, ti]] + · · · + V p(·)[λf, [ti+νj

, τj ]]
}

;

hence, summing over j = 1, . . . , m, applying (a), and taking into account
that νj ≤ n − 1, for every j

m∑

j=1

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p− ≤ np2
+/p−−1

n∑

i=1

V p(·)[λf, [ti−1, ti]].

Therefore, the inequality follows passing to the supremum over all the tagged
partitions of [a, b].
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To prove (c), one can proceed as in the previous case, for a tagged
partition of [a, b] τ0 = a < · · · < τm = b, x0, . . . , xm−1. Then, for the intervals
[τj−1, τj ] that contain some ti, say τj−1 ≤ ti < · · · < ti+νj

≤ τj , the estimate
(3.1) can be replaced by the following:

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p−

≤ 1
2

{
[2λ|f(τj−1)|]p(xj−1)p+/p− + [2λ|f(τj)|]p(xj−1)p+/p−

}

≤ 2p2
+/p−−1

{
[λ|f(τj−1)|]p(xj−1)p+/p− + [λ|f(τj)|]p(xj−1)p+/p−

}

= 2p2
+/p−−1

{
[λ|f(τj−1) − f(ti)|]p(xj−1)p+/p−

+ [λ|f(ti) − f(ti+1)|]p(xj−1)p+/p−

+ · · · + [λ|f(ti+νi
) − f(τj)|]p(xj−1)p+/p−

}
.

Now, with similar reasonings as before, it is possible to conclude that
m∑

j=1

[λ|f(τj) − f(τj−1)|]p(xj−1)p+/p− ≤ 2p2
+/p−−1

n∑

i=1

V p(·)[λf, [ti−1, ti]],

and the inequality follows passing to the supremum over all the tagged par-
titions of [a, b].

�

As an immediate consequence of the previous Proposition, we have the
following:

Corollary 3.4. If f ∈ BV p(·)(R) and t0 < t1 < · · · < tn is an increasing
sequence in R, such that f(ti) = 0 for every i = 0, . . . , n, then, for some
λ > 0
(a) V p(·)[λf, (−∞, t0]]+

∑n
i=1 V p(·)[λf, [ti−1, ti]]+V p(·)[λf, [tn,+∞)] ≤ V p(·)

[λf ];
(b) V p(·)p+/p− [λf ] ≤ 2p2

+/p−−1
{

V p(·)[λf, (−∞, t0]]+
∑n

i=1 V p(·)[λf, [ti−1, ti]]

+ V p(·)[λf, [tn,+∞)]
}
.

Another classical result for the variation that can be extended to the
p(·)-variation is the subadditivity with respect to functions:

Proposition 3.5. If f1, . . . , fm ∈ BV p(·)(R), m ∈ N, then f1 + · · · + fm ∈
BV p(·)(R) and, for some λ > 0

V p(·)[λ(f1 + · · · + fm)] ≤ mp+−1
{

V p(·)[λf1] + · · · + V p(·)[λfm]
}

.

Proof. Let λ > 0 be such that V p(·)[λfi] < +∞, for every i = 1, . . . , m, and
let t0 < t1 < · · · < tn, x0 < · · · < xn−1 be a tagged sequence. Then, by the
monotonicity and the convexity of the power function up(·), u ≥ 0

n∑

i=1

|λ(f1 + · · · + fm)(ti) − λ(f1 + · · · + fm)(ti−1)|p(xi−1)
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≤
n∑

i=1

[λ|f1(ti) − f1(ti−1)| + · · · + λ|fm(ti) − fm(ti−1)|]p(xi−1)

≤
n∑

i=1

{
1
m

[
mλ|f1(ti) − f1(ti−1)|

]p(xi−1)

+ · · ·

+
1
m

[
mλ|fm(ti) − fm(ti−1)|

]p(xi−1)
}

≤ mp+−1
{

V p(·)[λf1] + · · · + V p(·)[λfm]
}

,

and the thesis follows passing to the supremum over all the tagged sequences
in R. �

Finally, we prove a relation between the p(·)-variations of a function
and its shifted version τtf(u) := f(u − t), t, u ∈ R, that will be fundamental
to work with the convolution integral operators.

Proposition 3.6. For every t ∈ R

V p(·)[τtf ] = V τ−tp(·)[f ].

Therefore, τtf ∈ BV p(·)(R), t ∈ R, if and only if f ∈ BV τ−tp(·)(R).

Proof. Let s0 < s1 < · · · < sn, x0 < · · · < xn−1 be a fixed tagged sequence:
then, for t ∈ R, s0 − t < s1 − t < · · · < sn − t, x0 − t < · · · < xn−1 − t is again
a tagged sequence. Therefore

n∑

i=1

|f(si − t) − f(si−1 − t)|p(xi−1) =
n∑

i=1

|f(si − t) − f(si−1 − t)|p((xi−1−t)+t)

≤ V p(·+t)[f ],

and so, passing to the supremum over all the tagged sequences in R

V p(·)[τtf ] ≤ V τ−tp(·)[f ].

On the other side, if s0 < s1 < · · · < sn, x0 < · · · < xn−1 is a tagged
sequence, so is s0 + t < s1 + t < · · · < sn + t, x0 + t < · · · < xn−1 + t, and
therefore

n∑

i=1

|f(si) − f(si−1)|p(xi−1+t) =
n∑

i=1

|f((si + t) − t) − f((si−1 + t) − t)|p(xi−1+t)

≤ V p(·)[τtf ].

Again passing to the supremum over all the tagged sequences, we have

V τ−tp(·)[f ] ≤ V p(·)[τtf ],

and the result is proved. �

Example. The previous Proposition suggests an important difference between
the variable variation and the classical notion of variation: the space BV p(·)(R)
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is not invariant under translation, as the classical BV-spaces. Indeed, let us
consider for example the function f : R → R defined as

f(x) =

{
x, x = 1

k , k = 1, 2, . . . ,

0, otherwise,

and the admissible function

p(x) =

{
2, x ∈ [0, 1],
1, otherwise.

Then, f ∈ BV p(·)(R), since

V p(·)[f ] = 2
+∞∑

k=1

∣∣∣∣f
(

1
k

)∣∣∣∣
2

= 2
+∞∑

k=1

1
k2

< +∞.

Nevertheless, if we consider h ∈ R, such that |h| > 1, then by Proposition
3.6, for every λ > 0

V p(·)[λτhf ] = V p(·−h)[λf ] = sup
Π∗

n∑

i=1

|λf(ti) − λf(ti−1)|p(xi−h) = 2

+∞∑

k=1

λ

k
= +∞,

taking into account that, for every xi ∈ [0, 1], xi − h 
∈ [0, 1]. Therefore,
τhf 
∈ BV p(·)(R).

4. Convergence Results by Means of Convolution Operators

We first point out that, if f ∈ BV p(·)(R), the operators Twf are well defined.
Indeed, it is immediate to see that f ∈ BV p(·)(R) implies that f is bounded,
and therefore, for some M > 0

|(Twf)(s)| ≤
∫

R

|Kw(t)||f(s − t)|dt ≤ M‖Kw‖1 ≤ MA,

for every s ∈ R, w > 0, by (K1).
The first result will be an estimate in variable variation for Twf , w > 0.

Theorem 4.1. If f ∈ BV p(·)(R) and (K1) is satisfied, then there exists μ > 0,
such that

V p+/p−p(·)[μTwf ] ≤ V p(·)[λf ], (4.1)

where λ > 0 is such that V p(·)[λf ] < +∞. As a consequence, Tw maps
BV p(·)(R) in BV p+/p−p(·)(R), for every w > 0.

Proof. Let s0 < s1 < · · · < sn, x0 < · · · < xn−1 be a tagged sequence in R.
Then, for μ > 0, we have

Sw :=
n∑

i=1

|μ[(Twf)(si) − (Twf)(si−1)]|p+/p−p(xi−1)

=
n∑

i=1

∣∣∣∣μ
∫

R

Kw(t)f(si − t) dt − μ

∫

R

Kw(t)f(si−1 − t) dt

∣∣∣∣
p+/p−p(xi−1)

.
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Now, by the convexity of the function up+/p−p(·), u ≥ 0, by (K1) and Jensen’s
inequality

Sw ≤ A−1

∫

R

|Kw(t)|
n∑

i=1

[μA|f(si − t) − f(si−1 − t)|]p+/p−p(xi−1) dt

≤ A−1

∫

R

|Kw(t)|V p+/p−p(·)[μAτtf ] dt,

and so, by Proposition 3.6

Sw ≤ A−1

∫

R

|Kw(t)|V p+/p−p(·+t)[μAf ] dt.

Since, for every t ∈ R, p+/p−p(· + t) ≥ p(·)/p−p(· + t) ≥ p(·), then by (2.1)
and (K1)

Sw ≤ A−1

∫

R

|Kw(t)|V p(·)[μAf ] dt ≤ V p(·)[μAf ].

Therefore, if 0 < μ < λ
A , passing to the supremum over all the possible tagged

sequences in R, we conclude that

V p+/p−p(·)[μTwf ] ≤ V p(·)[λf ].

�

Remark 4.2. In the particular case of p(·) = 1, the variable bounded variation
reduces to the classical Jordan variation and the estimate of Theorem 4.1
becomes

V [Twf ] ≤ V [f ],

that is, the variation-diminishing property for the classical convolution in-
tegral operators (see, e.g., [8]). In the case p(·) ≡ p, p > 1, the variable
bounded variation coincides with the Wiener p-variation and the estimate of
Theorem 4.1 reduces to the variation-diminishing property for the Wiener
p-variation (see, e.g., [21] for the generalization of such result in the case of
the Musielak–Orlicz ϕ-variation). We point out that, in all these cases, with
”classical” notions of variation, the convolution integral operators map the
space of functions of bounded variation (in the sense of Jordan, Wiener...) in
itself, while here they map BV p(·)(R) into BV p+/p−p(·)(R). Actually, this is
natural, in the setting of variable exponent spaces: for instance, similar phe-
nomena occur working in variable Lebesgue spaces, that are not translation
invariant (see, e.g., [16]).

To prove the main convergence theorem, a crucial step is a result about
the convergence of the modulus of smoothness of an absolutely continuous
function: the modulus of smoothness, in the context of BV p(·)-spaces, for
f : R → R, is defined as

ωp(·)(f, δ) := sup
|t|≤δ

V p(·)[τtf − f ], δ > 0.

We will now prove some preliminary results. The first proposition guarantees
the possibility to approximate a BV p(·)-function by means of a step function.
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Proposition 4.3. If f ∈ ACp(·)(R), there exists λ > 0, such that, for every
ε > 0, there exist a, b ∈ R and δ > 0, such that, if t0 = a < t1 < · · · < tn = b
is a partition of [a, b] with ti − ti−1 < δ for every i = 1, . . . , n, then

(a) V p(·)[λf, (−∞, a]] < ε and V p(·)[λf, [b,+∞)] < ε;
(b)

∑n
i=1 V p(·)[λf, [ti−1, ti]] < ε;

(c) the step functions ν1, ν2 : R → R defined as

ν1(t) :=

⎧
⎪⎨

⎪⎩

f(a), t < a,

f(ti−1), ti−1 ≤ t < ti,

f(b), t ≥ b,

ν2(t) :=

⎧
⎪⎨

⎪⎩

f(a), t ≤ a,

f(ti), ti−1 < t ≤ ti,

f(b), t > b,

are such that V p(·)p+/p− [λ(f − ν1)] < ε and V p(·)p+/p− [λ(f − ν2)] < ε.

Proof. About (a), it is sufficient to recall that f ∈ ACp(·)(R) implies in partic-
ular f ∈ BV p(·)(R), and hence, there exists λ > 0, such that V p(·)[λf ] < +∞.
Since V p(·)[λf ] = limn→+∞ V p(·)[λf, [−xn, xn]] where (xn)n is an increasing
sequence in R, then by Corollary 3.4

V p(·)[λf, (−∞, −xn]] + V p(·)[λf, [xn,+∞)] ≤ V p(·)[λf ] − V p(·)[λf, [−xn, xn]] → 0,

as n → +∞. Therefore

lim
n→+∞ V p(·)[λf, (−∞,−xn]] = lim

n→+∞ V p(·)[λf, [xn,+∞)] = 0,

that implies (a).
To prove (b), it is sufficient to notice that, by the p(·)-absolute continuity

of f , for some λ > 0, in correspondence to ε > 0, there exists δ > 0, such
that

∑n
i=1 |λ[f(ti) − f(ti−1)]|p(xi−1) < ε, for every tagged sequence t0 < t1 <

· · · < tn, such that ti − ti−1 < δ, for every i. Therefore, if one considers a
tagged sequence τ i

0 < · · · < τ i
mi

, yi
0, . . . , y

i
mi−1 in each interval [ti−1, ti], there

holds
n∑

i=1

mi∑

j=1

[λ[f(τ i
j) − f(τ i

j−1)]|p(yi
j−1) < ε,

and the thesis follows passing to the supremum over all the possible tagged
sequences in [ti−1, ti].

Let us now prove (c). In correspondence to ε > 0, let λ > 0, a, b ∈ R

and δ > 0 be given by (a) and (b), so that, if t0 = a < t1 < · · · < tn = b is a
partition of [a, b] with ti − ti−1 < δ for every i = 1, . . . , n, then

(i) V p(·)[λf, (−∞, a]] < ε

2
p2
+/p−+1

(< ε) and V p(·)[λf, [b,+∞)] < ε

2
p2
+/p−+1

(<

ε);
(ii)

∑n
i=1 V p(·)[λf, [ti−1, ti]] < ε

2
p2
+/p−+p+

(< ε).
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By Corollary 3.4 (taking into account that (f − νk)(ti) = 0 for every i =
0, . . . , n, k = 1, 2)

V p(·)p+/p− [λ(f − νk)] ≤ 2p2
+/p−−1

{
V p(·)[λ(f − νk), (−∞, a]]

+
n∑

i=1

V p(·)[λ(f − νk), [ti−1, ti]]

+ V p(·)[λ(f − νk), [b,+∞)]
}

= 2p2
+/p−−1

{
V p(·)[λf, (−∞, a]]

+
n∑

i=1

V p(·)[λ(f − νk), [ti−1, ti]]

+ V p(·)[λf, [b,+∞)]
}

< 2p2
+/p−−1

{
ε

2p2
+/p−

+
n∑

i=1

V p(·)[λ(f − νk), [ti−1, ti]]

}
.

By Proposition 3.5, and since obviously V p(·)[λνk, [ti−1, ti]] ≤ V p(·)[λf,
[ti−1, ti]], we have that

V p(·)[λ(f − νk), [ti−1, ti]] ≤ 2p+−1{V p(·)[λf, [ti−1, ti]] + V p(·)[λνk, [ti−1, ti]]}
≤ 2p+V p(·)[λf, [ti−1, ti]],

for every i = 1, . . . , n. Therefore, by (ii)

V p(·)p+/p− [λ(f − νk)] < 2p2
+/p−−1

{
ε

2p2
+/p−

+ 2p+
ε

2p2
+/p−+p+

}
= ε,

k = 1, 2. �
Theorem 4.4. If f ∈ ACp(·)(R), then there exists λ > 0, such that

lim
t→0−

V p(·)p+/p− [λ(τtν1 − ν1)] = 0, lim
t→0+

V p(·)p+/p− [λ(τtν2 − ν2)] = 0,

where ν1 and ν2 are defined as in Proposition 4.3.

Proof. Let us fix ε > 0; by Proposition 4.3, there exist λ, δ > 0, a, b ∈ R and
two step functions ν1 : R → R, ν2 : R → R, such that

n∑

i=1

V p(·)[λf, [ti−1, ti]] <
ε

2p2
+/p−+p+−1

, (4.2)

where t0 = a < t1 < · · · < tn = b is a partition of [a, b], such that ti−ti−1 < δ,
for every i = 1, . . . , n, and V p(·)p+/p− [λ(f − νk)] < ε, k = 1, 2.

Let now 0 < β < mini=1,...,n{ti − ti−1}. If −β < t < 0, then ti−1 <
ti−1 − t < ti and τtν1(ti−1) = ν1(ti−1 − t) = ν1(ti−1) = f(ti−1): therefore,
V p(·)[λτtν1, [ti−1, ti]] = V p(·)[λν1, [ti−1, ti]]. Then, using (c) of Proposition
3.3, Proposition 3.5, and Eq. (4.2), we obtain

V p(·)p+/p− [λ(τtν1 − ν1), [a, b]] ≤ 2p2
+/p−−1

n∑

i=1

V p(·)[λ(τtν1 − ν1), [ti−1, ti]]
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≤ 2p2
+/p−+p+−2

n∑

i=1

{
V p(·)[λτtν1, [ti−1, ti]]

+V p(·)[λν1, [ti−1, ti]]
}

= 2p2
+/p−+p+−1

n∑

i=1

V p(·)[λν1, [ti−1, ti]]

≤ 2p2
+/p−+p+−1

n∑

i=1

V p(·)[λf, [ti−1, ti]] < ε.

Moreover, taking into account that ν1(u) = τtν1(u) = f(a), for every u ≤ a,
and ν(u) = τtν(u) = f(b), for every u ≥ b

V p(·)p+/p− [λ(τtν1 − ν1)] = V p(·)p+/p− [λ(τtν1 − ν1), [a, b]] < ε.

The proof of the other limit relation for ν2 follows with analogous
reasonings. �

We will now prove a result of convergence for the modulus of smoothness
in case of ACp(·)-functions.

Theorem 4.5. If f ∈ ACp(·)(R), then for some λ > 0, there holds

lim
δ→0+

ωp(·)p2
+/p2

−(λf, δ).

Proof. We will prove that

lim
t→0

V p(·)p2
+/p2

− [λ(τtf − f)] = 0,

that is equivalent to the thesis. For a fixed ε > 0, by Proposition 4.3, there
exist λ, δ > 0, a, b ∈ R and two step functions ν1 : R → R and ν2 : R → R

(associated with a partition of [a, b] with mesh not greater than δ), such that

V p(·)p+/p− [λ(f − νk)] <
ε

3p+
, k = 1, 2. (4.3)

If t < 0, by Proposition 3.5

V p(·)p2
+/p2

− [λ(τtf − f)] ≤ 3p+−1
{

V p(·)p2
+/p2

− [λ(τtf − τtν1)]

+V p(·)p2
+/p2

− [λ(τtν1 − ν1)] + V p(·)p2
+/p2

− [λ(ν1 − f)]
}

.

By Eqs. (2.1) and (4.3), there holds

V p(·)p2
+/p2

− [λ(ν1 − f)] ≤ V p(·)p+/p− [λ(ν1 − f)] <
ε

3p+
,

and by Theorem 4.4

V p(·)p2
+/p2

− [λ(τtν1 − ν1)] ≤ V p(·)p+/p− [λ(τtν1 − ν1)] <
ε

3p+
,

for sufficiently small t < 0. Finally, by Proposition 3.6 and (2.1)

V p(·)p2
+/p2

− [λ(τtf − τtν1)] = V p(·+t)p2
+/p2

− [λ(f − ν1)] ≤ V p(·)p+/p− [λ(f − ν1)].
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Therefore, we conclude that for t < 0 small enough

V p(·)p2
+/p2

− [λ(τtf − f)] ≤ 3p+−1 3ε

3p+
= ε.

Now, replacing ν1 by ν2, it is possible to prove that, for t > 0 sufficiently
small

V p(·)p2
+/p2

− [λ(τtf − f)] ≤ ε,

and the proof is complete. �

We are now ready to prove the main result about convergence in p(·)-
variation.

Theorem 4.6. Let f ∈ ACp(·)(R). If (K1) and (K2) are satisfied, then

lim
w→+∞ V p2

+/p2
−p(·)[λ(Twf − f)] = 0,

for some λ > 0.

Proof. For a fixed tagged sequence s0 < s1 < · · · < sn, x0 < · · · < xn−1 and
λ > 0, there holds

Sw :=
n∑

i=1

|λ[(Twf − f)(si) − (Twf − f)(si−1)]|p2
+/p2

−p(xi−1)

=
n∑

i=1

∣∣∣∣λ
∫

R

Kw(t)[f(si − t) − f(si)] dt

−λ

∫

R

Kw(t)[f(si−1 − t) − f(si−1)] dt

∣∣∣∣
p2
+/p2

−p(xi−1)

≤
n∑

i=1

[
λ

∫

R

|Kw(t)||[f(si − t) − f(si)]

− [f(si−1 − t) − f(si−1)]|dt
]p2

+/p2
−p(xi−1)

,

taking into account of (K1). Now, by Jensen’s inequality and (K1)

Sw ≤ A−1

∫

R

|Kw(t)|
n∑

i=1

∣∣∣λA
{

[f(si − t) − f(si)]

− [f(si−1 − t) − f(si−1)]
}∣∣∣

p2
+/p2

−p(xi−1)

dt

= A−1

{∫

|t|≤δ

+
∫

|t|>δ

}
|Kw(t)|

n∑

i=1

∣∣∣λA
{

[f(si − t) − f(si)]

− [f(si−1 − t) − f(si−1)]
}∣∣∣

p2
+/p2

−p(xi−1)

dt

:= Iδ
1 + Iδ

2 ,
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for every δ > 0. Let us fix ε > 0. By Theorem 4.5 there exist λ̄, δ̄ > 0 such
that ωp2

+/p2
−p(·)(λ̄f, δ̄) < ε

2 , and so, in correspondence of δ̄, for 0 < λ < λ̄A−1

I δ̄
1 ≤ A−1

∫

|t|≤δ̄

|Kw(t)|V p2
+/p2

−p(·)[λA(τtf − f)] dt

≤ ωp2
+/p2

−p(·)(λAf, δ̄)A−1

∫

|t|≤δ̄

|Kw(t)|dt <
ε

2
,

by (K1).
About Iδ

2 , by Proposition 3.5 and Eq. (2.1)

Iδ
2 ≤ A−12p+−1

∫

|t|>δ

|Kw(t)|
{

V p2
+/p2

−p(·)[λAτtf ] + V p2
+/p2

−p(·)[λAf ]
}

dt

≤ A−12p+V p+/p−p(·)[λAf ]
∫

|t|>δ

|Kw(t)|dt

≤ A−12p+V p(·)[μf ]
∫

|t|>δ

|Kw(t)|dt,

for 0 < λ < μA−1, where μ is such that V p(·)[μf ] < +∞.2 By assumption
(K2), there exists w̃ > 0 such that

∫
|t|>δ̄

|Kw(t)|dt < ε
A−12p++1V p(·)[μf ]

, for
every w ≥ w̃, and so

I δ̄
2 <

ε

2
.

Therefore, if 0 < λ < min{λ̄A−1, μA−1}
Sw ≤ I δ̄

1 + I δ̄
2 < ε,

for sufficiently large w > 0, and the thesis follows passing to the supremum
over all the possible tagged sequences in R. �
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